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Abstract: A low-complexity joint range and Doppler frequency-modulated continuous wave (FMCW)
radar algorithm based on the number of targets is proposed in this paper. This paper introduces two
low-complexity FMCW radar algorithms, that is, region of interest (ROI)-based and partial discrete
Fourier transform (DFT)-based algorithms. We find the low-complexity condition of each algorithm
by analyzing the complexity of these algorithms. From this analysis, it is found that the number of
targets is an important factor in determining complexity. Based on this result, the proposed algorithm
selects a low-complexity algorithm between two algorithms depending the estimated number of
targets and thus achieves lower complexity compared two low-complexity algorithms introduced.
The experimental results using real FMCW radar systems show that the proposed algorithm works
well in a real environment. Moreover, central process unit time and count of float pointing are shown
as a measure of complexity.
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1. Introduction

Recently, there have been several studies on radar sensors because they have many merits and can
withstand external effects compared other sensors, such as weather and light. Therefore, radar sensors
have been used as the primary sensors in several applications [1–6]. In radar sensors, continuous
wave (CW) radars continuously transmit and receive electromagnetic waves, and the velocity and
angular position are measured. However, the range of a target cannot be detected without employing
additional modulation. Meanwhile, pulsed radars use a train of pulsed waveforms. These radars can
detect the range of target and its velocity compared to CW radars. However, pulsed radars require
very large bandwidth at the baseband [1–3].

Meanwhile, there have been several studies on frequency-modulated continuous wave (FMCW)
radar systems as they have many advantages, such as low cost and low complexity [7–13]. Compared
to pulsed radar, which requires large bandwidth and high cost, FMCW radar systems have relatively
narrow bandwidth and low transmitted peak power, thus FMCW radar can meet certain range and
velocity requirements with relatively low cost hardware and architectures [7–13]. In FMCW radar
systems, a fast Fourier transform (FFT) is typically used as an estimator for parameters such as
range, velocity, and angle. This is because the signals used in FMCW radar are sinusoidal. To detect
multiple parameters, an FFT with a certain dimension is required depending on the parameters being
determined. For example, a two-dimensional (2D) FFT is required to estimate the range and velocity,
while a four-dimensional FFT is required to estimate range, velocity, azimuth, and elevation. Therefore,
the complexity significantly increases as the number of dimensions in the FFT increases.

In [11], meanwhile, a low-complexity algorithm has been proposed by employing difference only
two beat signals in order to effectively detect moving target. In the cases of stationary target and
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clutter, there is no Doppler effect. Hence, two beat signals are the same except for noise term and thus
the difference of two beat signals contains only noise term. On the other hand, in the case of moving
target, there is Doppler effect due to the moving target and thus the difference of them contains the
range information of moving target. However, this algorithm might miss the moving target with
certain velocity because this algorithm fixedly employs two beat signals. In order to overcome this
disadvantage, an FMCW radar algorithm has been proposed by randomly employing two beat signals
in [14]. This algorithm effectively avoids missing a target with a certain velocity by randomly selecting
two beat signals every frame. In addition, this algorithm performs an angle detection algorithm only
if there is a moving target. Therefore, this algorithm reduces the overall complexity. However, this
algorithm has still a disadvantage in that it does not detect the velocity of the target. This is because the
difference between the two beat signals is used to reduce the complexity of the moving target detection
process and in this process, information necessary for the velocity detection of the target is lost.

Meanwhile, in [15–18], low-complexity detection algorithms for FMCW radar have been proposed
which intend to reduce the number of FFTs compared to a full-dimension FFT-based FMCW radar
algorithm. These algorithms determine a region of interest (ROI), thus reducing the number of inputs
in the FFTs for Doppler estimation. However, there is still unnecessary computational complexity in
these algorithms, although the complexity is reduced. The number of range bins used as the input in
FFTs for Doppler estimation depends on the number of targets. In this algorithm, all chirp signals are
used in an FFT to determine the range bins in which peaks exist. However, there is a disadvantage in
that the number of range bins calculated in the first FFT for range estimation is too large compared to
the number of range bins used as inputs in the FFT for estimation of the second parameter. In [19],
in order to reduce the complexity, a low-complexity algorithm has been proposed by employing partial
discrete Fourier transform (DFT). This algorithm performs Doppler FFT only on meaningful range
bins, not on all the range bins. However, when the number of targets is small, the complexity may be
lower than when the FFT is fully performed by partially performing the DFT only in the region where
the target exists [20].

