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ABSTRACT

Machine-learning algorithms have attracted muadnditin in a wide range of areas. Because ma-
chine-learning algorithms can extract patterns ftata automatically, it is possible to model the
input-output function of a system using a machisring algorithm. In cognitive radietworks,
machine-learnindpased spectrum sensing schemes depend on thepiogjtdof the nodes. Durin
building extraction tasks based on high-resoluaenal images, large-scale datasets are required,
with customized architecture necessary to prot¢esdatasets. Moreover, when there is a domain
between the training and test data, trained mddélso segment objects for unseen images. In
thesis, the challenges facing machine-learningébagstems and solutions are discussed.

The first application is for spectrum sensing igmitive radio networks. The hidden primary user
(PU) problem, however, is a critical issue in ctigriradio networks because spectrum sensing n
(SNs) can misclassify the degree of spectrum ocumpdo cope with this, machine-learnibgsed
cooperative spectrum sensing schemes (CSSs) hawepbaeposed. CSSs that do not consider node
placement, however, continue to be affected byhiiden PU problem. In this paper, we present a
method by which to place SNs to guarantee the padince of machine-learning-based CSSs. We
verify that the hidden PU problem causes some apen the data distribution, which deteriorates of

the spectrum sensing ability. Based on Kullbaclblszi divergence, analytical expressions for the



spectrum-sensing coverage of a single SN are dkriWe then propose a strategy for placing a few
SNs to cover the entire area of the PU and provéetisibility of the proposed method experimentally

The second application is related to deep-legr@airchitecture for semantic segmentation fr
high-resolution aerial images. Extracting manufesxiufeatures such as buildings, roads, and water
from aerial images is critical for urban plannitiggffic management, and industrial development.
Recently, convolutional neural networks (CNNs) haegome a popular strategy to use to capture
contextual features automatically.

We design a multi-object segmentation system aopigae an algorithm that utilizes pyramid pool-
ing layers to improve U-Net. Test results indidéi@ U-Net with pyramid pooling layers, referred to
as UNetPPL, learns fine-grained classification mams outperforms other algorithms, specifically
FCN and U-Net, achieving a mean intersection obirfimlOU) value of 79.52 and pixel accoya
of 87.61% for four types of objects (buildings, deawater, and background).

The final application is domain adaptation forl@img extraction. CNN-based semantic segmen-
tation models garnered much attention in relatmremote sensing and achieved remarkable perfor-
mance during the extraction of buildings from higksolution aerial images. However, limited gen-
eralization for unseen images remains. When treege domain gap between the training and test
datasets, CNNbased segmentation models that are trained usirgjréng dataset fail to segme
buildings in the test dataset. In this paper, veppse domain-adaptive transfer attack (DATA)-based
segmentation networks for building extraction framrial images. The proposed system utilizes

jointly both domain transfers and adversarial &taBased on the DATA scheme, the distribution of



input images can be shifted to that of target irmagkile maintaining the semantic spaces. This re-
duces the domain gap and expands the generalizatitve segmentation model. From test results
with two different datasets (i.e., the Inria aeniahge labeling dataset and the Massachusettgimild
dataset), it is verified that the performance wieatracting buildings is improved to 0.16% and

7.12%, respectively.

Keywords: Deep learning, wireless cognitive radédworks, spectrum detection, semantic segmen-
tation, domain adaptation.
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1. INTRODUCTION

1.1 MACHINE LEARNING ALGORITHM

Machine learning is defined as an automated prdabasextracts patterns from data [1]. When
the system characteristics are unknown, machirreitgatechniques are effective for estimating the
input-output function of the system without compl&howledge of the system parameters [2]. There-
fore, machine-learning algorithms are widely ugedarious areas, such as medical [3] and agri@alltur
areas [4] as well as wireless networks [5]-[6] ardal image processing [7]. Although machine-learn
ing algorithms can effectively model the functiafghe systems, they cannot solve all problems. In
cognitive radio networks, spectrum sensing schatepend on the positioning of nodes. They require
large-scale datasets and customized architectyseotess the datasets. To address these issues, nod
placement for machine-learning-based spectrum mgrssihemes and deep-learning architectures for

aerial image processing are discussed in thisghesi

1.2 BACKGROUND AND CHALLENGING | SSUES

1.2.1 CoGNITIVE RADIO NETWORKS

In policies pertaining to spectrum allocation, wtspectrum bands such as unlicensed indus-
trial, scientific, and medical (ISM) bands and melsellular channels have high occupancy rates,
whereas there exist spectrum bands that are uiltherdit This imbalance reduces the overall spectrum
utilization rate. To solve both the spectrum sdgisisue at specific bands and the deterioratiothef
overall spectrum utilization rate, cognitive rad®R) technology has been proposed as a promising
solution to the 10T demand issue of sensing andssiieg radio spectrum [8], improving spectrum band
usage by using unused portions of the spectruprdvious research, an energy-detection method was
widely used for better spectrum occupancy [9]. Bypeadetection does not require much a priori

-1 -



knowledge of PU signals and can be implemented rsionply than other methods (i.e., the channel
state is determined by whether or not the recepmder exceeds a certain threshold) while the perfor
mance is affected by uncertain noise power. Howéverhighly challenging to find a proper thre&ho
and the spectrum sensing performance depends ag doi To find proper decision boundaries for
spectrum sensing, machine-learning algorithms l@en applied [10]. Because it is possible to find
flexible decision boundaries, it is recommendedde machine-learning-based energy-detection meth-
ods for spectrum sensing.

Although machine-learning-based cooperative spectensing schemes (CSSs) are applied
to avoid the hidden PU problem, there is still asalved technical challenge. The spectrum sensing
coverage of each spectrum sensing node (SN) depearsiveral parameters. CSSs without considering
these parameters, however, are affected by theshi@d) problem. In this thesis, we verify that the
hidden PU problem causes some overlap in the dstidbdtion, which deteriorates of the spectrum
sensing ability. Based on the received power tistions, analytical expressions for the spectrunsse
ing coverage of a single SN are derived, after tvlatle propose a strategy that involves placing a few

SNs to cover the entire area of the PU. We progddhsibility of our proposal experimentally.

1.2.2 SEMANTIC SEGMENTATION FROM HIGH-RESOLUTION AERIAL | MAGES

Aerial images can provide valuable information dbareas that are difficult for people to
access or access non-intrusively. The informatlataioed using aerial images can be utilized in-a va
riety of areas, including land inventory, vegetatinonitoring, and environmental assessments. Fo uti
lize aerial images, object detection tasks rel&belouildings, roads and bodies of water are reduire
These tasks mainly rely on manual digitization [RYM [12], and artificial neural networks (ANNS)
[13]. Although these methods require minimal hurr@arvention, their results have generally been
discouraging due to various adverse factors (@ngge noise, shadows)

Recently, as deep-learning technology has evolvéads been applied to many problems re-

lated to computer vision, such as image classifinabbject segmentation, and semantic segmentation
-2-



Additionally, deep-learning techniques such as obrtional neural networks (CNNs) have attracted
much attention in the segmentation of objects felli@ images. Although it is possible for deeptie-

ing algorithms to learn contextual features autocady, there are several issues that must be addde
First, a considerable amount of data is requirgdaia them. Existing datasets cannot sufficietriyn
deep-learning algorithms. The performance of deepding algorithms depends on their architecture.

In this thesis, geo data generation systems basddep learning are discussed.

1.2.3DoMAIN GAPBETWEEN TRAINING AND TEST DATASET

CNN-based semantic segmentation models have geanetl attention in relation to remote
sensing and have achieved remarkable performartcernas when used to extract buildings from high-
resolution aerial images. However, limited geneedlon with regard to unseen images remains to be
an issue. When there is a domain gap betweenatmniy and test datasets, CNN-based segmentation
models trained with a training dataset fail to segtiuildings in the test dataset. To solve thadbjam,

a domain adaptation method has been proposedIB4]Hlowever, these approaches are not custom-
ized for aerial images. While driving datasets saslGTAS [16] and Cityscapes [17] as discussed in
the literature [15] have static class distributiémsobjects (e.g., the road is at the bottom dmedsky
is at the top in the input images), the buildingserial images are located randomly. In this thesi

domain adaptation method customized for aerial @sdg proposed.

1.3 OVERVIEW OF THESIS

The objective of this thesis is to make a contidouthat solves the challenges of machine-
learning-based systems. In Section 2, sensing agedvased cooperative spectrum detection in cogni-
tive radio networks is discussed. The deep-learangitecture for building and road extraction from
high-resolution aerial images is proposed in SacsioThe domain gap between the training and test

datasets is presented in Section 4. Finally, tbpgsed scheme is summarized in Section 5.



2. SENSING COVERAGE-BASED SPECTRUM DETECTION

2.1 INTRODUCTION

The Internet of Things (loT) is expected as a psimgj solution to improve many existing
industrial systems such as agriculture, food prsiogs environmental monitoring, etc. [18] By incor-
porate wireless sensor networks (WSNs) with therirdt, the 10T enables the connected objects to
communicate with others and users, mainly oveuttieensed industrial, scientific, and medical (ISM
band. While spectrum bands such as ISM and moellelar channels are highly occupied [19]-[20],
there exist spectrum bands that are underutili2z&f#[R3] and this imbalance reduces overall speatru
utilization. To solve both the spectrum scarcityspecific bands and the deterioration of overadicsp
trum utilization, the cognitive radio (CR) techngjohas been proposed as a promising solution of the
IoT demand to sense and access radio spectrumifgapving the spectrum band usage by using the
unused portions of the spectrum.

