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HIGHLIGHTS

• This article presents an overview of twisted bilayer graphene (tBLG) on their fabrication techniques and twisting angle-dependent 
properties.

• The properties of tBLG can be controlled by controlling the twisting angle between two graphene sheets.

ABSTRACT Two-dimensional (2D) materials exhibit enhanced physical, chemi-
cal, electronic, and optical properties when compared to those of bulk materials. 
Graphene demands significant attention due to its superior physical and electronic 
characteristics among different types of 2D materials. The bilayer graphene is fab-
ricated by the stacking of the two monolayers of graphene. The twisted bilayer 
graphene (tBLG) superlattice is formed when these layers are twisted at a small 
angle. The presence of disorders and interlayer interactions in tBLG enhances sev-
eral characteristics, including the optical and electrical properties. The studies on 
twisted bilayer graphene have been exciting and challenging thus far, especially after 
superconductivity was reported in tBLG at the magic angle. This article reviews the 
current progress in the fabrication techniques of twisted bilayer graphene and its 
twisting angle-dependent properties.
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1 Introduction

Graphene is composed of a one-atom-thick sp2 hybridized 
allotrope of carbon atoms, which takes the form of a two-
dimensional (2D) planar honeycomb lattice. It has attracted 
abundant interest after its first isolation was achieved through 
the micromechanical cleavage of graphite in 2004 [1–4]. It 
has been seen as a promising material for applications in sen-
sor, photonic, and electronic devices because of its excellent 

properties, such as chemical stability, high carrier mobility, 
low density, and optical transparency [5–9]. However, con-
trary to the single-layer graphene (SLG), while combining two 
or more layers of 2D materials in a specific order to fabricate 
the multilayer structures [10], their mechanical, optical, and 
electronic properties might be manipulated by varying the 
stacking order, interlayer spacing, and relative twisting angle 
[11–16]. The bilayer graphene (BLG) is a simple multilayer 
structure; in the simple form, two graphene layers ordered 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-020-00464-8&domain=pdf


 Nano-Micro Lett.          (2020) 12:126   126  Page 2 of 20

https://doi.org/10.1007/s40820-020-00464-8© The authors

in an AB, AA, or a twisted orientation [17–19]. The practi-
cal assemblage of distinct graphene layers to make bilayer 
graphene infrequently leads to an impeccable stacking order; 
thus, small twisting of a single graphene layer is observed rel-
ative to the other [20], which modifies the electronic proper-
ties [10, 20, 21]. The atomic orientation among the two layers 
might further vary, as the bilayer graphene has a weaker inter-
layer van der Waals bonding due to the lattice deformation, 
which intensely affects the interlayer electron motion [22–27].

Twisted bilayer graphene (tBLG) is fabricated by the stacking 
of two monolayers of graphene with a specific twisting angle (θ) 
[28]; in this structure, the moiré pattern has been observed to 
emerge with a higher periodicity [19, 29]. Recently, the tBLG 
form of graphene attracted significant attention from several 
researchers both theoretically as well as experimentally due 
to its extraordinary optical [30–33] and electronic properties 
[33–38], which were a result of the development of the moiré 
patterns. The tBLG systems show the Dirac spectra with twist-
ing angle-dependent (analogous to chirality dependence in 
carbon nanotube systems) lower-energy van Hove singularities 
(vHSs), Fermi velocity, magnetoresistance oscillations, and 
quantum Hall effect (QHE) [6, 17, 18, 21, 39–41]. Therefore, the 
progress of tBLG-based devices shows excessive potential due 
to the tunable interlayer coupling and band structure of tBLG 
[17, 28]. This interest arises predominantly from the physics of 
tBLG due to the presence of low-lying flat bands near the magic 
angles [42]. The Fermi energy of the tBLG structure is less than 
10 meV near the magic angle (θ = 1.05°) [43]; however, upon 
comparison, the superconductor critical temperature (Tc) ~ 1 K is 
comparatively high [44]. Meanwhile, several theoretical studies 
reported the understanding of the superconductor and insulator 
phases of the tBLG [44–65]. In this review article, we aim to 
highlight the current progress in the fabrication of tBLG systems 
as well as their properties and expect to motivate more research-
ers to work on tBLG systems for different applications.

