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Current chemotherapy regimens have certain limitations in improving the survival rates of

patients with advanced ovarian cancer. Hepatocyte growth factor (HGF) is important in

ovarian cancer cell migration and invasion. This study assessed the effects of YYB-101,

a humanized monoclonal anti-HGF antibody, on the growth and metastasis of ovarian

cancer cells. YYB-101 suppressed the phosphorylation of the HGF receptor c-MET and

inhibited the migration and invasion of SKOV3 and A2780 ovarian cancer cells. Moreover,

the combination of YYB-101 and paclitaxel synergistically inhibited tumor growth in an

in vivo ovarian cancer mouse xenograft model and significantly increased the overall

survival (OS) rate compared with either paclitaxel or YYB-101 alone. Taken together,

these findings suggest that YYB-101 has therapeutic potential in ovarian cancer when

combined with conventional chemotherapy agents.

Keywords: HGF, humanized monoclonal antibody, ovarian cancer, metastasis, YYB-101

INTRODUCTION

Ovarian cancer has the highest mortality rate among gynecological diseases and is the fifth leading
cause of cancer deaths among women in the US. The American Cancer Society estimated that in
2018, 22,240 women in the US were diagnosed with ovarian cancer and 14,070 died of this disease.
The 5 year overall survival (OS) rate of patients with stage III or higher ovarian cancer is <29% (1).
Because ovarian cancer progresses without symptoms, it is likely to have reached an advanced stage,
with metastases to the peritoneal cavity, at initial diagnosis (2). The metastatic process of ovarian
carcinoma is believed to involve the attachment of cancer cells shed by ovarian tumors to the surface
of the peritoneum or to organs inside the peritoneum (3). Cancer cell seeding of the peritoneal
cavity is associated with ascites, which ultimately progresses to high-grade carcinomas (4).

The standard treatment for ovarian cancer is cytoreductive surgery, followed by combination
platinum and taxane-based chemotherapy (5). The most widely used combination is
paclitaxel and carboplatin (6, 7). However, chemotherapy does not significantly improve
the OS rate of patients diagnosed with advanced stage disease, mainly because of tumor
resistance to chemotherapeutic agents (8). Efforts to improve clinical outcomes include
co-treatment with targeted and chemotherapeutic agents. For example, the addition of
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bevacizumab, amonoclonal antibody against vascular endothelial
growth factor (VEGF), or cetuximab, a monoclonal antibody
against epidermal growth factor receptor (EGFR), was found
to increase survival rates in patients with ovarian cancer in
chemotherapy (9, 10). These findings suggest that targeted
therapeutic agents may be effective and improve survival rates in
patients with ovarian cancer.

Hepatocyte growth factor (HGF) is a scatter factor that
promotes cell proliferation, migration, and invasion (11, 12).
HGF binds to the HGF receptor c-MET, inducing several
biological activities involved in cancer progression. The HGF/c-
MET axis especially affects the migration of cancer cells from
the primary site to other organs by promoting epithelial-
mesenchymal transition (EMT), which initiates cancer cell
metastasis (13, 14). HGF also stimulates the proliferation and
inhibits the apoptosis of ovarian cancer cells, thereby enhancing
cell survival (15, 16). Moreover, HGF concentrations were shown
to be elevated in the ascitic fluid of ovarian cancer patients,
suggesting that HGF enhances ovarian cancer cell migration
and peritoneal dissemination (17, 18). In addition, c-MET
inhibitors such as PF-2341066, foretinib and DCC-2701 have
shown effective antitumor activities in ovarian cancer xenograft
models (19–21).

YYB-101 is a humanized monoclonal antibody against HGF
and a potential cancer treatment. Treatment of amouse xenograft
model of human colorectal cancer with a combination of YYB-
101 and irinotecan, a chemotherapeutic agent used to treat
colorectal cancer, effectively inhibited tumor progression (22).
Treatment of a mouse xenograft model of human glioblastoma
with YYB-101 and temozolomide (TMZ) resulted in a 2-fold
higher survival rate than treatment with TMZ alone did (23).
These findings suggested that combination therapy with YYB-
101 and chemotherapeutic agentsmay inhibit tumor progression,
including in ovarian cancer.