Opportunistic spectrum access enables unlicenszd called secondary users (SUs) to utilize
spectrum bands adaptively when primary users (ll0s)ot access the spectrum. In order to access
spectrum opportunistically, the spectrum sensirder{®N) must sense the activity of the PU. Toagili
the spectrum opportunistically when the PU is ivacthe network requires a spectrum sensing scheme
In [9], three methods (matched filter detectiorengy detection, and feature detection) are reviewwed
detect the activity of PUs. Energy detection dagtsnieed a lot of priori knowledge of PU signals and
can be implemented easier than the other meth@dstfie channel state is determined by whether the
received power is more than a certain threshofrwhile performance is affected by uncertairsaoi
power. Therefore, we use the energy detection rdefibrothe opportunistic spectrum access, as com-
monly used to sense the spectrum in cognitive rghp [26].

When a single SN attempts to sense the spectrudsphawever, it cannot solve the hidden
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PU problem in which the node can misclassify thésPthte mainly because of large and small scale
fading. To handle this, cooperative spectrum sgnsehemes (CSSs) that share the received power
among nodes are proposed [27]-[29]. The distrib&¥d receive signal power from PU and the results
are reported to the fusion center (FC). By constilig) the reported results, the channel stateter-de
mined at the fusion center. In previous reseakaiyt-of-n rules have been used in CSS. That is, the
fusion center declares that the spectrum bandscangpied if at least out ofn nodes sense the PU's
activities [30]. There are several typeskafut-of-n rules. Ifk = 1 andk =n, it is named the OR and the
AND rule, respectively [31]. However, it is veryallenging to find a proper threshold that the spawt
sensing performance depends on. If the threshadtisoo high, the FC tends to classify the channel
state as vacant. On the contrary, with the lowsthodd, even if the spectrum is not occupied by PUs,
the SUs will not access the spectrum. These prabimnhworse as the number of SNs is increased since
the manual setting of large-scale threshold valiasnon-trivial task.

When the system characteristics are unknown, legreichniques are effective for estimating
the input-output function of the system withoutoanplete knowledge of system parameters [2]. Thus,
machine learning algorithms are widely used in l@Bs networks, such as modulation classification
[32], channel estimation [5], anti-jamming [33],daspectrum sensing [34], [10]. In [34], a threshamid
a decision boundary to determine channel statelsasged depending on the transmit power levels of
the PU. Under this environment, proper machineniegralgorithms were analyzed and it was proved
to outperform the conventional ones. Furthermdre,machine learning algorithm can add flexibility
to finding decision boundaries. Therefore, it isamamendable to use the machine learning based en-

ergy detection method for spectrum sensing.

2.1.1 RELATED WORK

Recently, machine learning algorithm-based spectemsing schemes have been proposed to

find a particular threshold [34], [10]. In [34]tlareshold or a decision boundary to determine chlann



states is changed depending on the transmit p@wel of PU. Under this environment, machine learn-
ing algorithms are analyzed in terms of the avetegjaing time and the sample classification delay
and it was proved that the performance of the nmeclaiarning based method is better than the conven-
tional ones. A new framework for spectrum senstigemes is proposed in [10], consisting of the two
phases of recognizing the transmit power levelldfaRd choosing the decision boundary for channel
states. The first phase is conducted by K-mearstesing and the second phase tasks to select the
decision boundary that is trained by the suppatorenachine (SVM) with a Gaussian kernel function.

Although machine learning-based CSSs are appliagtda the hidden PU problem, there is
still an unsolved technical challenge. Becausesfieztrum sensing coverage of each SN depends on
several parameters (which we discuss in Sectiandllll), PUs outside of the coverage of SNs cause
SNs to misclassify spectrum occupancy. While tleeBpm sensing coverage is critically related & th
performance of CSS, it has not been consideredkiviqus research.

In [35], methods of node placement for wirelessseemetworks are presented. Each sensor
has sensing distanag and communication distanag. Based on these distances, two possible meth-
ods for placing sensors are proposed. With theregeefirst placement method, neighboring sensors
are separated by a distance\®@r;. This is effective when, > +/3r, by reducing the number of sen-
sors and minimizing the overlapping coverage. Tbenectivity-first placement scheme separates
neighboring sensors by a distancergfwhich can meet the communication requirementieffitly
when 7, < +/3r;. In the energy detection method, because SNsheseeteived power to sense the
spectrum of the PU, the sensing distance is diyreetated to the received power. On the other hand,
the communication distance depends on the signaématio (SNR). Even with low power received,
communication signals can be decoded if the naseepis sufficiently low [36]. Therefore, the com-
munication distance is longer than the sensingqadcgt in general and the coverage-first placement
method is proper in cooperative spectrum sensimgrder to apply the coverage-first placement to

cognitive radio networks, however, the spectrunssgncoverage of SNs should be derived, which is
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the main contribution of our research. In this pape derive the maximum coverage where a single
SN can detect the activity of the PU and quantify hidden PU problem. Then, experimental results

are presented to show feasibility of the propostese.

2.1.2 SUMMARY AND ORGANIZATION

The main contributions of this paper are summaratbllows:
o We derive the spectrum sensing coverage of then&Nguarantees the performance of spectrum
sensing schemes.
+ We demonstrate feasibility of the proposed schdme®nducting real-environment experiments.
The rest of this paper is organized as followsSdation 2.2, system model and problem state-
ments are presented. In Section 2.3, the spectemsirgy coverage of SN and the performance are
analyzed. In Section 2.4, experiment results amdlyais are discussed. Finally, our proposed schemes

are concluded in Section 2.5. The notations usédisrpaper are summarized in TABLE I.

2.2 SYSTEM M ODEL AND PROBLEM FORMULATION

Several parameters, such as the distance betwedrlttand SNs and channel states, affect
the performance of machine learning algorithmsahidden PU problem. In this section, we discuss

how we can improve the performance of the macteaening based spectrum sensing schemes.

2.2.1 SYSTEM M ODEL OF COGNITIVE RADIO NETWORKS

We consider a cognitive radio network that has n&lgs than PUs. The transmitted signals
from the PU are through multipafdding channels with path loss attenuation. Thewcbbstates can be cate-
gorized into busy or idle. The PU has multiple pouevels selected from a transmit power sBi; €
{P,, P1, P,, ..., Py}, in which P, is the power level of the idle state with zero poand P; with i =1,..,N is
that of the busy state (i.eB, < P, < P, <: < Py). The coordinates of the PU and SNs are denoted as

Spy(X,Y) and Sgy(X,Y), respectively, whereX( Y) € R2. The transmitted power from PU is attenuated Il pa
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TABLE |

THE LIST OFPARAMETER NOTATIONS

Notation Definition
A Wavelength
do Reference distance
y Path loss exponent
Isn Multipath fading component of SN
p Mean of noise power
0,2 Variance of noise power
Ninput Number of input layer nodes
Nyidden Number of hidden layer nodes
Noutput Number of output layer nodes
AaNN Regularization constant of ANN
fact Activation function of ANN
1/Asym Reciprocal number of regularization constant
Osym Bandwidth parameter
Ppy Transmit power levels of PU
dpy sy Distance between PU and SN
k Distance between data distributions
0y, Variance of received power
AP Differential transmit power levels of PU
Areal Real sensing coverage of SN
dinit Computed sensing coverage of SN
o? Variance of the Rayleigh distribution

loss, P.(dpy sy) [dBm], and can be modeled as follows [37]:

PL(dPU,SN) = —2010g (ﬁ) + 10]/ 10g (dill]_(;m), (1)

where dpy sy denotes the distance between PU and SNs the wavelengthd, is the reference

distance, and/ is the path loss exponent. SN receives the powdkp [W] which can be found as

follows [34].



Pr(dpy,sn)

Psy = Ppy '10_[ 1o ]‘(h'*' b, (2)

where ¢}, is the multipath fading component in chanmehnd P, denotes the noise power according

to a normal distribution with meanand variances,,?, i.e., P,~%(p, 6,2).

2.2.2 MACHINE LEARNING-BASED COOPERATIVE SPECTRUM SENSING

The distributed SNs report the received powerédii. Based on the trained decision bound-
aries, the spectrum occupancy is determined a@elhe spectrum sensing scheme in [10] includes
a phase oK-means clustering, an unsupervised learning schémsupervised learning tends to out-
perform unsupervised [34], we use artificial newetivorks (ANNSs), illustrated in Fig. 1, to recogmi
the transmit power levels of the PU. Afterward® tthannel state is classified by the SVM with a

Gaussian kernel function in the second phase ifithe transmit power level is estimated as nahe,

[=18))] A2

Input laver Hidden layer Output layer
Fig. 1. An artificial neural network with three kg.In the input layer, the data measured by all
(from first to g-th SN) are inputted, and the résulvhich are multiplied with weight9™, are use
as inputs in the hidden layer. The output of thielen layer is also multiplied with weigh, ), anc
the probability for each class is calculated indhgput layer. Finally, the class that correspadidte

maximum value of the probability is selected.



14

(0,13) | | Xsni
12

10

1(0,0) | (33)

8 0.5 1 1.5 2 2.5 3

Fig. 2. Distribution of PU and SN, with Sp;(0, 13), Ssy1(0, 0), Ssn2(3, 2), dp1s1 = 13 m,

dplsZ == 11.40 m ,and dSlSZ - 5.66 m.

channel state is classified as idle directly). The SVM, a binary classifier in this case, can find the deci-
sion boundary that has the maximum margin. Note that the training data in this case can be labeled for
supervised learning, by exploiting transmit power levels known from the protocol standard and speci-
fication of devices. In addition, except for zero power, the spectrum state can be regarded as occupied.