2  Synthesis Methods

In this section, we reviewed some of the recent advanced 
synthesis methods used to fabricate twisted graphene 
sheets. The twisted graphene layers are formed on the sur-
face of crystalline graphite naturally due to the accidental 
folding of graphene layers onto other graphene flakes or 
themselves [66, 67]. Several techniques have been reported 

for preparing graphene sheets, such as chemical exfolia-
tion from bulk graphite [68], micromechanical cleavage 
of highly ordered pyrolytic graphite (HOPG) [69], chemi-
cal reduction of chemically exfoliated graphene oxide 
[70], solid-state graphitization or thermal decomposi-
tion of SiC [71, 72], and thermal and plasma-enhanced 
chemical vapor deposition [73, 74]. Every technique has 
its own set of advantages and disadvantages. The usually 
followed method is based on the stacking of two SLGs 
synthesized by chemical vapor deposition (CVD) to fabri-
cate twisted graphene [75], as shown in Fig. 1a. It usually 
includes the transfer of CVD-grown single-layer graphene 
(SLG) onto  SiO2/Si substrates via a simple wet-chemistry 
method [76–78], with a protective layer of poly(methyl 
methacrylate) (PMMA) [78] followed by Cu etching. After 
the transferring of SLG/PMMA onto the substrate, the 
PMMA is removed by using acetone and annealing [77]. 
The twisted bilayer graphene samples are prepared by con-
secutively transferring a second SLG onto the SLG/SiO2/
Si in the same way. The prepared sample is baked in the air 
at 150 °C for 20 min for enhancing the adhesion between 
the SLG substrate and SLG–SLG [75]. In this technique, 
the removal of PMMA is a crucial step because if residual 
PMMA is found at the top and bottom of SLG, it can affect 
the interlayer interaction among the graphene layers. The 
control of the twisting angle is difficult in this technique 
due to the random shapes of SLG grown by CVD.

In another report, Kim et  al. [79] reported a new 
approach by demonstrating the preparation of a small-
twist-angle bilayer graphene by utilizing hexagonal boron 
nitride (hBN) and sequential graphene flake pickup steps 
by utilizing a hemispherical handle substrate [80], as 
shown in Fig. 1b. The rotationally aligned transfer process 
provides a superior control on crystal axes alignment, as 
well as on small twisting angle due to the controlled flake 
pickup and selective detachment from the exfoliation sub-
strate. A single graphene flake is divided into two separate 
regions, as illustrated in Fig. 1b. The divided flakes are 
then successively picked up by an hBN flake attached to 
the hemispherical handle. Among the first and the second 
graphene flake pickup, the substrate is rotated by 0.6° to 
1.2° twisting angle with a 0.1° accuracy. The substrate 
is twisted by a diminutive angle among the two stages. 
The stem of two graphene flakes from the same graphene 
layer; a small twist angle is produced among the crystal 
axes of the distinct layers. The two SLGs are likely to have 
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rotationally aligned crystal axes ensuring an exact tBLG 
structure because of the graphene single-crystal nature. 
This fabrication method fulfills the requirements of scien-
tific research and applications due to precise control over 
the twisting angle. In another report, Chen et al. [81] pre-
pared tBLG by the cutting, rotating, and stacking (CRS) of 
the graphene layer using femtosecond laser micromachin-
ing and a precise transfer method. The single-layer gra-
phene was mechanically exfoliated on a Si/SiO2 substrate 
using a femtosecond laser and was divided into two pieces 
with a pair of parallel and straight cutting lines, as repre-
sented in Fig. 1c. By using the two cutting lines, the two 
graphene sections were rotated with an angle θ and were 
accurately stacked together onto to Si/SiO2 substrate using 
a suitable transfer method. The control over the twisting 
angle of tBLG fabricated by this method is better than the 
other preparation methods.