Therefore, in the present study, we assessed the effects of
YYB-101 on ovarian cancer cells and a mouse xenograft model
of ovarian cancer. The results of this study suggested that a
combination of YYB-101 and conventional chemotherapeutic
agents may be effective in treating patients with ovarian cancer
by effectively inhibiting tumor metastasis and growth.

MATERIALS AND METHODS

Cell Lines
The human ovarian cancer cell lines used in this study
were the adenocarcinoma SKOV3, Caov-3, and OVCAR-
3 (Korea Biotechnology Commercialization Center, KBCC;
Incheon, Korea); A2780 (Sigma-Aldrich, St. Louis, MO, USA),
and clear cell carcinoma JHOC-5 (Rikagaku Kenkyujyo,
RIKEN, Tsukuba, Japan) cell lines. Cell culture media were
obtained from Thermo Scientific Hyclone (Waltham, MA,
USA). OVCAR-3, SKOV3, and A2780 cells were maintained in
Roswell Park Memorial Institute (RPMI) medium supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Thermo
Scientific Hyclone). Caov-3 cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% FBS.
The JHOC-5 cells were maintained in DMEM/F12 medium

supplemented with 10% FBS. All cells were grown at 37◦C in a
humidified incubator.

A2780 cells overexpressing firefly luciferase were generated
as previously described (24). Briefly, A2780 cells were
transfected with the firefly luciferase reporter plasmid pGL
4.51 (luc2/CMV/Neo; Promega, Madison, WI, USA) using
Lipofectamine 2000 (Invitrogen, Waltham, MA, USA). The cells
were cultured in medium containing 100µg/ml G418 to select
positive clones. The expression of luciferase was determined
using a Dual-Luciferase reporter assay system (Promega) and
luminescence was measured using a Victor luminometer (Perkin
Elmer, Waltham, MA, USA).

Cell Migration and Invasion Assays
YYB-101 was synthesized as described previously (25). Migration
and invasion were assessed using 6.5mm Transwell chambers
with 8.0µm pore filters (Costar, Cambridge, MA, USA).
For migration assays, various concentrations of recombinant
humanized HGF (R & D System, Minneapolis, MN, USA), YYB-
101, paclitaxel (Corden Pharma Latina S.P.A, Sermoneta, Latina,
Italy) or crizotinib (Sigma-Aldrich) were loaded into the lower
compartment of each well, and SKOV3 (1 × 105 cells per well)
or A2780/luc (3 × 105 cells per well) cells were placed on each
Transwell insert. After incubation at 37◦C for 8 or 48 h (SKOV3
or A2780 /luc cells, respectively), the inserts were removed and
stained with a Diff-Quick staining kit (Sysmex, Kobe, Japan) and
migrated cells were visualized using light microscopy.

For invasion assays, each Transwell plate was coated with 1
mg/mL Matrigel (BD Bio Sciences, San Jose, CA, USA), and each
Transwell insert was filled with 2 × 105 A2780/luc cells, 0.5 ×

105 SKOV3 cells, 1.5 × 105 Caov-3 cells, or 1.0 × 105 JHOC-
5 cells. A2780/luc cells were incubated for 72 h while SKOV3,
Caov-3, and JHOC-5 cells were incubated for 48 h. The inserts
were stained with a Diff-Quick staining kit and invasive cells were
visualized using light microscopy.

For drug combination experiments, synergistic effects were
evaluated by the combination index (CI), which was calculated
using CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA).
CI values were interpreted as follows: CI< 1 indicated synergism,
CI > 1 antagonism, and CI= 1 additive effect.