As a simple machine learning based CSS, we consider a scenario where two SNs attempt to
sense the PU spectrum. The distributed SNs, as shown in Fig. 2, measure signal power from PU and the
results are reported to the FC. Finally, the channel states are classified. Fig. 3 shows both the distribu-
tions of training data and the decision boundary for each power level. The PU is assumed to have mul-
tiple transmit power levels, given as P, =0, P, =100, P, =200, P; =300, and P, =
400 [mW]. By assuming quasi-static multipath fading during the time of interest, the average value

for the multipath fading components is used. Relationship between multipath fading components and
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Normalized SN 2 data

Normalized SN 1 data

Fig. 3. Decision boundaries depending on transmit power levels, with 4 =0.375m, dy =1 m,

¥ =2, {sn1 =0.7, {syz =0.8,p=0.1 pW, 0,2 = -140 dBm, and a power gap = 100 mW.

the spectrum sensing scheme is discussed in Section III. In simulations, it is assumed that SUs can
switch their modes with negligible switching delay. We measure 2,500 data, of which 80% are used for
training the proposed sensing scheme and the remaining, 500 samples for each power level, are for tests.
The decision boundary that is trained by the SVM for channel states depends on the PU transmit power
levels, as shown in Fig. 3. The ANN estimates the PU power level in the first stage, from which a

classifier is selected to determine the spectrum occupancy.

2.2.3 HIDDEN PU PROBLEM AND KULLBACK-LEIBLER DIVERGENCE

In the energy detection method, the performance of spectrum occupancy sensing is susceptible
to the received power. For weak signals, a single SN can misclassify the spectrum occupancy, which is
called the hidden PU problem. To mitigate this, CSSs which utilize several SNs have been used in
previous research. However, the SN has a limited coverage for spectrum sensing, depending on PU

transmit power levels, channel states, and the distance from the PU. For example, in a real environment,

-11-



due to limitation of battery capacity or regulation for electromagnetic compatibility, the PU does not
have a large amount of transmit power. Fig. 4 illustrates the training results with these factors into
account.

The overlap of data distributions leads to deteriorating the class separation capability. In the
first phase of recognizing the PU transmit power levels, the accuracy of the ANN is reduced from 99.6%
to 75.8%, while that of K-means clustering is from 99.6% to 70.6%. The performance of the SVM in
the second phase for channel state classification also decreases from 100.0% to 84.2%. These results
verify that the hidden PU problem is related to the interval of data distributions. Therefore, we can
quantify performance in the hidden PU problem by using the Kullback—Leibler Divergence (KLD).

When the two probability density functions of a continuous random variable x are given as g(x)

and 7(x), respectively, the KLD is defined as follows [38]:

D @(@)lIr()) = [*7 () log 23 dx. 3)

Normalized SN 2

Normalized SN 1

Fig. 4. Decision boundaries depending on transmit power levels, with A =0.375m, dy =1 m,
Y =2, {en1 = 0.7, {sn2 =0.8,p=0.1 uW, 0,2 =-140 dBm, and a power gap = 30 mW.
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If g(x) andr(x) are the Gaussian probability density functionthwhe variance ob?, the KLD in Eq.

(3) can be rewritten by

2
Hqg—Hr
Dia(@)lir(x) = Ytk ag, )
where u, and u, are the mean values gfx) andr(x), respectively. Because the noise component of
the received power is drawn from a normal distidntthe received power can be modeled as the

following probability density function:

.2
1 ZUU,L

_ (PSN—#v,i)Z]
vi(psn|Ppy = P) = PN ' ®)

where pgy is the random variable of the received poweh; is thei-th power level of the PUg,, ;2
is the variance, andpu,,; is the expectation of;. The interval between the adjacent distributicars c

be calculated by using the KLD:

2
(:u'VL+1 l"vi)
Dgp[vigqllvi] = ——F—F+—
KLLYi+1 4 20',”-2
[PL(dPUSN)]
=Q '{(PLH—P) 10 Ch}, (6)

whereQ is defined as 26,,;%. Eq. (6) easily verifies that the main factorstw hidden PU problem
are path loss attenuation, fading components, apd getween transmit power levels. These factors
change the KLD value, leading to an overlap of dhsaributions, and eventually the SN faces the
hidden PU problem. The maximum distance betweeSthand the PU is derived to avoid the overlap

of data distributions in the following section.
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2.3 ANALYSISOF THE MAXIMUM DISTANCE

As the KLD value increases, data distributions mapart from each other, which makes it
easy to discriminate channel states. Thereforeapproach is to compute the maximum distance at
which the spectrum sensing ability is guaranteatitarplace several SNs to cover a whole area where
a PU can be placed. In this section, we derivertaimum distance at which SNs can be located from

the PU while still sensing the spectrum, and theadyae performances according to parameter values.

2.3.1 MAXIMUM DiSTANCE BETWEEN SN AND PU

The accuracy of spectrum sensing is determinetiddistance between classes. kdéenote
the minimum KLD value that can correctly classlig tthannel state. First, the maximum path loss that
satisfies the interval of data distributions tddmger thark can be derived from the KLD equation:

_ (Mv,i+1 _517,1')2 >k

Dir[visallvi] = 20
i

= Hyi+1 — Hy,i = ’Zko_v,iz
<PL(dPU,SN))
= (P =P n 2 /2ka,,,i2 10\ 1

Pyri—P)) -
=10 - lOg [( i+1 L) (h] > PL(deSN)
,IZkO'v’iz '
= Lmax = P(dpysn): (7)

By holding the equality in (7) and substituting {&th loss equation in (1), the maximum distance,

(dpu,sn),,,» can be derived as follows:

[u

. .92 v
AP -, -2 )y ®

d =d
(@050 = o (g
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where AP = P;,; — P ; is the differential of the transmit power levels.

2.3.2 COVERAGE AREA

From (8), we can see again that the maximum distance is affected by several parameters such
as the multipath component {j,, the gap of transmission power levels AP, and the minimum interval
between data distributions k. The maximum distance depending on k£ and AP is plotted in Fig. 5. With
a large gap of power levels, the maximum distance increases as well because it can easily satisfy the
inequality (7). On the other hand, a high value of k reduces the maximum distance. In addition, the
maximum distance is related to multipath fading between the SN and the PU. Fig. 6 shows that the

maximum distance and the channel gain have a positive correlation.

15 ! i
ok = 1.5860e-12

=k =7.6192e-12
<k =1.0151e-10

10

(dPU, szv),,,,,v [m]
(8,

0 100 200 300 400 500
AP [mW]

Fig. 5. The maximum distance depending on k and AP, with A = 0375 m, dy =1 m, y = 2,

op;2=1,and {, = 0.8.
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©-k =1.5860e-12
=k =7.6192e-12
<k =1.0151e-10

(dPU,SN)max [m

Sh

Fig. 6. The maximum distance depending on kand {p,, with 4 =0.375m, dy =1m, y =2, 0,;* =

1,and AP =100 mW.

2.3.3 OUTAGE PROBABILITY FOR THE MAXIMUM DISTANCE

In real environments, the multipath component, {j,, is random, affecting the calculation of the
maximum distance. We denote the maximum distance with the estimated multipath fading as d;;,;; and
that with the real-time multipath component into account as d,..4;. Since the channel environment
changes in real-time, the computed sensing coverage can be different from the real value. For example,
if the estimated multipath component is larger than the real-time value, the estimated coverage is larger
than the real coverage (dyeq; < dinit)- If the PU is outside the real sensing coverage as shown in Fig.
7, the interval between data distributions is not guaranteed to be larger than k. Also, as the gap between
the estimated and the real sensing coverage becomes large, the error for channel state classification
increases rapidly. To measure a risk of losing the discriminatory capability, we analyze the outage prob-

ability, assuming that multipath fading is drawn from the Rayleigh distribution:
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Pr{dreal < dinit}

1

. < AP gy -~ A2 >?< .
0 (4mdy)?,/2ko, ;2 it

o\Y 2 ,
=Pr{{h< (dlnlt> (4mdy) \/Zko'v,zz}

do AP - AZ

=Pr{{, < a}

= a%e_<%)d(h

0
(XZ

=1- e‘(ﬁ), 9

where o2 is the variance of the Rayleigh distribution. The outage probability depending on d;p;;

and k is plotted in Fig. 8. If large values of {;,;; and k are used to compute d;,;¢, the outage probability

grows rapidly because the probability of d;;j; > dyeq; increases.

\_—/

== == mm Fstimated sensing coverage

—— Real sensing coverage

Fig. 7. The mismatched sensing coverage due to inaccurate channel estimation.
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Fig. 8. The outage probability depending on k£ and d;,;, with A = 0375 m, dy =1 m, y =2,

0,;>2 =1, AP =100 mW, and 6 = 0.4.

2.3.4 POSITIONING OF SPECTRUM SENSING NODES

Regardless of the position of the PU, several SNs are better to sense the spectrum for a partic-
ular area. A single SN can sense the spectrum within a circle with a radius of (dPU'SN)max' However,
as placing several SNs, the sensing coverage is overlapped. In order to minimize the overlapped cover-
age while covering the whole area, the proper distance between SNs should be calculated. In previous
research, two possible methods for placing the SN, coverage-first placement and connectivity-first
placement [35] depend on sensing and communication distances. Because the sensing coverage is
shorter than the communication distance, we place the SN by the coverage-first placement method as
illustrated in Fig. 9. However, in practical situations, SNs near obstacles or blockages have shorter
sensing distances than others. In this case, the sensing coverage should be re-computed by adjusting the

multipath factor, and then, additional sensing nodes are required.
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Fig. 9. The positioning of SNs based on the cowefagt placement method to reduce the ove

ping coverage.