In this paper, we derive the required multiplications of low-complexity algorithms using ROI
and partial DFT in order to compare complexity of two algorithms. From this analysis, it is found
that the number of targets is an important factor in determining complexity. Therefore, depending
on the estimated number of targets estimated by the range bins determined to be present among the
range bins obtained through the range FFT, i.e., ROI detection, the overall complexity is reduced by
selecting the lower complexity algorithm between full FFT and partial DFT algorithms. By doing so,
the proposed algorithm further reduces the overall complexity compared to low-complexity algorithms
that use an ROI. The proposed algorithm overcomes the shortcomings of [14], which cannot detect the
velocity of the target because it uses all beat components corresponding to ROI. Simulation results
show that the complexity according to the number of targets in order to check our derived criterion.
Furthermore, experimental results with real FMCW radar systems show that the proposed algorithm
works well in a real environment.

The structure of the paper is as follows. In Section 2, we introduce and define FMCW radar
systems and the FMCW radar algorithm using a 2D FFT. Section 3 addresses the low-complexity
FMCW radar algorithms, that is, ROI-based algorithm [15–17] and partial DFT-based algorithm [19].
We compare the complexity of two algorithms and find the condition of low complexity of each
algorithm. Then, the proposed algorithm is addressed based on this condition. Experimental results
involving 24 GHz FMCW radar systems in various cases are provided in Section 4 to verify the
effectiveness of the proposed algorithm. Finally, the paper is concluded in Section 5.



Sensors 2020, 20, 51 3 of 14

2. System Model and Conventional Detection Algorithm Using 2D FFT

System Model

This section addresses the system model of the conventional detection algorithm using a 2D FFT
in FMCW radar systems. The key point of this paper is to reduce the unnecessary computational
complexity of the FFT for parameter estimation. Therefore, we consider performing a fully 2D FFT
for range and velocity detection for convenience. In this paper, angular detection is not considered
because the FFT dimension would need to increase.

Figure 1 shows that the transmitted (TX) FMCW signal in the ith frame for 1 ≤ i ≤ NF, in which a
total of L chirps are transmitted, is denoted x(i)(t) and is expressed as follows:

x(i)(t) =
L−1

∑
l=0

x0(t− lT − iTF) (1)

where NF is the number of frames, T is the duration of an FMCW chirp signal x0(t), and TF is the
duration of a frame, i.e., TF = NFT, as shown in Figure 1. An FMCW chirp signal x0(t) is expressed as
follows [9]:

x0(t) = exp
(

j2π
(

f0t +
µ

2
t2
))

for 0 ≤ t ≤ T (2)

where f0 is the carrier frequency and µ is the chirp slope, i.e., µ = B/T, where B is the the bandwidth
of FMCW chirp signal.

Considering M targets, the receive (RX) signal from the lth chirp in the ith frame is denoted r(i)l (t)
and is expressed as follows [9]:

r(i)l (t) =
M

∑
m=1

ã(i)m x0

(
t− τ

(i)
m

)
v(i)m + w̃(i)

l,k (t) (3)

where ã(i)m is the complex amplitude of the reflected signal from the mth target in the ith frame, τ
(i)
m is

the time delay between the target and radar, and v(i)m is a Doppler term due to the velocity of the mth
moving target in the ith frame, i.e., v(i)m = exp

(
j2π f (i)D,m(Tl + (i− 1)TF)