Intraperitoneal Xenograft Mouse Model of
Ovarian Cancer
All animal studies were approved by the Institutional Animal
Care and Use Committee (IACUC, NCC-16-342) of the National
Cancer Center, Republic of Korea. Luciferase-overexpressing
A2780/luc cells (1 × 107 in 200 µL phosphate-buffered saline
[PBS]) were intraperitoneally injected into 7 week-old female
BALB/c-nude mice (Orient bio, Korea). Three days later, the
mice were intravenously injected with 40 mg/kg YYB-101 twice
weekly and with 10mg/kg paclitaxel once weekly. Ovarian cancer
progression wasmonitored using bioluminescence imaging using
the in vivo Imaging System (IVIS; Caliper Life Science, Waltham,
MA, USA), and bioluminescence was quantified using Living
Images software with identical standardized square regions of
interest (ROI).
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Orthotopic Mouse Xenograft Model of
Ovarian Cancer
Female BALB/C-nude mice were anesthetized with isoflurane
and the right lateral sides of their abdomens were incised. The
ovarian bursa was ejected, A2780/luc cells (1 × 105 cells in 10
µL) were injected into the ovarian bursa, and the incision site was
closed. One week later, the entire ovary of eachmouse was excised
and the mice were randomly grouped (n= 4–6 per group). Mice
were injected intraperitoneally with 10 mg/kg paclitaxel once
weekly and intravenously with 15 or 30 mg/kg YYB-101 twice
weekly. Mice were monitored using the IVIS bioluminescence
imaging device once weekly for 15 weeks.

Statistical Analysis
All statistical analyses were performed using the GraphPad Prism
software (GraphPad Software Inc., San Diego, CA, USA). The
survival rate of xenografts was calculated using the Kaplan-Meier
plots and compared using the log-rank test. Differences were
analyzed with the Student’s t-test or one-way analysis of variance
(ANOVA) and a p < 0.05 was considered significant.

RESULTS

HGF Enhances Metastasis of Ovarian
Cancer Cells
The levels of HGF secreted by the A2780/luc, OVCAR-3, SKOV3,
Caov-3, and JHOC-5 ovarian cancer cells into the culture
media measured using enzyme-linked immunosorbent assay
(ELISA) were 794,246.0, 90.5, 415.4, 1,140.4, and 368.1 pg/mL,
respectively (Figure S1).

Migration and invasion assays were performed to determine
whether HGF affects the movement of ovarian cancer cells. Using
a Transwell system, we found that the migration (Figure 1A)
and invasion (Figure 1C) of A2780/luc cells were maximal
after treatment with 80 ng/mL HGF. The migration of SKOV3
cells was also maximal following treatment with 80 ng/mL
HGF (Figure 1B), whereas invasiveness was HGF concentration-
dependent (Figure 1D). In another experiment, we measured
the HGF concentration of A2780/luc cells of the upper and
lower chambers in the migration assay system without adding
exogenous HGF to the lower chamber. As a result, we found
that the concentration of HGF was gradually increased in the
upper chamber after 8 h. However, the concentration of HGF
was not detected in the lower chamber (data not shown). These
data suggest that A2780/luc cells secrete HGF; however, the
concentration and secretion period are not sufficient to affect the
migration and invasion of the cells in this assay system. It is also
possible that the initial concentration in the lower chamber is
important to induce A2780/luc migration and invasion in this
assay system.