Wang et al. [82] prepared tBLG films based on the con-
trolled folding of single-layer graphene. There are three 
steps in this method: (1) the transformation of the  SiO2/
Si substrate to make hydrophilic and hydrophobic sec-
tions with a distinct border, (2) the controlled SLG/PMMA 
delamination from the hydrophilic section in water, and (3) 
removal of the PMMA layer. The controlled folding in this 
procedure allows for the fabrication of tBLG structure with 
distinct stacking orientations; the required twisting angle 
was achieved by varying the hydrophilic and hydropho-
bic boundary folding angles. In a recent report, Cao et al. 
[43] fabricated tBLG by the vertical stacking of graphene 
to study its superconductivity properties at 1.05° and 1.16° 
magic angles. In this method, one piece of SLG is fixed, and 
the other is stacked vertically by the mechanical transfer 
method on the fixed one at different angles. The vertical 
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Fig. 1  a Schematic of the synthesis process flow of twisted bilayer graphene (tBLG) by CVD and optical microscope image of tBLG on  SiO2/
Si substrate [75]. b Schematic illustration of detaching an SLG using a hemispherical handle and schematic illustration of the moiré pattern for-
mation [79]. c The schematic of the CRS method utilized to fabricate tBLG, double twisted trilayer graphene (DTTG), and optical microscopy 
image of DTTG [81]. d The schematic of the folding procedure of a single-layer graphene sheet with folding driven by delamination only from 
the hydrophilic surface region, and the removal of polymers and HRTEM images of tBLG on a  SiO2/Si substrate with twisting angles (100° and 
110°) [82]. Adapted with permission from Refs. [75, 79, 81, 82]
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stacking method makes it simple and easy to achieve the 
desired twisting angle in tBLG.

3  Lattice and Electronic Structure of tBLG

The variation in the graphene properties is produced due to 
the mode of stacking orientation among the two graphene 
layers and the number of stacked graphene layers [83, 84]. 
The bilayer graphene is fabricated by the vertical stacking 
of two graphene layers, which results in the breaking of 
the symmetry of bilayers. The broken symmetry causes 
inequivalent charge and electrostatic potential among the 
two graphene layers [85]. However, the tBLG is non-AB-
stacked bilayer graphene, in which one graphene sheet 
rotates by a definite angle (θ), as compared to the other 
[86]. The schematics of band structure and the equivalent 
density of state (DOS) with van Hove singularities (vHSs) 
in tBLG are shown in Fig. 2a [86]. The Dirac band disper-
sions vary drastically and become strongly warped with 
smaller twisting angles (less than 5°) [87–89]. The Dirac 
cones of the two distinct layers intersect and produce sad-
dle points in the shared space of tBLG [90], causing the 
development of van Hove singularities (vHSs) in the den-
sity of state (DOS) [91–93], which enhances the Raman G 
band resonance and optical absorption and improves the 
chemical reactivity of tBLG [93–97]. The band structure 

of the tBLG domain where the band dispersions are cut-
ting across (Fig. 2b), and the constant-energy contours 
to the two neighboring Dirac points (Fig. 2d) [86], con-
firms the formation of the vHSs by the intersection of 
two Dirac cones. The existence of logarithmic vHSs was 
also confirmed by Brihuega et al. [98] by using local DOS 
(LDOS) of two stacked graphene layers with twisting 
angles between 1° and 10°, as shown in Fig. 2c. The small 
twist angles in bilayer graphene executed a pattern on the 
intercalated atoms that causes the modification of the elec-
tronic properties (Fig. 2e), which is used as a high-mobility 
material with significant bandgaps [99]. The moiré pat-
terns are produced through the graphene–graphene interac-
tion by matching the relative orientations of the top-layer 
graphene lattice, as shown in Fig. 2f. The moiré lattice 
and strong non-perturbative characteristics of the tBLG in 
the smaller twisting angle regime are confirmed by Wong 
et al. [100]. The simplest tBLG also shows unique physical 
properties because of the controlled interaction among the 
two Dirac electron gases with a broad moiré pattern [101]. 
The tBLG with a smaller twisting angle is attended with 
a moiré pattern that produces particular super-periodicity 
and uniformity for the electron systems, which causes a 
substantial variation in the electronic properties [102, 103].
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4  Raman Spectroscopy