)
, w̃(i)

l (t) is an additive white
Gaussian noise (AWGN) signal for the lth chirp and the ith frame. By multiplying the conjugated
FMCW TX signal x0(t)∗ by r(i)l (t), the beat signal for the lth chirp in the ith frame y(i)l (t) is obtained
and expressed as the product of the range and velocity terms as follows:

y(i)l (t) = r(i)l (t)× x0(t)∗

=
M

∑
m=1

a(i)m exp
(
−j2π f (i)b,mt

)
︸ ︷︷ ︸

,η
(i)
m (t)

v(i)lm + x0(t)∗w̃
(i)
l (t)︸ ︷︷ ︸

,w(i)
l (t)

(4)

=
M

∑
m=1

a(i)m η
(i)
m (t)v(i)lm + w(i)

l (t)

where a(i)m is the mth the complex amplitude term (except the range and velocity terms), which
is defined as a(i)m = ã(i)m exp(−j(2π f0τ

(i)
m − µτ

(i)2
m /2)) as in [21], and f (i)b,m is the beat frequency, i.e.,

f (i)b,m = µτ
(i)
m .
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Figure 1. Structure of transmit and receive signals used with a frequency-modulated continuous wave
(FMCW) radar.

After performing analog to digital conversion (ADC) of y(i)l (t), the discrete time model of (4) with

sampling frequency fs is denoted by y(i)l [n], i.e., y(i)l [n] = yl(n(Ts + (i− 1)TF)) for n = 0, 1, . . . , Ns − 1,
where Ts = 1/ fs is the sampling interval and Ns = T/Ts is the number of samples. Therefore, the
discrete time model in (4) can be rewritten as follows:

y(i)l [n] =
M

∑
m=1

a(i)m η
(i)
m [n]v(i)lm + w(i)

l [n] for 1 ≤ n ≤ NS. (5)

From (5), the ADC beat signal can be expressed as a 2D sinusoidal signal, i.e., where n and l are
the sample domain and the chirp domain, respectively. By performing 2D FFT on 2D sinusoidal signal,
the sample and chirp domains are converted to the range and velocity (Doppler) domains, respectively.
In other words, by estimating the frequencies of 2D sinusoidal signals in the sample and chirp domains,
the desired parameters, i.e., the range and velocity of targets, can be detected. Figure 2 shows the
structure of the parameter estimates using a 2D FFT during the ith frame. In Figure 2, NR and NC are
the number of FFT points in the range and chirp domains, respectively. First, NR point FFTs is applied
to the sample data obtained from the ADC y(i)l [n] for 1 ≤ l ≤ L to obtain range information. The kth

FFT output of y(i)l [n] is denoted Y(i)
l [k], i.e., the kth range bin is obtained for 1 ≤ l ≤ L as follows:

Y(i)
l [k] =

Ns

∑
n=1

y(i)l [n]D(n−1)(k−1)
NR

for 1 ≤ k ≤ NR (6)

where DN is the N point DFT operator, i.e., DN = exp(−j2π/N). In other words, NR × L range bins
are obtained from (6). Second, in the same manner, NC point FFTs for Doppler estimation are applied
to the NR × L range bins, which is shown using the dashed line in Figure 2. The qth FFT output Y(i)

l [k]

is denoted Ỹ(i)
q [k] and is obtained for 1 ≤ k ≤ NR as follows:

Ỹ(i)
q [k] =

L

∑
l=1

Y(i)
l [k]D(l−1)(q−1)

NC
for 1 ≤ q ≤ NC. (7)

As shown in Figure 2, the 2D FFT outputs reflect the range and Doppler (velocity) information of
targets, which are obtained by stacking NC FFT outputs NR times for 1 ≤ k ≤ K. As illustrated above,
to estimate the range and velocity parameters, a full-dimensional FFT is performed on all range bins,
regardless of the number of targets, which requires high computational complexity.
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Figure 2. Structure of 2D fast Fourier transform (FFT) in FMCW radar.