2.4 EXPERIMENT SETUPAND RESULTS

In this section, to show feasibility of the propgdsschemes, experiment environments and
results are discussed. We conduct experimentsamithwithout the hidden PU problem, respectively.
Fig. 10 shows the experimental setup for the hideldrproblem and our solution. All of SNs and the
PU are connected to NI USRP-2921 and the receigedls are processed using Simulink in MATLAB.
PU 3 has the access authority for 2.45 GHz wittihhee power levels of 0, 50, and 100 mW. SN 1 and
2 are unlicensed users, located far from PU 3 &0L& and 14.29 m, respectively. Because PU 1 and
PU 2 are located within the sensing coverages ol 8Nd SN2, respectively, the channel state can be
classified correctly. However, they cannot coverwhole area. If PUs move or new ones appear out-
side of the sensing coverage, this can cause daehiPU problem. Fig. 11 (a) shows that when a new

PU (PU 3) appears outside of the coverage for SNALSN 2, their data distributions are overlapped.
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Therefore, even if SN 1 and SN 2 may cooperats, still difficult to sense the spectrum of PU 3
correctly. To cover the whole area where the PUlmaplaced, we suggest to place several SNs. The
sensing coverage of SN 3 is computed as 10.86 Bqby8), usingk = 1.5860e-12 from simulation
results. However, due to difficulty in estimatingannel states, the computed distance may misglassif
the spectrum occupancy. We thus use 7.00 m to oatsely reduce the outage probability. The num-
ber of the data measured by each SN is 2,103 hétletual number of samples for each power level.
80 % of the total data are used to train and therstare to test ANNs and the SVM. In trainingpiaes
processing, min-max normalization is used to egaalhe scale of features. In the results of ANNs
under the hidden PU environment, the PU transmmsgawer levels can be classified with 81.19 %
accuracy and the SVM can classify channel statds®@.00 % and 86.07 % accuracy for the PU levels
of 50 mW and 100 mW, respectively. We present cgsinfumatrices for experiment results to analyze
the accuracy of spectrum sensing in more detailtieohidden PU problem, as shown in TABLE Il (a),
the spectrum sensing capability of the FC is detateéd. The true positive rate (TPR) is 4.12% &ed t
false positive rate (FPR) is 0.00%. Note that tleckassifies "busy" state for all cases. Althoulgh t
TPR improves by increasing the power level of PUGOMW (TPR = 43.98%, FPR = 1.46%), it is still
low to detect the spectrum. However, if the PU ithiw the sensing coverage of SN, it is possible to
detect the spectrum correctly. By introducing SKhg, distribution of the received power has separa-
tions larger than the previous one as shown inJHi¢h), and the accuracies of ANNs increase to(®%8
and 97.50 % with different power levels, respedyivand that of the SVM to 99.29 %. In this case,
because the PU is in the sensing coverage of &M &ccuracy of spectrum sensing is very high,(e.g.
TPR = 95.86% and FPR = 1.48% for 50mW; TPR = 99.30% and FPR = 0.72% for 100mW). Our ex-

perimental results show that the hidden PU proldambe mitigated by deploying another SN.
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Fig. 10. Experiment setup: (a) with the hidden PU problem (b) for CSS with a new SN (c) illustration

for node placement.
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Fig. 11. Experiment results: (a) Overlap of data distribution (b) Results of spectrum sensing
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TABLE I

CONFUSIONMATRIX FOR EXPERIMENT RESULTS

P =50 mwW Predict: Idle state Predict: Busy state
Actual: 6 139
Idle state (True Positive) (False Negative)
Actual: 0 135
Busy state (False Positive) (True Negative)
P =100 mwW Predict: Idle state Predict: Busy state
Actual: 106 37
Idle state (True Positive) (False Negative)
Actual: 2 135
Busy state (False Positive) (True Negative)
(a)
P =50 mwW Predict: Idle state Predict: Busy state
Actual: 139 6
Idle state (True Positive) (False Negative)
Actual: 2 133
Busy state (False Positive) (True Negative)
P =100 mw Predict: Idle state Predict: Busy state
Actual: 142 1
Idle state (True Positive) (False Negative)
Actual: 1 136
Busy state (False Positive) (True Negative)

(b)

TABLE II. Confusion matrices for spectrum sensi(@:with (b) without the hidden PU problem.

Since the proposed node placement guarantees sepdratween data distributions, it can
have the computational effect for machine learralgprithms such as K-nearest neighbors (K-NN)

[44]. In K-NN, the class of test data is determitgca plurality vote of its K nearest neighbors agno
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TABLE Il
THE RESULT OFK-NEARESTNEIGHBORS

K=3 K=5 K=7 K=9
Test Accuracy (%) 98.57 98.75 99.10 99.10
Time for classification (s) 0.6222 0.6647 | 0.7108 | 0.7471

training points. In general, a sufficiently largawe of K requires excessive computation time. Heexe
large intervals between data distributions withgheposed node placement make it possible to €§jassi
the class of test data without a large value oftike results of K-NN for the test set are summarined

TABLE lIl. Even with a small value of K, the accegais comparable to those of larger values.

2.5 CONCLUSION

In this section, we investigated a hode placememtrse for machine learning based cooper-
ative spectrum sensing in cognitive radio netwoltkbas been verified that the hidden PU problem
causes the overlap of data distributions and redti@eaccuracy of machine learning algorithms. Our
approach was to find the conditions that securicgerit distances between data distributions. From
the conditions, we derived the sensing coverage sifigle SN and proposed the method of placing
several SNs to cover the whole area where the Rlbeglaced. Experiment results showed that the
hidden PU problem can be mitigated by the proposeld placement.

The purpose of this section is to investigate th@enplacement method for cooperative spec-
trum. Relatively small cognitive networks have beensidered for simulations and experiments. How-
ever, because the FC classifies the channel sgatertsolidating the received power from the distrib
uted nodes, energy consumption and the complexirgase with the number of nodes, which are key
issues in large-scale cognitive networks. In tesfrenergy consumption and the complexity for semsin
the spectrum, it is inefficient for all the SNsparticipate in cooperative spectrum sensing. Teesol
this challenge, several methods which utilize thsired detection alarm probability and false alarm
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probability (e.g., sensor selection [41] and altion between censoring and sleeping [42]) have bee
discussed. In this research, we propose how totfiacconditions that secure sufficient distances be
tween data distributions. Applying the suggestethoms from previous research can achieve the con-

straints for detection and false alarm probabilégding to extension to large-scale cognitive oeks.
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3. SEMANTIC SEGMENTATION FOR GEO DATA GENERATION

3.1INTRODUCTION

Aerial images can provide valuable information ogea that are difficult for people to access
or access non-intrusively [43]. The informationabed using aerial images is used in a variety of
industries including land inventory, vegetation fibaring, and environmental assessment [44]. In par-
ticular, extraction of manufactured features sucbuldings, roads, railway lines, etc. or natunads
from aerial images is important in many applicasidimat depend on geographic information systems
(GISs). GISs are used to carry out tasks suchlmnyslanning, traffic management, industrial devel-
opment, and cartography as well as for emergeranynig systems for evacuation and fire response
[45].

The feature extraction method for creating or mgdg a GIS is mainly to perform a visual
analysis and manually digitize aerial images. #tils the main method to generate geospatial Hata
takes much labor and time to extract or identifytdiees manually [46]. With the development of the
optical sensor technology, it is possible to obtagher resolution images, and more accurate infor-
mation can be therefore obtained from their imablevertheless, it is difficult yet to generatetak
geospatial data by the above method.

There are two main types of research for detectbjects from aerial images: semi-automatic
and fully-automatic [47]. However, because the saatomatic methods require prior knowledge of
the extraction process, such as identifying aré#seoroad and buildings through human intervention
the automatic methods, which are modeled on thiysiaand interpretation of a human operator, to
segment objects from aerial images is widely usegbgmenting roads [11], and buildings [48]. Also,
traditional machine learning techniques such ap@upector machine (SVM) and artificial neural

networks (ANNSs) have been studied in [12], [13]eTutomatic methods are objective without human
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intervention, but their results have generally bdscouraging due to various adverse factors (image
noise, shadows, etc.) [49].

Recently, as the deep learning technology has edolt has been applied to many problems
related to computer vision fields such as imagesifigation, object segmentation, and semantic seg-
mentation. Additionally, deep learning techniquestsas convolutional neural networks (CNNs) have
attracted much attention to segment objects irlisatenages [50]-[51]. To segment roads and build-
ings from satellite images, several semantic setatien models based on deep learning techniques
such as Fully Convolutional Networks [52]-[56], ddeNet [57] algorithms have been used.

Although it is possible for deep learning algorithta learn contextual features automatically,
there are several issues. First, it requires marty b train them. Existing open datasets are ifeper
and not enough to train such deep learning algostithough there are the large-scale datasets for
classification [58]-[59]. Second, due to the ladkruulticlass datasets, binary data have been used i
previous research [52]-[53]. To address these prob)] we make a large scale of the dataset (iee., th
numbers of training and test data are 72,400 ad@D9respectively), including multiple objects (e.g
building, road, water, and background). We alsagies new semantic segmentation model, exploiting
multi-scale features by using the pyramid pooliggel (PPL) [60] to extract information from various
classes. The proposed model with our self-madesebtautperforms other algorithms, as shown in the
test results.

The main contributions of this paper are summaratbllow:

* We integrated U-Net architecture with an eighelé®PL module to solve a problem that U-

Net is not able to clearly distinguish the gap lestwbuildings as well as to achieve the better

shape prediction of the buildings mainly becauseRRL provides a capability of global con-

text aggregation.
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* We developed object segmentation systems by inmmarchitecture and compared perfor-
mances with other algorithms. The proposed sysstio the performance of pixel accuracy

of 87.61% and the mean intersection of the unio®(@) of 79.52 for the 9,600 test images.