Raman spectroscopy plays a crucial role in the nondestruc-
tive analysis of the lattice structure, as well as the optical, 
electronic, and phonon properties of graphene [104, 105]. 
Raman spectroscopy is widely utilized to investigate the 
physical properties of graphene and graphene-based devices 
[101]. The Raman features dependent on the stacking ori-
entation provide detailed information about the phonon 
characteristics with their distinctive band structures [106, 
107]. The phonon vibration modes of the AB-stacked MLG 
are separated into an out-plane shear (C) vibration modes 
and in-plane G and 2D vibration modes. The first-order 
Raman endorsed peak in graphene is a G band observed 
at ~ 1584 cm−1, accomplishing momentum conservation, 
which commands that the scattered phonon must carry no 
momentum. The D and D′ bands are originated from the 
intervalley and intravalley double-resonance Raman scat-
tering mechanisms, respectively [108–110]. Two additional 
R and R′ modes, which are from the TO and LO phonon 
branches, respectively [111–113], can differentiate the stack-
ing orientation among the AB stacking and twist. The tBLG 
superlattice offers a θ-dependent q wave vector, which trig-
gers phonons inside of the Brillouin zone, due to which the 
layer breathing vibrations (ZO′ phonons) can be studied in a 
first-order light scattering [112]. Lui et al. reported that the 
Raman band is susceptible to interlayer interactions; it can 
reveal a distinctive line shape for the graphene band of every 
layer thickness and stacking order [114].

For investigating the twisting angle effects in tBLG, 
He et al. [115] carried out the Raman spectroscopy less 
than 100 cm−1 Raman shifts and observed two modes in a 
smaller range of twist angle. Figure 3 shows the G Raman 
peak intensity is intensely enhanced as a function of twisting 
angle, which illustrates that these G Raman modes and the 
lower-energy modes share the equivalent resonance ampli-
fication mechanism. The intensity of the enhanced G peak 
and the 2D band displays a maximum blueshift than the SLG 
at 12° twisting angle (called a critical angle) (Fig. 3a). The 
phonons above 100 cm−1 displayed by the Raman scattering 
process are intermediated by the superlattice wave vector q, 
which simply depends on the twist angle (θ) [116, 117]. The 
background-subtracted lower-energy Raman spectrum for 
different tBLG domains is shown in Fig. 3b. The observed 
fundamental layer breathing (ZO′) and out-of-plane acoustic 

(ZA) modes between 130 and 180 cm−1 are activated by the 
formation of moiré pattern [110, 117]. The additional funda-
mental layer breathing mode (ZO′)L is observed at ~ 94 cm−1. 
The intensities of (ZO′)L frequency mode, and the back-
ground covering on which the lower-energy Raman lines 
are comprised, demonstrate substantial resonance enrich-
ment near the 12° twisting angle; it is associated with the G 
Raman peak enhancement. Another Raman mode observed 
at ~ 52 cm−1 is ascribed to the twisting mode due to the rota-
tion between the two graphene layers with respect to each 
other. The advancement of the frequency and FWHM of the 
ZO′ mode as a function of L normalized I2D are shown in 
Fig. 3c, d. The (ZO′)L mode frequency increases with the I2D 
when the twisting angle is less than the critical angle, and 
the frequency becomes nearly constant, when the twisting 
angle is greater than the critical angle. This illustrates that 
the intense variations in the FWHM and frequency of the 
(ZO′)L mode occurred when the twisting angle is close to 
the critical angle (12°). The low-frequency phonon disper-
sion shown in Fig. 3e, which shows the phonon frequency 
observed at ~ 94 cm−1, and the phonon wave vector k(ZO′)L 
are in good arrangement with the ZO′ phonon dispersion in 
tBLG and confirming the obligation of this mode with the 
layer breathing mode (ZO′)L. The Raman study reveals that 
the fundamental properties of tBLG are different from the 
Bernal-stacked bilayer graphene.

The Raman imaging reveals the differences in interlayer 
interactions, which is useful for the investigation of exter-
nal physical, chemical, and optical properties of bilayer 
graphene. The white light dissimilarity enhances the reflec-
tion image of single and bilayer graphene on  SiO2 substrate 
which is shown in Fig. 4a. The bilayer graphene comes out 
darker than the single-layer graphene with homogeneous 
intensity. The dark-field TEM image of tBLG domains with 
different twisting angles is shown in Fig. 4b. The dissimi-
larities in Raman intensity are associated with the twisting 
angle, and within the same domain, both bands intensities 
are nearly constant. The Raman spectra of the same area 
show the G band intensity increases for the ~ 12° twisting 
angle, attributable to distinctiveness in the joint density of 
states (JDOS) of tBLG, and its energy is entirely depending 
on the twisting angle, and the strength of optical transition 
is directed by the interlayer interactions, which allow direct 
optical imaging of these parameters, as shown in Fig. 4b. 
The 2D peak position, intensity, and width vary quickly 
around the ~ 12° twisting angle, which describes a transition 
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among the low and high twisting angle regions. The wide-
field G band images of the similar tBLG domain at differ-
ent excitation energies and the plot of Eex versus θpeak are 
shown in Fig. 4d, which reveals the different domains and 
shows intensity enhancement for different twisting angles 