3. Low-Complexity FMCW Radar Algorithms

3.1. Low-Complexity FMCW Radar Algorithms Based on ROI

This section addresses the low-complexity range and Doppler estimation algorithm for FMCW
radar systems compared to a 2D FFT by reducing the number of FFTs required for Doppler
estimation [15–17]. The conventional 2D FFT algorithm mentioned in Section 2 has unnecessary
complexity because full-dimensional FFTs are performed, regardless of the number of targets.
In contrast, the low-complexity algorithm introduced in this section reduces the overall complexity by
limiting the input of the FFT for Doppler estimates to range bins in which the targets are determined
to exist, i.e., the region of interest (ROI), rather than all range bins. By doing so, this algorithm
significantly reduces the computational complexity when estimating range and Doppler information.

Figure 3 illustrates the structure of the low-complexity FMCW radar algorithm in the case of
NP = 2, where NP is the number of output peaks from ROI detection. Compared to Figure 2,
this algorithm and the 2D FFT algorithm are the same up to L time steps in NR point FFTs. In other
words, from (5) to (6), a 2D FFT algorithm can also be used in this algorithm. After L time steps in
NR point FFTs, in the low-complexity FMCW radar algorithm using an ROI, the ROI detection step is
used to select only the range bins in which the targets are considered to be present. Figure 4 shows the
structure of the ROI detection algorithm. To increase the reliability of ROI detection, the accumulated
beat signal ȳ(i)[n] has been input to the FFT for range estimation, i.e., ȳ(i)[n] = 1/N ∑L

l=1 y(i)l [n],
as in [15,16]. Then, NR range bins are obtained by using an FFT on ȳ(i)[n] for range estimation. Peak
detection is used to select NP range bins corresponding to the ROI in the NR range bins. The region of
the range bins at a chirp that is NR in the 2D-FFT detection algorithm is reduced to NP in this algorithm.
The uth reduced range bin in the ROI is denoted Y(i)

l,ROI[u] and is expressed as follows:

Y(i)
l,ROI[u] = Y(i)

l [u] for 1 ≤ u ≤ NP. (8)

This implies that the region k in (7) is modified as k ∈ [p1, p2, . . . , pNP ] instead of 1 ≤ k ≤ NR,
where pu is the index of the uth peak found in the ROI. Therefore, applying the qth Doppler FFT output
to Y(i)

l,ROI[u], denoted Ỹ(i)
q,ROI[u], is as follows:

Ỹ(i)
q,ROI[u] =

L

∑
l=1

Y(i)
l,ROI[u]D

(l−1)(pu−1)
NC

for 1 ≤ q ≤ NC. (9)
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In general, the number of the range bins in which the target exists NP is significantly smaller than
the number of range bins NR, thus the overall computational complexity is significantly reduced.
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Figure 3. Structure of the low-complexity FMCW radar algorithm using region of interest (ROI).
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There is unnecessary computational complexity in this algorithm, although the complexity is
significantly reduced compared to the conventional 2D FFT FMCW radar algorithm. The number of
range bins used as input to the Doppler FFT is only L times NP. However, to select L times NP range
bins, it is necessary to obtain L times NR range bins. In general, because NR is significantly larger than
NP, there remains unnecessary complexity that can be further reduced.

3.2. Low-Complexity Algorithm Using Partial DFT

This section illustrates a low-complexity algorithm using partial DFT [19]. In ROI-based FMCW
radar algorithm, L times NR point FFTs are performed in order to obtain L times Np range bins. On the
other hand, in partial DFT-based FMCW radar algorithm, only Np partial DFTs are performed in order
to obtain L times Np range bins instead of performing L times NR point FFTs.
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ROI detection is conducted first in this algorithm, as was the case in the ROI-based algorithm.
The range bin indices corresponding to the ROI are then determined. In order to perform a partial DFT
with size NR corresponding to the ROI, a zero-padded beat signal y(i)l,ZP[n] is generated as follows:

y(i)l,ZP[n] =
{

y(i)l [n], for n = 1, 2, . . . , NS
0, for n = NS + 1, . . . , NR.