* We made a large scale of datasets for multiplealgegmentation from aerial images, in-

cluding many complex obstacles in the metropoléitega of Seoul, Korea.

The rest of this paper is organized as follow: detiHn 3.2, the related work for deep learning
based objects segmentation is discussed. In Se&Bothe proposed object segmentation systems are
discussed. In Section 3.4 and 3.5, our datasetesmtdesults are described. Finally, we conclude ou

contributions in Section 3.6.

3.2 DEEPLEARNING-BASED OBJECT SEGMENTATION SYSTEMS

There are several algorithms that are applied i|ecobegmentation based on CNNs [61]-[63].
Because the performance of deep learning algorittepends on their structures, it should be optichize
to improve the performance by adjusting and fingrtg. In this Section, CNN based segmentation

algorithms are described as follow.

3.2.1 FuLLY CONVOLUTIONAL NETWORKS

A Fully Convolutional Network (FCN) is a modified\DI to semantically segment images.
The FCN predicts every pixel of images, and thislatrained end-to-end and pixels-to-pixels. A key
idea of FCN is changing of the CNN model from dliésation to dense prediction by reinterpretation
of fully connected layers of the classifier as Hyfagonvolution layer [64]. The FCN consists of an
encoder of input images and a decoder that up-ssngricoded images by their original image size.
The encoder part of FCN consists of visual geomgtoyip network (VGGNet) [65] that is a famous

CNN classification model and the decoder part gisasif a deconvolution layer for up-sampling.
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forward/inference

backward/learning

Fig. 12. Fully convolutional networks provided 84].

3.2.2U-NET

U-Net [57] is a modified FCN for yielding more pree segmentation. U-Net has two different
architectures compared to FCN as illustrated in E& First, U-Net uses high-resolution features to
increase localization accuracy by combining theodexy layer and the encoding layer. Second, while
FCN uses 1x1 convolution layer at the last layethef encoder to use the pre-trained model, U-Net
does not use 1x1 convolution at the encoding layaus, U-Net shows outstanding performance not
only for processing biomedical images but alsasfgmenting objects from satellite imagery [67]. In

this section, we also exploit the U-Net architegtiar multiclass object segmentation.
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Fig. 13. U-Net architecture provided by [57].

3.3 U-NET WITH PYRAMID POOLING LAYERS

Feature maps in different sub-regions generated by Pyramid Pooling Layers (PPL)
significantly enhanced segmentation of various classes. Thus, We re-designed the U-Net architecture
by exploiting PPL. In the PPL, the output of each pyramid level is combined and up-sampled to the
same resolution as the input via transposed convolution. Finally, the per-pixel prediction is presented.

The proposed algorithm consists of the encoder-decoder structure. In the encoder part, spatial
dimension is reduced up to 14x14 by convolution filters (3x3, stride 1) and the max-pooling layer. The
numbers of the filter channels are increased. In this process, we utilize batch normalization [67] to
prevent the overfitting problem as shown in Fig. 14. At the end of the encoder, we use PPL, consisting
of 8 layers. Because the pooling size is different (1, 3, 8, 9, 11, 12, 13, and 14), it is possible to extract
features from several ranges. In the decoder part, to recover spatial dimension, up-convolution (or the
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transposed convolution) is used.

Although using consecutive pooling layers allowsetduce parameters and extract long-range
information, it can lose local information suchbasindaries of objects. To overcome this problemp, sk
connection methods are used [57], [64]. The featwrtracted from PPL are up-sampled and
concatenated with the output of the fourteenthfredtlinear unit (ReLU). By transposed convolution
the spatial dimension of combined features is remyfrom 14x14 to 28x28. As it combines the output
of the eleventh, eight, fifth, and second ReLU #mal transposed convolution is applied, the spatial
dimension is recovered gradually, and the numbéitefs is regulated by convolution layers. Figall

the pixel-wise prediction is presented.

3.4 DATASET AND EXPERIMENTS

Most work to segment objects such as roads andibgd has been carried out using aerial
images in rural areas [53]-[55]. Additionally, thegve used many data from the OpenStreetMap (OSM)
[68]. However, the OSM has several defects (eugjldimgs match in a different direction or some
regions are not mapped) since the OSM is a fretddi mapping platform, which might be easily
contaminated by misinformation added by anonymalites. The defects of OSM data might disturb
training for CNN [69]. To overcome the aforemen#ddndisadvantages, a fine-tuning scheme is
proposed in [52], showing that the fine-tuned neknautperforms the un-tuned one. After they trained
CNN by using a large scale of raw OSM data for hyirdassification, a tiny piece of the manually
labeled data was used to tune convolutional filténs the other hand, we created a large scale of
accurately labeled datasets for multiclass objegtrentation and performed experiments on the self-
made datasets that were based on RGB aerial imagethe area of Seoul, Suwon, Anyang, Gwacheon,
and Goyang, which are among the most complex diti&®rea. Our datasets are divided into training
and test datasets, each of which is used for tgiahd evaluating the proposed model. Note that

contrasted from the binary labeled data in previsagk, ours are labeled for multiple object classes
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Fig. 14. A U-Net based object segmentation system. Note that Conv is the convolution layer, Upconv

is the transposed convolution, and BN is batch normalization.
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3.4.1 DATASET

We perform our experiments with images of all the areas of the five cities mentioned above.
The ground-truth data were obtained by changing vector data provided by the government agency of
National Geographic Information Institute (NGII) to images using Quantum Geographic Information
System (QGIS), a free and open-source GIS application. Fig. 15 illustrates the process of making the
ground truth. These data are more accurate than the ones from the OSM, because they have been made
by experts for many years. As changing a data format of the ground-truth data, the data are labeled into
four-classes: background, building, road, and water. Our dataset, as shown in Fig. 16, consists of pairs
of RGB images with 0.51m spatial resolution and ground-truth images. The dataset covers an area of
551km? and are randomly divided into an area of 486.5km? for training and 64.5km? for testing. All
the data were divided into multiple images with the pixel size of 224x224, of which 72,400 images were
assigned to the training set and 9,600 to the test set.
Our datasets have two advantages: First, the datasets consisted of images of the most complex
cities. For applications, we here highlight that the proposed method performs well in complex urban

areas as well as in rural areas, for which our datasets are appropriate. Second, our datasets were labeled

=

<Satellite image> <Labelled image> <Transformed image> <One-hot label>

Fig. 15. The process of making the ground truth. The dataset covers an area of 551 km? and is ran-
domly divided into an area of 486.5 km? for training and 64.5 km? for testing. All the data were
divided into multiple images with the pixel size of 224 x 224, of which 72,400 images were assigned

to the training set and 9,600 to the test set.
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(b) Ground Truth

Fig. 16. Examples of our dataset. In the right side images, green pixels designate buildings, blue back-

ground, orange roads and brown water.

as multiple classes. Many problems have been investigated in binary classification, mainly road classi-
fication, and building segmentation due to the lack of multiclass datasets [52]-[53]. Moreover, classify-
ing several classes at once can solve the problem of two or more classes being overlapped at one point

when superposing several binary classification results.

3.4.2 TRAINING SETUP

The average pyramid levels were applied to the end of feature extract and the ReLU are used
as the activation functions for the hidden layers. We here used the cross-entropy loss between prediction
results and the ground truth for training the proposed model. The Adam optimizer [70] with the learning

rate o = 10™%, the exponential decay rates for the moment of estimates f; = 0.9, f, = 0.999 and
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the constant value = 10~ were used to train our deep neural network. Thal Fith PPL were
trained and evaluated by the self-made datasetainomg 4 objects classes (i.e., building, watead;

and background). The number of 72,400 data were fasdraining and 9,600 for testing. The mIOU
and pixel accuracy were utilized as performance&éesd The experiments were implemented using the
public platform Tensorflow [71] and run on an Inteke 6 i7-7820X CPU @ 3.6 GHz with 2 GPUs of

Nvidia Geforce Titan XP (12 GB). The training setsgummarized in TABLE V.

TABLE IV
TRAINING SETUP FORDEEPLEARNING ALGORITHMS

Parameter Description
Activation function Rectified linear unit (ReLU)
Optimizer Adam optimizer
Learning rate 10~*
The exponential decay rate f1 =09, B, =0999, ¢=10"*
Batch size 4
Image size 224 x 224 x 3
Number of classes 4 (building, road, water, baakgd)
Training data 72,400
Test data 9,600
Hardware GPU: Nvidia Geforce Titan XP (12 GB) *2 e

CPU: Intel core 6 i7-7820X @ 3.6 GHz * 6 ea

Deep learning library Tensorflow
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3.5 RESULTSAND DISCUSSION

In this Section, we analyze the results of trairiordJ-Net with PPL (UNetPPL) in detail. Fig.
17, including input images and the ground truthstrates the results of training for each modeiteN
that each object is colored differently (e.g., greéels designate buildings, blue background, gean
roads and brown water). To compare with each ofpdearning architectures quantitatively, we
compute mIOU, IOU per object and the average paaduracy of all ojbects as the results are
summarized in TABLE V. Although the loU of FCNPPilower than that of FCN in a building class,
the number of false positive pixels in FCNPRLAOM pixel) is much lower than FC{(23M pixel).
Also, as shown in Fig. 17. FCNPPL distinguisheddings better and moreover represent the better-
shaped building than FCN. Likewise in FCNPPL, thenber of false positive pixels in UNetPRL(
19M pixel) is much lower than that in U-Nei(23M pixel). The main reason would be that the use
of an eight-level pyramid pooling module allowsaistaining the effective global context information
[60] and therefore produces a high-quality resolbbject segmentation.