YYB-101 Inhibits Metastasis of Ovarian
Cancer Cells in vitro and Suppresses
Phosphorylation of C-MET
We next tested the effect of YYB-101 on the migration and
invasion of ovarian cancer cells. Cells were treated with 80 ng/mL

HGF to induce migration, followed by treatment with 0.3 or
3µM YYB-101 (Figure 2). The migration of A2780/luc and
SKOV3 cells was reduced following treatment with 0.1µM
crizotinib, a small molecule inhibitor of lymphoma kinase
(ALK), the c-ros oncogene (ROS1), and c-MET and was dose-
dependently inhibited by YYB-101. The effect of YYB-101 on
ovarian cancer cell invasiveness was tested using a Transwell
system coated with Matrigel. Similar to its effects on migration,
YYB-101 reduced the invasiveness of A2780/luc, SKOV3, Caov-3
and JHOC-5 ovarian cancer cells (Figure 3). Because paclitaxel is
used as a first-line chemotherapeutics for patients with advanced
ovarian cancer, we thought that co-treatment with YYB-101
and paclitaxel might have a synergistic effect on inhibition of
invasion and migration of ovarian cancer cells. When A2780
cells were co-treated with paclitaxel and YYB-101, the migration,
and invasion rates were effectively inhibited (Figure 4). These
findings suggested that the HGF-induced migration and invasion
of ovarian cancer cells was effectively inhibited by YYB-101.

The expression level of c-MET, the only known receptor
for HGF, was assessed in SKOV3 cells using western blot
analysis. In untreated and hIgG-treated SKOV3 cells, c-MET
was phosphorylated on Tyr1234/1235; however, phosphorylated
c-MET was not detected in YYB-101-treated SKOV3 cells
(Figure S2A). In addition, treatment with YYB-101 reduced
extracellular signal-regulated kinase (ERK) 1/2 phosphorylation,
which occurs downstream of c-MET, compared with that in
untreated or hIgG-treated cells. Furthermore, we found that c-
MET phosphorylation was reduced in YYB-101-treated Caov-3
cells, as well as in SKOV3 cells (Figure S2B). Similarly, crizotinib
treatment decrease c-MET activation at Tyr1234/1235 while PTX
treatment did not.

Furthermore, some studies showed that HGF does not
increase the viability of ovarian cancer cells (26, 27). We
confirmed these results by WST-1 assay in SKOV3 and
A2780 cells (Figure S3). Therefore, our results suggested that
HGF-induced migration and invasion were not influenced by
cell growth.

YYB-101 Effectively Reduces the
Progression of Ovarian Cancer in vivo
The effect of YYB-101 in vivo was examined using mouse
xenograft models established by injecting A2780/luc cells
intraperitoneally or implanting them orthotopically into the
ovaries. In the intraperitoneal model, mice were treated with
paclitaxel and YYB-101, starting 3 days after intraperitoneal
injection, and bioluminescence imaging was performed weekly
(Figure 5A). Following implantation of ovarian cancer cells,
bioluminescence emission increased throughout the abdomens
of control mice and those treated with YYB-101 or paclitaxel
alone (Figure 5B). In contrast, bioluminescence emission was
significantly reduced throughout the abdomens of mice co-
treated with paclitaxel and YYB-101 (p < 0.01). Total
bioluminescence (ROI) was also significantly lower in mice
treated with paclitaxel and YYB-101 than in control mice
(Figure 5C). Survival rates for up to 100 days after A2780/luc
cell implantation were improved in mice treated with paclitaxel,
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FIGURE 1 | Effect of recombinant human hepatocyte growth factor (HGF) on the migration and invasion of ovarian cancer cells. Migration assays: (A) 3 × 105

A2780/luc and (B) 1 × 105 SKOV3 cells were seeded in upper chambers while the lower chambers contained 0, 10, 20, 40, 80, or 200 ng/mL HGF. After 48 or 8 h

culture (A2780/luc or SKOV3 cells, respectively), migrated cells were observed using light microscopy. Invasion assay: (C) 2 × 105 A2780/luc and (D) 0.5 × 105

SKOV3 cells were seeded onto Matrigel-coated plates while lower chambers contained 0, 10, 20, 40, 80, or 200 ng/mL HGF. After 72 or 48 h culture (A2780/luc or

SKOV3 cells, respectively), infiltrated cells were observed using light microscopy.