corresponding to different excitation energies. The twisting 
angle with specified excitation energy allows upcoming stud-
ies of electrical, mechanical, and optical properties of tBLG 
at precise angles. In the optical properties of tBLG, paral-
lel band optical transitions play a vital role, which might 
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be further employed in emerging innovative optoelectronic 
devices with exceptionally tunable features via controlling 
over the twisting angle [118].

5  Optical Properties

The decreasing in the twisting angle interference among 
the two lattice periods creates a moiré pattern with a higher 
wavelength, where the properties of tBLG such as van Hove 
singularity and bandgaps seem to be present in the far-infra-
red region and the band velocity of the Dirac cone is con-
siderably decreased [37, 119–122]. The optical absorption 
study is usually employed for graphene-based systems to 
examine the electronic structures [122–125]. Recently, Anh 
Le and Nam Do reported the optical properties of tBLG 
using a time evolution of states in real space [126]. The 
optical conductivity of some incommensurate and commen-
surate tBLG structures is shown in Fig. 5a, which clearly 
showed the conductivity structure in the infrared-red region. 
The curves of all groups with different twisting angles reveal 
that the optical conductivity of tBLG continuously varies 
with the twisting angle, but the distinctive structure of the 
twisted systems (θ = 0.01° to 0.2°) is found in the lower-
energy range. The transition developments for the tBLG 
structures with θ = 10° are shown in the inset of Fig. 5a. 
The W shape DOS is slowly converted into the U shape by 

decreasing the twisting angle to zero, which illustrates that 
the commensurability among the two graphene layers does 
not play a crucial role in varying the optical and electronic 
properties. Yu et al. [127] reported the optical absorption 
spectrum of electrically gated tBLG. The optical conduc-
tivity σ1(ω) spectra of tBLG with different twisting angles 
show two separate interband transitions (Fig. 5b): (1) The 
frequency-independent conductivity 2σmono comes from the 
LB transition, and (2) the major absorption peak α origi-
nates from the transitions  vHs2 → BE1 and  BE2 → vHs1 [128, 
129]. Inset of Fig. 5b shows the blueshift of α-peak toward 
the higher energy as the twisting angle increases [129]. The 
splitting of the absorption edge of σLB into two edges with 
various energies reveals that the Dirac cones of the bottom 
and top layers are transferred by varying the total energy 
[127]. The intensity and energy of peak α show variation 
with the gate bias, as the interlayer potential irregularity 
breakdowns the configuration of the band edge and vHs. 
The VG-driven variation of σ1(ω) for the hole doping region 
is shown in Fig. 5c. The absorption edge of σLB in Fig. 5c 
demonstrates a significant expansion, as well as the shift-
ing toward higher energy; it demonstrates the shifting of 
the α-peak toward lower energy, whereas its intensity is 
decreased noticeably, which confirms the changing of the 
band structure of tBLG with the gating. The optical absorp-
tion spectra showed notable variations like the shifting of 
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inter-van Hove singularity transition peak and the splitting 
of interlinear band absorption, as well as the appearance of 
an extremely strong intra-valence band transition.