In addition to FCN, FCNPPL, U-Net, and UNetPPL, aleo conducted experiments on
Pyramid Scene Parsing Network (PSPNet), which hasgsed the pyramid pooling module. For most
evaluation criteria, the proposed method providgkdr scores than those of the others. It can aehie
mIOU to 79.52, which is 0.50 higher than mIOU ofNet. It is important to note that the compared U-
Net is not the original architecture proposed ii] [But a highly calibrated model for the enhanced
capability of object segmentation from satellitageas [66]. Therefore, even a small gain of mIOUWwit
UNetPPL is remarkable. In particular, UNetPPL otitmrens other methods of segmenting roads and
buildings, which are the most typical human-madga@b as illustrated last example in Fig. 17.
Compared with the worst performance of FCN, UNetBihws the IOU improvement of 2.92 and 1.97

for building andoads, respectively.
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TABLE V
TESTRESULTS FOR9,600DATA

mIlOU Back. Build. Road Water Pixel.acc
FCN 77.88 78.16 67.42 73.64 9230 85.90
U-Net 79.02 79.83 69.11 7458 9255 86.91
PSPNet 78.30 78.82 67.02 73.64 93.71 86.14
FCNPPL | 78.03 78.56 67.05 74.12 9239 86.08
UNetPPL | 7952 80.16 7034 7561 9196 87.61

We additionally demonstrated through these experismghat our model shows better performance in
aerial photographies than PSPNet, which had suggieste pyramid pooling module. General

convolution is superior to dilated convolution used®SPNet for feature extraction in aerial images.

3.6 CONCLUSION

In this section, we modeled the enhanced semaaegmentation model capable of better
segmenting multiclass objects from aerial imagesxpjoiting a state-of-the-art CNN-based algorithm.
Different from previous research that has utiliaddt of raw OSM data and a tiny piece of the mépua
labeled dataset, we made a large scale of an aelyul@beled dataset, including major cities in &ar
Our dataset, based on city centers, includes mamplex obstacles, and thus, may be more practical
than the binary labeled data in previous work.

Our proposed UNetPPL utilized pyramid pooling layand skip connections widely to extract
multi-scale features of objects. It showed betenfgymance than other deep learning models in the
segmentation of multiclass objects from aerial iesadest results showed that UNetPPL outperforms
FCN, FCNPPL, U-Net and PSPNet regarding pixel aamuand mIOU for four classes (building, road,
water, and background). Moreover, UNetPPL has aluaty of classifying objects in detail (e.g., the

interval of buildings), which is significantly advi@geous in the complex environments.
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Our CNN-based multi-object segmentation with a dasgale of dataset made to train
algorithms only focused on the urban area of Kdbeda attributes of objects can be different frare o
area to another. Therefore, to enhance generalizafi UNetPPL, supplementing other country data

and the corresponding training should be requindiich will be as addressed in our future work.

- 40 -



4. DOMAIN ADAPTATION FOR AERIAL IMAGES

4.1 INTRODUCTION

With the development of sensor technology, a camallle amount of remote sensing images
are now available [72]-[73], and these images gortighly detailed information, including the shape
of buildings, vehicles, roads and other objectaufilize aerial images, extracting the objectséiest
from aerial images is necessary. However, imagé&sred under different conditions (e.g., locations,
times, weather) make it difficult to extract evelentical objects. This is especially true for bims,
which have large variations in the sizes, colongl @angles, frequently causing misclassificatiory.[7
Thus, building extraction from aerial images is miaperformed by a digitizing process done by hand
[13], but this is laborious and time-consuming.

Recently, convolutional neural networks (CNNSs) [#&placing hand-crafted feature extrac-
tion with learnable filters, have shown remarkgt#eformance in a wide range of areas, such as image
classification [76]-[81] and object detection [§8B]. However, CNNs face structural limitations dur
ing the pixel-wise labeling of images. In the psxef feature extraction, using consecutive pooling
layers causes a loss of spatial information (¢hg. boundaries or edges of objects). Thus, most CNN
architectures are good at recognizing objects &gy succeed in localizing objects precisely [46].
During the pixel-wise labeling of aerial or satellimages, these problems become more challenging.
Misclassifications of object boundaries hamperaferall performance of semantic segmentation sys-
tems. To achieve both recognition and localizatsmveral types of architecture for aerial imageg&ha
been studied [46] [54]. A refinement method for doarse output of CNNs has been proposed [46]. A
method that fuses multi-level feature maps to agh@ccurate boundary inference outcomes has also
been presented [86]. On the other hand, in othek y&Y], adversarial networks [88] were utilized to

enforce the forms of high-order structural featdeesned from ground-truth label maps. In one study
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[89], a Sobel detector [90] and a fully convolutabnetwork were used together to rectify a semantic
contour. Additionally, combining a pyramid pooliteyer [60] with the U-Net architecture [57] was
proposed [7].

Although these methods improve the performanceeepdearning models, trained models
fail to segment objects for unseen images whermrtisex domain gap between the training and teat dat
To solve this problem, domain adaptation method® Heeen proposed [57] [91]. In one such study
[57], convolutional neural networks were trainednbyans of a gradient reversal approach to adapt the
test domain. The goal of the trained model is suemthat the results of feature extraction aré st
a discriminator cannot classify between the trajrand test domains. In another study [14], pixetle
domain adaptation in the output space is propasditating that the performance of semantic segmen-
tation is better than that of feature adaptation.tii® other hand, an adversarial iterative schéwaie t
use samples generated by an adversarial attaakgdiiné training procedure was also proposed [91].
However, these methods are not customized forlaerees. While driving datasets such as GTA5
[15] and Cityscapes [16] as discussed in the libeea[14] have static class distributions for objec
(e.g., the road is at the bottom and the sky hattop in the input images), the buildings in aleri
images are located randomly. Moreover, adversatiatk-based data augmentation can be expanded
with information for target distributions. In thigper, we suggest a domain-adaptation-based dgta au
mentation scheme for aerial image segmentationalBerboth domain adaptation and adversarial at-
tacks are used jointly, it is possible to force divection of transformation for input images. Thiee
generated images are outside of the capacity ioEtlanodels and close to the target distributioithW
adversarial samples during the training proceduig possible to expand the capacity of the maodel
realize better extraction from aerial images.

The main contributions of this chapter are sumnearizelow.
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e The designed systems utilize both domain adaptatimhadversarial attacks to force the di-
rection of image generation. By using adversar&ahing with generated images, the capacity

of the segmentation model can be expanded.

« The segmentation model trained by the generatedaémahow the following performance
outcomes: mean intersection of the union (mloUyealof 80.00 and 63.78 for Inria [72] and
Massachusetts [73] datasets, representing corrdsgpimcrements of 0.16% and 7.12% for

these datasets.

The rest of this paper is organized as followsSéttion 4.2, semantic segmentation models for
building extraction from high-resolution aerial iges are studied. In Section 4.3, the relationship b
tween the domain gap and the segmentation perfaensndescribed. In Section 4.4, the proposed
augmentation systems are discussed. In Sectiorsd.5.6, training results with/without augmentatio

are described. Finally, we conclude the paper itsthontributions in Section 4.7.

4.2 DEEP LEARNING-BASED SEMANTIC SEGMENTATION

The goal of semantic segmentation is to assign pixeha semantic label (e.g., buildings and
background) in images. Because the performancenadistic segmentation is related to the architecture
of the models used, it should be designed to psoicgmit data properly. In this section, we suggest

semantic segmentation approach for building extradtom aerial images.

4.2.1 SEMANTIC SEGMENTATION SYSTEMS

One of the basic types of architecture is the fatipvolutional network (FCN) [17], which is
a modified type of CNN used to segment images.tDtiee excellent performance of the FCN, recently

designed segmentation models are mostly basecearcthitecture of the FCN. Because FCNs consist
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of an encoder for feature extraction and a dectidgrup-samples the extracted features to thenadigi
image size, in recently proposed models, moreieffiddasic encoder models are adopted to improve
the performance. In addition, integrating the eted features with certain independent modules such
as a pyramid pooling layer [60] and a summatioretiaskip connection [92] can be utilized. We also
suggest semantic segmentation architecture based efficient type of encoder architecture and an
integrated feature module. Fig. 19 illustratesaterall architecture for building extraction. Iretpro-
posed model, residual dense blocks [93] for fusmugfiple feature maps to compensate for the spatial
loss occurring during the process of feature ekitta@re adopted. Also, to utilize the interdeperuies
between the channels of the convolutional featwgseeze-and-excitation (SE) blocks [94] are used a
the end of the residual dense block, as showngn® (c). The designed model is trained using the

Inria aerial image labeling dataset [72] and coragavith other deep-learning models.

4.2.2INRIA AERIAL IMAGE LABELING DATASET

The Inria aerial image labeling dataset [72] cassi$ 360 orthorectified aerial images for an
area of 810km2. The size of each image is 5,000 x 5,000 pixetstha resolution is 0.3 m. The ground
truth data has two semantic classes (buildingsbaiground). The dataset covers ten differentsitie
and incorporates various urban landscapes anérsetilts. It is divided into 155 images for training,
25 images for validation and the remaining 180 iesafpr testing. The regions of the training set are
Austin, Chicago, Kitsap County, Western Tyrol aridriia and the regions of the testing set are Bel-
lingham, Bloomington, Innsbruck, San Francisco Badtern Tyrol. Inria dataset statistics for tragnin

and testing as done here are summarized in Table VI
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TABLE VI
INRIA DATASET STATISTICS[72]

Train Tiles Total area
Austin, TX 36 81 km?
Chicago, IL 36 81 km?
Kitsap County, WA 36 81 km?
Vienna, Austria 36 81 km?
West Tyrol, Austria 36 81 km?
Total 180 405 km?
Test Tiles Total area
Bellingham, WA 36 81 km?
San Francisco, CA 36 81 km?
Bloomington, IN 36 81 km?
Innsbruck, Austria 36 81 km?
East Tyrol, Austria 36 81 km?