FIGURE 2 | Effect of YYB-101 on migration of ovarian cancer cells. (A) A2780/luc (3 × 105) and (B) SKOV3 (1 × 105) cells were seeded in upper chambers. Lower

chambers contained 3µM YYB-101, 80 ng/mL Hepatocyte growth factor (HGF), 80 ng/mL HGF plus 0.3µM or 3µM YYB-101, or 80 ng/mL HGF plus 0.1µM

crizotinib. After culture for 48 or 8 h (A2780/luc or SKOV3 cells, respectively), migrated cells were observed using light microscopy. ***p < 0.001 vs. control, one-way

ANOVA, followed by Tukey’s multiple comparison test.

YYB-101, or both compared with the control mice, with the OS
rate being significantly higher in mice treated with paclitaxel
and YYB-101 than in control mice (Figure 5D). The survival
rate of the co-treatment group analyzed using the Log-Rank
test was significantly (p < 0.001) different from that of the
control group (Figure 5E). Change in body weight did not
differ between mice treated with YYB-101 and control mice
(Figure 5F). Statistical analyses of body weight changes showed
no significant differences between each experimental group and
the control group.

Another in vivo mouse model, the orthotopic xenograft
model, mimicked the treatment paradigm used to treat patients
with ovarian cancer, consisting of cytoreductive surgery followed

by paclitaxel treatment. The orthotopic xenograft model was
designed to confirm the effect of paclitaxel and YYB-101
on cancer cells disseminated into the peritoneal cavity after
cytoreductive surgery. We assessed the efficacy of YYB-101 in the
orthotopicmouse xenograft model (Figure 6A) and co-treatment
with YYB-101 and paclitaxel reduced the bioluminescence
emission in the abdomen, whereas paclitaxel alone did not
(Figure 6B). Mice treated with paclitaxel and YYB-101 had a
significantly higher OS rate than mice treated with paclitaxel
alone or control mice did (Figure 6C). We assessed whether co-
treatment had a synergistic effect compared to single treatment,
and used the Kaplan-Meier and Log-Rank test to analyze
the statistically significant correlations with OS time. The
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FIGURE 3 | Effect of YYB-101 on invasion of ovarian cancer cells. (A) A2780/luc (2 × 105), (B) SKOV3 (0.5 × 105), (C) Caov-3 (1.5 × 105), and (D) JHOC-5 (1.0 ×

105) cells were seeded onto Matrigel-coated upper chambers. Lower chambers contained 3µM YYB-101, 80 ng/mL hepatocyte growth factor (HGF), 80 ng/mL HGF

plus 0.3µM or 3µM YYB-101, or 80 ng/ml HGF plus 0.1µM crizotinib. After culture for 72 h (A2780/luc cells) or 48 h (SKOV3, Caov-3, and JHOC-5 cells), infiltrated

cells were observed using light microscopy; *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control, one-way ANOVA, followed by Tukey’s multiple comparison test.

FIGURE 4 | Efficacy of co-treatment with YYB-101 and paclitaxel on invasion of ovarian cancer cells. (A) A2780/luc (3 × 105) cells were seeded in upper chamber. In

the lower chamber, 1 pM paclitaxel, 0.3µM YYB-101, or paclitaxel plus YYB-101 was added to the serum free culture media with 80 ng/mL hepatocyte growth factor

(HGF). After 48 h culture, migrated cells were observed using light microscopy. (B) A2780/luc (2 × 105) cells were seeded onto Matrigel-coated upper chambers. In

the lower chamber, 1 pM paclitaxel, 0.3µM YYB-101, or paclitaxel plus YYB-101 was added to serum free culture medium with 80 ng/mL HGF. After 72 h culture,

migrated cells were observed using light microscopy. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control, one-way ANOVA, followed by Tukey’s multiple comparison

test.

result showed that the survival rate of the co-treatment group
was prolonged more than that of the single treatment group
(Figure 6D). These findings indicate that, when combined with
a chemotherapeutic agent, YYB-101 can inhibit ovarian cancer
progression in vivo.