(10)

Performing a partial DFT for 1 ≤ l ≤ L yields the same NP × L range bins as in (8) are obtained
as follows:

Y(i)
l,ROI[u] =

NR

∑
n=1

y(i)l,ZP[n]D
(n−1)(pu−1)
NR

for 1 ≤ u ≤ NP. (11)

By employing partial DFT, overall complexity reduces compared to ROI-based algorithm.
Of course, the complexity of a DFT is significantly higher than an FFT, thus the complexity of this
algorithm using partial DFT might be higher than the low-complexity algorithm when the number of
peaks NP and the number of FFT-points NR increases. Therefore, Section 3.3 compares the complexity
of two low-complexity algorithms and identifies the optimal conditions for achieving low complexity.

3.3. Complexity Analysis

The complexity of each algorithm is compared in this section to analyze the conditions resulting
in low complexity. Hereafter, we call the conventional 2D FFT-based algorithm the ‘2D FFT algorithm’,
the low-complexity algorithm using an ROI the ‘ROI algorithm’, and the low-complexity algorithm
using a partial DFT the ‘DFT algorithm’ for convenience. In addition, the required number of
multiplications is used as a measure of complexity because the complexity involved in multiplication
is high compared to other operations, such as addition and comparison.

The 2D FFT algorithm uses L times NR point FFTs for range estimation and NR times NC point
FFTs for Doppler estimation, thus the required number of multiplications in the 2D FFT algorithm
C2D is

C2D = L
NR

2
log2NR + NR

NC

2
log2NC. (12)

The ROI algorithm uses one NR point FFT to perform ROI detection, L times NR point FFTs for
range estimation, and NP times NC point FFTs for Doppler estimation, thus the required number of
multiplications in the ROI algorithm CROI is

CROI = (L + 1)
NR

2
log2NR + NP

NC

2
log2NC. (13)

The DFT algorithm uses one NR point FFT to perform ROI detection and range estimation,
NP times NR point DFTs to generate range bins and for range estimation, and NP times NC point FFTs
for Doppler estimation, thus the required number of multiplications in the DFT algorithm CDFT is

CDFT =
NR

2
log2NR + NPLNR + NP

NC

2
log2NC. (14)

Figure 5 shows the required number of multiplications according to NR with NC = 512, L = 128,
and NP = 2 and NP = 4. Figure 5 shows that the required number of multiplications increases as NR

increases in all algorithms. The 2D FFT algorithm has the highest complexity because this algorithm
performs full 2D FFTs, regardless of the number of targets or the existence of a target. Meanwhile,
the number of 2nd FFTs in the ROI algorithm, i.e., FFTs for Doppler estimation, decreases from NR to
NP, thus the overall complexity is significantly reduced compared to the 2D FFT algorithm. The DFT
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algorithm uses fewer FFTs for range and Doppler estimation, thus the overall complexity is further
reduced compared to the ROI algorithm.
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Figure 5. Required number of multiplications as a function of NR with NC = 512 and L = 128;
(a) NP = 2 and (b) NP = 4.

Figure 6 shows the required number of multiplications as a function of NP with NR = 16,384,
NC = 512, and L = 128. Note that the required multiplications in the proposed algorithm begins
to exceed the number in the ROI algorithm when NP is greater than 7. As mentioned before,
the complexity of the partial DFT algorithm might be larger than that in the ROI algorithm due
to the high complexity of a DFT compared to an FFT. Hence, we focus on comparing the complexities
of these two algorithms.
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Figure 6. Required number of multiplications as a function of NP with NR = 214 and 215, NC = 512,
and L = 128.

In order to identify the conditions resulting in low complexity, we determine a condition where
the complexity of two algorithms becomes equal by calculating the difference between the complexities
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of the two algorithms, i.e., CDFT = CROI. >From (13) and (14), the condition for CDFT = CROI is
expressed using NP as follows:

NP =
1
2

log2NR. (15)

From (15), one concludes that the complexities of the two algorithms are equal when NP =
1
2 log2NR. This implies the following: if NP is less than 1

2 log2NR after ROI detection, it is more efficient
to use the DFT algorithm. However, the ROI-based algorithm is better than the partial-DFT-based
algorithm when NP is greater than 1

2 log2NR.