Total 180 405 km?

4.2.3TRAINING SETUP

Our model was implemented based on TensorFlow.3&d the Adam optimizer with a learn-

ing ratea = le-4 and the exponential decay rates for the endrof estimates f_1= 0.9 and3_2=

0.999. The epsilon and momentum values of the baicmalization layer are 0.99 and 0.001, respec-

tively. As the activation function for hidden lagethe rectified linear unit (ReLU) is used. Thg-se

mentation network is trained with binary cross-epyrloss and modified loU loss between the predic-

tion results and the ground truth. The network $akepatches 448 x 448 in size, and the patches are

selected randomly. In this case, 155 images wae fas training and 180 images were used for tgstin

We chose a batch size of 4. The data augmentatibhaats of rotation, flip, brightness changes, blur,
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and Gaussian noise were used. The experiments were run on an Intel core 6 17-7820X CPU at 3.6 GHz

with 2 NVIDIA GeForce TITAN Xp GPUs (12 GB).

BN_ReLU_Conv

BN_RelLU_Conv

BN_ReLU_Conv BN_ReL U_Conv BN_ReL U_Conv

(a)

Global average pooling T[T T T T T ¥ FC [

(b)

32x32x1024
64x64x512 64x64x512

128x128x256 128x128x256  »56x256x128

512x512x64

Conv 3x3

PReLU

256x256x128

. Softmax . Max pooling . Skip addition . Residual dense block
. SE block Convlxl Transposed convolution
(c)

*BN: Batch normalization, Conv: Convolution, FC: Fully connected layer

Fig. 19. Overall architecture for semantic segmentation. (a) Residual dense block (b) Squeeze and

excitation block (c) System architecture for building extraction.
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We chose batch size of 4. Data augmentation methacts as rotation, flip, brightness change, blur,
and Gaussian noise were used. The experimentsraren Intel core 6 i7-7820X CPU at 3.6 GHz

with 2 GPUs of NVIDIA Geforce TITAN Xp (12 GB).

4.2.4 TEST RESULTSAND COMPARISON WITH OTHER ARCHITECTURES

The test results for the Inria test dataset arensaniged in Table VII. The designed model
achieves an overall loU score of 79.87. Specifyc#lishows higher performance on the San Francisco
and East Tyrol images (i.e., for these cities ptgosed model shows an loU of more than 80.00). We
also compare other architectures trained with i@ labeling dataset and prove that the performanc
of the designed model is comparable to those té-stiathe-art models. Despite this, however, it has
limited generalization power for other cities nutluded among the training images. Due to the domai
gap between the training and test data, the dessigioelel trained by Inria labeling fails to segmidat
Massachusetts building [80] dataset images noudsd the Inria training dataset. The relationship
between the domain gap and segmentation performamtigcussed in detail in the following section.

Prediction results are illustrated in Fig. 20.

TABLE VI
TESTRESULTS ONINRIA AERIAL IMAGE LABELLING TEST SET

Method Bellingham Bloomington Innsbruck San Francisco East Tyrol Overall loU
Building-A-Net [87] 65.50 66.63 72.59 76.14 71.86 72.36
Dual-resolution U-Nets [95] 70.74 66.06 73.17 73.57 76.06 72.45
Sobel Heuristic Kernel [89] 70.73 69.98 76.74 76.73 79.09 75.33
Koki Takahashi [96] 74.15 75.55 78.62 80.65 80.80 78.80
Proposed model 73.96 79.58 78.34 81.89 81.55 79.87
ICT-Net [97] 74.63 80.80 79.50 81.85 81.71 80.32
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Fig. 20. Prediction results. (a) Austin (b) ChicdgpKitsap (d) West Tyrol (e) Vienna (f) Bellingima
(g) Bloomington (h) Innsbruck (i) San FranciscoEgst Tyrol
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4.3 DOMAIN GAPAND SEGMENTATION PERFORMANCE

One of the main problems associated with semaatjmentation is the limited generalization,
leading to segmentation failures for unseen imameains. This is caused by the domain gap between
the training data (source) and the test data @arger example, the appearance for buildings iehe
images in different cities can vary. Thus, a mddshed for one city misclassifies buildings in @th
cities. In this section, we show the relationshipmizeen the domain gap and the segmentation perfor-

mance for the Massachusetts building dataset.

4.3.1 MASSACHUSETTS BUILDING DATASET

The Massachusetts building dataset [73] consisageidl images of the Boston area. The total
number of images is 151 and the spatial resolusdnO m. Each image has a size of 1,500 x 1,500
pixels for an area of 2.2&m?. The dataset is split into a training set of 18iages, a test set of 10
images and a validation set of four images. Nadé\te used 104 training images that do not corain

white background to evaluate the network perforredrere.

4.3.2 DATA DISTRIBUTION FOR EACH DATASET

We visualize the data distribution for each datasétg t-stochastic neighbor embedding (t-
SNE) [98]. Fig. 21 illustrates the data distributifor the Inria and Massachusetts datasets. The Inr
training distribution (plotted as the red circlehile close to the Inria test distribution, is fesm the
Massachusetts dataset. We evaluate the deep-lganmuidel, trained by the Inria training dataset dis-
cussed in Section 4.2, using the Massachusettsadafiche test results are summarized in Table VIII.
Note that we referred to the designed model iniGedt2 as the base model. The test results ity
the building segmentation performance is relatetthéadomain gap between the training and test data.
Moreover, as the interval of the data distributiocreases, the overall loU score decreases. Althoug

the loU for the Inria test dataset, which is refalty close to the training distribution, is 79.8 dropped
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Fig. 21. Visualization for each dataset.

to 59.54 for the Massachusetts dataset. To reduce the domain gap between the training and test data, we

propose a domain-adaptive transfer attack (DATA) scheme.

4.4 DOMAIN ADAPTIVE TRANSFER ATTACK

In the previous section, we discussed the relationship between the domain gap and the per-
formance of the segmentation model. Due to the domain gap, the deep-learning model fails to segment
buildings from datasets that are not included in the training data. To solve this problem, we propose

segmentation networks based on domain-adaptive transfer attack (DATA) in this section.

TABLE VIII
TESTRESULTS ONEACH DATASET

Method

Inria test

Massachusetts

Base model

79.87

59.54
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4.4.1 OVERVIEW OF THE PROPOSED M ODEL

The proposed system consists of three modulesdeersarial attack networ& and a dis-
criminatorD, and a segmentation netwdkThere are two goals when training an adversattatk
network. The first is to convert the source to trget domain while maintaining the semantic space.
The second is to manipulate the features of thecedmages to cause the segmentation m8del
make a misclassification. To fulfill these taskeg, use jointly both domain adaptation and an advieisa
attack. The sets of the source and target imagedearoted ag§J;} and {7} € Rf X W X 3 respec-
tively, whereH denotes the height of the images b the width of the images. The source imdge
is forwarded as the input of adversarial attack eh@d Note that the architecture of adversarial attack
modelG is identical to that of segmentation mo8elrhen, segmentation modetrained by the Inria
training dataset, uses the converted infa@e) to assign each pixel a semantic label. Becawesgdhl
of adversarial attack mod€é is to cause segmentation mo&dio make a mistake, the segmentation
prediction P, € R * W X 2 corresponding t&1,1s + A,G(I,)), should be far from the ground truth
Y. Moreover, in order to adapt the domain from thierese to the target while maintaining the semantic
space of the source, we use the weighted sumnftibe input and converted imagg, I + 1,G(Iy),
and the target imagé as the input of discriminat@ to classify which input is from the target. Note
that 1, and 1, are weighted values for the combination of the irgmd converted image. The overall

system architectures are plotted in Fig. 22.
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4.4.2 OBJECTIVE FUNCTION FOR DOMAIN ADAPTATION

We formulate the objective function for domain adipn to train the adversarial attack net-

work G as follows,

Lo = D lls = Quls + 16U, (10)
h,w

where L;,,,(I) is the invariance loss to preveatfrom losing the semantic space, dndndw are
correspondingly the height and width af ., ,||-|| isthe L1 loss, and; and A, are weighted val-
ues for the combination of the input and conventegige. We constrain the weighted values ¥jat+
1, = 1.0.

To adapt the distribution of the converted imagethe target distribution, we introduce the

following generative adversarial network:

Loan(s) = ||ID(uls + 2,609)) - 1°. (11)

Note that adversarial attack modzis trained byL;,,,,(I;) and Lg,y ().

4.4.3 OBJECTIVE FUNCTION FOR ADVERSARIAL ATTACK

To cause the segmentation mo8éb make a mistake, the segmentation predicRprshould

be far from the ground truth. Thus, we model the adversarial attack functiofobews,

Lotk (P, Y) = — Lgcp(P,Y) — LloUnew (R, Y), (12)
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where L (P,Y) is the adversarial attack los€z-z(P,Y) is the cross-entropy loss, and

Liou,,,, (P, Y) is the modified loU loss. The cross-entropy ldsg:z (P, Y) can be written as

Loce(F,Y) = — z Z y (w©) - Jog (R, (WWO). (13)

h,w ceC

We modified the loU loss [116] for semantic segraéoh. When the number of true-positive (TP)
pixels is zero (e.g., all pixels are backgrouniag, conventional loU loss computes the loU as Orckga
less of any false positives (FP) and false negatfi#l). Moreover, if there are relatively few olijec
pixels in a batch, a misclassification for objdmnysa few pixels causes a large loU loss. Thus,implg

modified the conventional loU loss by multiplyifgetratio of the union area, as presented below.