DISCUSSION

The standard treatment regimen for patients diagnosed with
ovarian cancer consists of surgery followed by chemotherapy.
Conventional chemotherapy for ovarian cancer consists of
combinations of carboplatin with taxane-based agents such as
paclitaxel (6, 7, 28). Adjuvant chemotherapy was found to

improve OS and recurrence rate in patients with early stage (I
to IIA) ovarian cancer (29). However, 60–70% of patients are

diagnosed with stage III or IV ovarian cancer or abdominal
metastasis, and the recurrence rate in patients with advanced

stage ovarian cancer is over 70% (7, 30). Therefore, it is important

to provide new treatment options, such as new targeted therapy
agents, for patients with advanced stage ovarian cancer.

Several co-treatments, including chemotherapeutic and
targeted therapy agents, may overcome drug resistance and
improve the efficacy of chemotherapy. Clinical trials have
shown that bevacizumab, a monoclonal anti-VEGF antibody,
administered alone or in combination with chemotherapy,
was effective in patients with recurrent ovarian cancer (10).
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FIGURE 5 | Efficacy of YYB-101 in a mouse ovarian cancer xenograft model. A2780/luc cells (1 × 107) were intraperitoneally injected into mice, which were randomly

divided into four groups (n = 6 per group). Control mice were injected intravenously with phosphate-buffered saline (PBS). Where indicated, mice were injected with

40 mg/kg YYB-101 twice weekly and with 10 mg/kg paclitaxel once weekly. (A) Schematic of experimental design. (B) Monitoring of tumor progression using in vivo

Imaging System (IVIS) bioluminescence imaging once weekly. Mice were injected intraperitoneally with 75 mg/kg luciferin and bioluminescence images were obtained

using an IVIS imaging device. Representative images 3, 16, and 30 days after tumor implantation are shown. (C) Quantitation of total bioluminescence using Living

(Continued)
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FIGURE 5 | Image software. Error bars represent ± standard error of the mean (SEM). The t-test p-value was the comparison between co-treatment with control

group (**p < 0.01). (D) Kaplan-Meier analysis of survival of various groups of mice for up to 100 days after cancer cell implantation. (E) Median survival was calculated

using Kaplan-Meier statistic. Log-Rank, p < 0.001 for paclitaxel and combination treatment groups compared with control group. (F) Body weight change of mice for

30 days after tumor implantation. Values represent the mean ± standard deviation (SD). Average body weight of drug treatment groups was not significantly different

compared with control group.

FIGURE 6 | Efficacy of YYB-101 in mouse orthotopic xenograft of ovarian cancer. A2780/luc (1 × 105) cells were injected into right ovaries of mice. One week after

tumor implantation, ovaries were excised and mice (n = 4–6 per group) were treated with paclitaxel (10 mg/kg once weekly), alone or in combination with YYB-101

(15 or 30 mg/kg twice weekly). (A) Schematic of experimental design. (B) Mice were injected intraperitoneally with 75 mg/kg luciferin and bioluminescence images

were obtained using the in vivo Imaging system (IVIS) imaging device. Representative images 7, 35, and 56 days after excision of ovaries are shown. (C) Kaplan-Meier

analysis of mouse survival for up to 15 weeks after ovary excision. The p-value was calculated using Log-Rank test. (D) Median survival was calculated using

Kaplan-Meier statics. Log-Rank, p < 0.05 for each group compared with the surgery only group.
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Because EGFR is overexpressed in up to 70% of ovarian cancers
and is associated with poor prognosis, monoclonal anti-EGFR
antibodies such as cetuximab have been added to paclitaxel and
platinum-based agents in patients with recurrent ovarian cancer
(9, 30). However, clinical trials of cetuximab in combination
with paclitaxel and cisplatin showed only modest efficacy,
including an 18 month progression free survival (PFS) rate
of only 38.8% (9). The EGFR kinase inhibitor erlotinib and
antagonistic antibody panitumumab have also shown limited
success, improving PFS by 12.7 and 2.7 months, respectively
(31, 32). Although several targeted agents, such as those against
poly ADP ribose polymerase (PARP) and insulin-like growth
factor receptor (IGFR), have been tested in clinical trials, they
did not significantly improve PFS or OS (33, 34). New targeted
agents are needed because current targeted agents have shown
only limited success.