3.4. Proposed FMCW Radar Algorithm with Further Reduced Complexity

The proposed algorithm selects one between two algorithm, i.e., ROI-based and partial DFT-based
algorithms in order to further reduced complexity. Figure 7 shows the structure of the proposed
algorithm. As shown in Figure 7, the proposed algorithm first, checks the considering number
of range bins, i.e., NP by ROI detection. Then, depending onNP, one of two modes is employed.
If NP > 1

2 log2NR, ROI-based algorithm is employed. On the other hand, NP ≤ 1
2 log2NR, partial

DFT-based algorithm is used.
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Figure 7. Structure of the proposed algorithm.

4. Experiment Results

An experiment for verifying the effectiveness of the proposed algorithm in a practical environment
is discussed in this section. First, the equipment and several experimental conditions are discussed.
Second, the experimental results produced with the proposed algorithm are analyzed.

4.1. Experimental Setup

We used a 24 GHz FMCW radar system with two TX and eight RX antennas, as was used in [14,21].
Figure 8 shows a block diagram of the radio frequency (RF) front-end module i.e., the front end module
(FEM) used in the experiment. Figure 9 shows an image of the FEM. The RF module was composed of
TX and RX portions. A micro controller unit (MCU), frequency synthesizer with a phase-locked loop
(PLL), and voltage-controlled oscillator (VCO) were included in the TX side. The MCU controlled the
frequency synthesizer with the PLL to properly synchronize TX and RX channels. The VCO generated
chirp signals with a frequency determined by the applied voltage, and its output was connected to
the two TX antennas through a power amplifier. One TX antenna (dashed line in Figure 8) was used
in this system. There were the eight RX antennas on the RX side with low noise amplifiers (LNAs),
high pass filters (HPFs), amplifiers (AMP), a variable gain amplifier (VGA), and low pass filters (LPFs).
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The outputs from the LNAs were multiplied by the TX signals and are passed through the HPFs with
150 kHz bandpass frequency. An HPF was used to remove the DC-offset component from the direct
conversion receiver in the FMCW radar system. The outputs from the HPFs were amplified using
AMPs and VGAs, and the beat signal in each channel was obtained after the amplified signals are
passed through the LPFs.

TX #1

antenna 

Frequency

synthesizer

PA

PA

RX #1

antenna

RX #8

antenna

LNA

VCO

Micro-control 

unit
Chirp signal

20 MHz
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HPF AMP LPF

LNA

VGA

HPF AMP LPFVGA

Beat

signal #1

Beat

signal #8

Transmitted side

Received side

TX Antenna 

selection
on/off

on/off

TX #2

antenna 

mixer

mixer

Figure 8. Block diagram of the 24 GHz radar module [14].

Figure 9. Image of 24 GHz front end module [21].

Figure 10 shows the normalized gain as a function of angle to determine the radiation pattern from
the two TX antennas in the RF system. Figure 10 shows that the azimuth angles of the TX antennas
corresponding to the beam-width with 3 dB gain are 26◦ and 12◦. This result implies that the first and
second TX antennas can cover an azimuth angle of 26◦ and 12 ◦, respectively. The first TX antenna was
used in this experiment.
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Figure 10. Radiation pattern of two transmitted antennas [21].