*[-:IOUneW (PS, Y)

Y+ Y-F-Y)
N

_(4 (P Y) 2B+ YR Y)
"( Y+ Y-P- Y)) N

= LIOUOM (PSJ Y) '

AN Gl 1t IRV )

Here, £;,y,,,(Ps,Y) is the conventional loU loss [99] ahtidenotes the number of pixels.

4.4.4 OBJECTIVE FUNCTION FOR DISCRIMINATOR

The goal of the discriminatd® is to distinguish whether the input is from theise or the

target domain. The objective function for the disinatorD can be formulated as follows:

LpUs 1) = IDUDI? + DU — 1|7 (15)
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4.4.5 TRAINING ADVERSARIAL ATTACK MODEL & DISCRIMINATOR

The adversarial attack model G is trained to minimize the multi-task loss as given by

Lo, P, Y) = {(LaerUs,Y), 06), (LoanUs), 06)) (LinyUs), 06)}, (6)

where p is the number of training and ¢ is the switching parameter to determine the training loss for G.
Because holding the semantic space for original images is crucial in data augmentation, for segmenta-
tion, we set the weight values 1; and 4, to 0.9 and 0.1, respectively, during the training process. The
trained G converts Inria training images to other cities without losing the semantic space. Fig. 23 shows
sample images for the output of G. There are a few differences between the original images and the

converted images at the pixel level, as shown in Fig. 23. However, the effectiveness of the DATA

(b)

Fig. 23. The sample images for the output of adversarial attack model G. (a) from Inria train (left) to

Inria test (right) (b) from Inria train (left) to Massachusetts (right).
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scheme can be verified by t-SNE rather than by the converted images at the pixel level. Data distribu-

tions for each dataset are plotted in Fig. 24. The distribution of the converted images for the Inria test

dataset is slightly shifted to the Inria test distribution. On the other hand, the distributions of the con-

verted images for the Massachusetts dataset move toward the test distribution. These outcomes indicate

that the domain gap is reduced by the DATA scheme. We then utilize the converted images to expand

the generalization power of the semantic segmentation network S; i.e., both the training data and the

converted data are used in training procedure. DATA-based adversary training is discussed in the fol-

lowing section in detail.
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Fig. 24. Visualization for each dataset with converted images. (a) Inria test dataset (b) Massachusetts

dataset
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45DATA-based Adversarial Training & Results

From the results of the previous section, the DATAeme is proven to be able to reduce the
domain gap between the training and test data k&svmaintain the semantic space. In this sectmn,
expand the generalization of segmentation netwaevkgjtilize the adversary training method and dis-

cuss the results.

4.5.1 Adversary Training Setup

We use pre-trained weights for the segmentationeinBdis discussed in Section 4.2. The
segmentation mod§&lis trained by both the Inria training dataset andges converted by the generated
DATA scheme. Moreover, the training setup (i.ee, ldarning rate, activation function for hiddendes;
optimizers, etc.) is identical to that describedsection 1. We introduck& as a switching parameter
which determines whether adversarial attack m@lelperates or not. k=5, before the number of
training instances reaches 5, the segmentation InSigderained by Inria training images without ad-
versarial attack mod&. When the number of training instances equals léipteuof k, the adversarial
attack models is operated and the converted images are usdrhfping the segmentation mode|
Note that we set the value kfto 2 and 5 for the Inria test and Massachusetis. ddte adversary

training process is summarizedAihgorithm 1.
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4.5.2 Test Resultsfor Adversary Training

The test results for the segmentation netwdtkained using Inria training and the converted
images are summarized in Table IX. Because theartetyimages for each dataset are relatively close
to the test distribution as compared to the Im@ning data, the generalization of the segmentatio
network is expanded for unseen images. For tha test dataset, the performance of the base model
with the DATA scheme is improved by 0.16% (i.eonfr 79.87 to 80.00) compared to that without the
DATA scheme. In addition, there are relative inceets of loU for the Massachusetts dataset. For the
Massachusetts dataset, the base model with the Bé&i@dme achieves a score of 63.78, which is 7.12%
more than the base model without the DATA schemamRhe test results, we conclude that the effec-
tiveness of the DATA scheme is related to the gatvéen the training and test distribution. Whiles it
improved by 0.16% in terms of the loU for the Intést dataset, it achieves a 7.12% improvement in
the loU outcome for the Massachusetts dataset.ZBigcompares the prediction results for the base
model with and without the DATA scheme. Due to lagrow gap between the training dataset and the
test dataset of Inria, the prediction results fiertbase model with/without the DATA scheme arelaimi
to each other. For the Massachusetts data, howenatrthe effectiveness of the DATA scheme can
easily be verified. While the base model fails égraent buildings in the Massachusetts dataset, the

model trained by the DATA scheme assigns builditxglp semantic labels.

TABLE IX
TESTRESULTS ONEACH DATASET

Method Inria test Massachusetts
Base model 79.87 59.54
Base+DATA | 80.00(+0.16%) 63.78(+7.12%)
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Algorithm 1 Adversary Training Process

Olinitialize: weights of the segmentation modeas learned weightés trained by Inria
training dataset
02:forj=1,...,Jddo
Samplel uniformly from datasef{Js} and corresponding ground trith
03: if j%k==0do

04: Operate the adversary attack m@lahd convert input image(ls)
05: Generate the prediction label mapasS(G(I))

06: else

07: Do not operate the adversary attacken@d

08: Generate the prediction label nigpasG(l;)

09: end if

10: Compute Lgcp(P,Y) and L;,ynew (P, Y)
11: Update the weights of segmentation mod®&lwith respect toLgzqs(P,Y) and

LIoUneW (Ps: Y)
12:end for
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Massachusetts Base + DATA Base model Inria test data

Base model

Base + DATA

Fig. 25. The results of adversary training for each dataset. From first to third rows, it indicates Inria
test dataset. The results for Massachusetts dataset is from fourth to sixth of rows.
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4.6 Conclusion

In this section, we investigate the relationshipween the domain gap and semantic segmen-
tation. The designed deep learning model can extuaitlings from high-resolution images with per-
formance outcomes comparable to those of statkesfitt methods. However, for other datasets, | fai
to segment buildings due to the domain gap betweeitraining and test datasets. We visualized data
distributions for each dataset. The distributiorthe Inria training dataset is close to that of liiméa
test dataset. However, for the Massachusetts daiiaisefar from these datasets, meaning thathe
main gap for the Massachusetts dataset is largarftr the Inria test dataset. Thus, the performarfic
the segmentation model trained by the Inria trgjrmiataset deteriorates with the Massachusettsadatas
To reduce the domain gap between the training estddaita, we propose segmentation networks based
on the domain-adaptive transfer attack (DATA) jbattly utilize both domain transfer and adverslaria
attack approaches. The proposed method reducelethain gap by transferring the source images to
the target images while maintaining the semantcspThe converted images can be used as a training
dataset to expand the generalization power of ¢lgenentation networks. Experimental results show
that the generalization power for an unseen datasethanced by the effectiveness of the DATA-

scheme-based segmentation model.
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5.CONCLUSION REMARKS

In this thesis, applications of machine-learnirgpathms are discussed. The first application
is wireless cognitive radio networks. We invesiighh node placement scheme for machine-learning-
based cooperative spectrum sensing in cognitivio nagtworks. It was verified that the hidden PU
problem causes an overlap of the data distributamasreduces the accuracy of machine-learning algo-
rithms. Our approach was to find the conditions slegure sufficient distances between the date-dist
butions. From these conditions, we derived theisgreoverage of a single SN and proposed a method
that involved placing several SNs to cover thereratrea in which the PU can be placed. Experimental
results showed that the hidden PU problem can bLigated by the proposed node placement scheme.

The second application involved semantic segmemtaystems for aerial images. We mod-
eled an enhanced semantic segmentation model eapibktter segmentation of multiclass objects
from aerial images by exploiting a state-of-the@NXN-based algorithm. The proposed UNetPPL uti-
lized pyramid pooling layers and skip connectiondaly to extract multi-scale features of objects. |
outperformed other deep-learning models during#mmentation of multiclass objects from aerial im-
ages. Test results showed that UNetPPL outperféi@id, FCNPPL, U-Net and PSPNet in terms of
pixel accuracy and the mIOU score for four clagbaddings, roads, water, and background). Moreover
UNetPPL is capable of classifying objects in gredtail (e.g., building intervals), which is signi
cantly advantageous in complex environments.

The final application examined here is domain aatagpt for building extraction. We investi-
gated the relationship between the domain gap emadistic segmentation. The designed deep-learning
model can extract buildings from high-resolutiorages with performance levels comparable to those
of state-of-the-art methods. However, for otherdats, it fails to segment buildings due to theaiom

gap between the training and test datasets. Walided data distributions for each dataset. Theidis
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bution of the Inria training dataset is close tattbf the Inria test dataset. However, for the Meaks-
setts dataset, it is far from these datasets, atidig that the domain gap for the Massachusettsidat
larger than that for the Inria test dataset. Tl performance of the segmentation model trairyed b
the Inria training dataset deteriorates with thestéahusetts dataset. To reduce the domain gapdretwe
the training and test data, we proposed segmentagtworks based on the domain-adaptive transfer
attack (DATA) approach that jointly utilize bothmain transfer and adversarial attack techniques. Th
proposed method reduces the domain gap by traimgféhre source images to the target images while
maintaining the semantic space. The Converted image be used as a training dataset to expand the
generalization power of the segmentation netwdekperimental results demonstrate that the general-
ization power for unseen datasets is enhancedebgftbctiveness of the DATA-scheme-based segmen-

tation model.
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