The results of the present study suggest that HGF has promise
as a target molecule for the treatment of patients with ovarian
cancer. HGF activates the c-MET signaling pathway, which
stimulates the invasive and metastatic potential of various tumor
cells (13, 14). The HGF/c-MET axis has recently become a
therapeutic target for the treatment of various types of cancer. In
several studies, c-MET inhibitors such as crizotinib and foretinib
effectively inhibited the development and metastasis of ovarian
cancer in animal models (19, 20, 35). HGF is expressed in normal
ovarian epithelial cells and benign ovarian tumor cells, but to
a higher degree in ovarian cancer cells (36, 37). Our results
demonstrated that high levels of HGF were secreted by various
ovarian cancer cell lines and HGF was involved in the increased
migration and invasiveness of ovarian cancer cells.

YYB-101 was developed as a humanized neutralizing
monoclonal antibody against HGF. YYB-101 was shown to
inhibit HGF-induced scattering in MDCK-2 cells and block the
phosphorylation of ERK, a downstream signaling molecule of
c-MET that affects cell proliferation (23). YYB-101 was also
found to be effective in various cancer models, including mouse
xenograft models of colorectal cancer and glioblastoma, when
coadministered with a chemotherapeutic agent (22, 23).

The present study verified the efficacy of YYB-101 in two

mouse xenograft models of ovarian cancer, a widely used
intraperitoneal model and a model where the ovaries were

surgically removed after orthotopic xenografting. Although the
efficacy of YYB-101 alone was similar to that of paclitaxel
alone, their combination was highly effective, inhibiting the
peritoneal progression of cancer cells and enhancing OS. These
results suggested that co-treatment with YYB-101 and paclitaxel
may significantly improve the survival rate by inhibiting the
progression of ovarian cancer. paclitaxel induces the formation
dysfunctional mitotic spindles, resulting in cell death through
an apoptosis pathway. Despite of its activity, ∼60% of patients
with advanced stage ovarian cancer receiving standard treatment,

consisting of cytoreductive surgery followed by chemotherapy
with paclitaxel, experienced recurrence or drug resistance within
6 months, reducing their survival rate (38). However, we found
that YYB-101 increased survival rate when combined with
standard treatment, suggesting that adding YYB-101 to the
standard treatment may improve outcomes.

In conclusion, the present study demonstrated that HGF was
blocked by YYB-101, inhibiting the growth of ovarian cancer
cells through the signaling pathway mediated by c-MET, the
target receptor for HGF. However, although YYB-101 alone did
not significantly inhibit metastasis of ovarian cancer, it showed
synergistic effects with paclitaxel by inhibiting ovarian cancer
progression in vivo. Further studies would be needed to elucidate
the mechanism of the synergistic effect of combination therapy
with YYB-101 and paclitaxel and to confirm the efficacy of
YYB-101 in the xenograft model using various ovarian cancer
cell types. Based on these results, co-treatment with YYB-101
and chemotherapeutic agents may overcome the limitations
of chemotherapeutic agents alone, enhancing the treatment of
advanced ovarian cancer. Currently, YYB-101 is undergoing
Phase I (NCT02499224) clinical trials for solid cancers. The
combination regimen of YYB-101 plus chemotherapy may
benefit ovarian cancer patients who receive chemotherapy after
cytoreductive surgery, which should be confirmed in Phase II
clinical trials.
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