Figures 11 and 12 show the back end module (BEM) used in this system. The BEM contains a
data logging board that includes digital signal processing capabilities, a field-programmable gate
array, and graphic user interface (GUI) software for setting parameters for the logging board. The beat
signals in eight channels from the analog input were converted to digital signals by the ADC with
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20 MHz sampling rate. Two 2 GB DDR2 DRAM chips were used for external memory, providing a
total of 512 Mbytes of data storage space. If the external memory was filled, the data was transferred
to a computer via Ethernet (PHY RJ45). Figure 12 shows the GUI that provides the convenience of
changing the logging board settings. Parameters such as the desired RF channel, sampling frequency,
sampling length, number of chirps, and number of frames could be set in the GUI. Moreover, users
can easily start and terminate the BEM system, as well as choose an IP address for communication
with a PC. The channels to receive are selected in “Selection of RF channels”. The sampling frequency
to be used in the ADC (500 kHz to 20 MHz) could be selected in “Sampling frequency”. The number
of samples (up to 4096) could be chosen in “Sampling length”. The number of FMCW symbols to be
transmitted (512 to 8192) could be selected in “Number of chirps”.
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Figure 11. Data logging board used in the experiment.
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Figure 12. Graphic user interface (GUI) for the FMCW radar system.

4.2. Experiment Analysis

Figure 13 shows a real image of an experiment. To suppress the negative effects due to undesired
echoes, the experiment was performed in an anechoic chamber located at the DGIST in Korea.
This chamber is designed for use with 8 to 110 GHz frequencies, and its size is 5 m (W) × 10 m
(L) × 4 m (H) [14]. Corner reflectors with 14 cm side length were used as targets to preserve the radar
cross-section. 2048 point FFTs were performed for range estimation and 512 point FFTs were performed
for Doppler estimation. The experimental parameters are shown in Table 1 [14]. The center frequency
was set to 24 GHz, the bandwidth was set to 1 GHz, and the sampling frequency was set to 5 MHz.
The duration of the chirp (ramp) T was set to 400 µs, the number of chirps per frame was set to 256,
and the number of frames was set to 32.
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Figure 13. A photograph of the experimental set up in an anechoic chamber [21].

Table 1. Experimental parameters [14].

Parameter Value

Center frequency, f0 24 GHz
Bandwidth, B 1 GHz

Chirp duration, T 400 µs
Number of chirps per one frame, L 256

Number of frames, NF 32
Sampling frequency, fs 5 MHz

Figure 14 shows experimental results with a 2D FFT and the proposed algorithm from the 1st
frame to the 8th frame. One can see that the proposed algorithm provides the same detection results as
a 2D FFT at each frame, despite its very low complexity. These results confirm the effectiveness of the
proposed algorithm.
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Figure 14. Experiment results of 2D FFT and the proposed algorithm at each frame (i = 1, 2,. . . , 8).

Figure 15 shows central processing unit (CPU) time according to NP for several NRs in order to
quantitatively compare the computational complexity of two low-complexity algorithms. The number
of FFT points for Doppler is set to 512 and the number of chirp signal, L is set to 128. In the case of
NR = 1024, CPU time of partial-DFT based algorithm is lower compared to ROI-based algorithm for
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all NPs. In the case of NR = 2048, it can be observed that CPU times of two algorithms cross each
other when NP = 7. On the other hand, NR = 4096, ROI-based algorithm requires a lower CPU time
compared to partial DFT-based algorithm for all NPs.
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Figure 15. CPU time according to NP and NR with NC = 512 and L = 128; (a) NR = 1024,
(b) NR = 2048 and (c) NR = 4096.

Figure 16 shows counting of float pointing according to NR with Np = 8, as another measure of
computational complexity. The number of FFT points for Doppler is set to 512 and the number of chirp
signal, L is set to 128. Counting of float-pointing of ROI-based algorithm is the same regardless of
NR. On the other hand, counting of float-pointing of partial DFT-based algorithm gradually increases
according to NR.
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Figure 16. Counting of float pointing according to NR with NP = 8, NC = 512 and L = 128.

5. Conclusions

We found the low-complexity condition of two low-complexity algorithms for FMCW radar by
analyzing their complexity. In addition, it is found that the number of targets was an important factor
in determining complexity. By experimental results, the proposed algorithm well detected range and
Doppler despite low complexity. In order to compare the practical complexity of two algorithms,
CPU time and the counting of float pointing were shown.
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