The PL excitation spectrum recorded after 2-photon 
excitation, also the twisting angle-associated tunable linear 
absorption spectrum, is shown in Fig. 6a [130]. The reso-
nant PL emission was positioned at around ~ 2.0, 2.1 and 
2.7 eV, as confirmed by applying 10 nm wide band-pass 
filters. The domain twisting angles were selected by 1-pho-
ton linear absorption spectrum, which spectrally overlaps 
with the consequent 2-photon PL excitation peaks. The 
splitting of 2-photon PL excitation and 1-photon absorption 
peak energies varies with the twisting angle. The PL map of 
tBLG structure collected at around 1.26 eV excitation shows 
a significant PL emission enhancement after the 2-photon 
excitation of 17.5° domains, as compared to the nearby 
domains (Fig. 6b) [130]. The appreciative band-pass opti-
cal filtering confirms the emission energy matches well with 
the 1-photon absorption resonance at ~ 2.8 eV of the 17.5° 
domain. This resonant PL variation with the vHs reveals 
that the electrons will thermalize quickly to low metallic 
continuum states by electron–electron scattering. The line 
scanning results of the different graphene films by two dif-
ferent lasers wavelength (633 and 514 nm) are shown in 
Fig. 6c [81]. The signal is increased by ~ 35% for a 13° twist-
ing angle tBLG domain with 514 nm laser wavelength, and 
a 10° twisting angle tBLG domain shows similar results for 
a 633 nm laser wavelength. The photocurrent of tBLG films 
might be extensively enhanced by both s- and p-polarized 
lights with consequent laser wavelength consistent with the 

absorption enhancement, as shown in Fig. 6d [81]. The pho-
tocurrent and optical absorption enhancement of tBLG could 
be achieved by varying the twisting angles.

Recently, Yin et al. [86] reported a strong light-matter inter-
action and selectively improved photocurrent generation of 
tBLG devices under laser illumination for different twisting 
angles. The schematics of two parallel tBLG films with 13° 
and 7° twisting angle on a  SiO2/Si substrate embedded with 
two terminals are shown in Fig. 7a, b. The intensity of G 
band of 13° twisted tBLG domain showed a consistent 20-fold 
enrichment compared with the 7° twisted tBLG domain, as 
shown in Fig. 7c. The interfacial junctions of tBLG metal 
electrodes were utilized to separate the photo-excited elec-
trons and holes on the tBLG domain under the laser light 
[131, 132]. The 13° and 7° twisted tBLG domains produce 
distinct photocurrent shifts, as shown in Fig. 7d. The 13° and 
7° twisted tBLG domains produce 0.63 and 0.097 mA net 
photocurrent, respectively, at zero bias with a 532 nm laser. 
The net photocurrent mapping of the tBLG devices shows 
converse directions at two graphene electrode interfaces; for 
example, the intensity of photocurrent of 13° twisted tBLG 
domain is ~ 6.6 times greater than the 7° twisted tBLG domain 
(Fig. 7e, f). The photocurrent from both 13° and 7° twisted 
tBLG domains increases as the incident 532 nm laser power 
increases from ~ 1 μW to ~ 5 mW, as shown in Fig. 7g. The 
substantial enhancement in photoresponsivity of 13° twisted 
tBLG domain below the enlightenment of different incident 
532 nm laser power is observed. This twisting angle-depend-
ent photocurrent enhancement holds enormous promise for 
high-selectivity photodetection applications.
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6  Electronic Properties

The perfect and superior characteristics of the bilayer gra-
phene in twisted multilayer graphene (tMLG) than the sus-
pended form of graphene could be attributed to the fact that 
the tMLG is tens of nanometer in thickness and maintains 
the graphene layers ultra-clean, as well as free from any 
substrate influence. These extraordinary properties in tMLG 
generate from the higher degree of decoupling that occurs 
from the angular twisting between the layers [133]. Recently, 
Mogera et al. [134] reported the semiconducting to metal-
lic transition converging behavior of twisted multilayer gra-
phene (tMLG). The temperature-dependent conductivity (σ) 
of the tMLG device in the 90 K to 273 K temperature range 
is shown in Fig. 8a. As the temperature increases, the con-
ductivity per layer in the tMLG slowly increases and reaches 

a maximum at around 180 K and then linearly decreases up 
to 300 K, which reveals the variation in non-monotonous 
conductivity with a distinctive semiconducting to metallic 
conversion on raising the temperature. The sequential differ-
ence in device photocurrent under light exposure is shown in 
Fig. 8b. The photocurrent increases in the semiconducting 
region and drops with the rising temperature in the metallic 
region and decreases with no photoresponse at a transition 
temperature (Fig. 8c). These pristine properties reveal the 
decoupled nature of the graphene layers in tMLG.

The interlayer contact conductance among the BLG with 
different twisting and stacking structures synthesized by 
the CVD method is recently discussed by Yu et al. [135]. 
A statistical method is applied for comparing the twisting 
angle-dependent current in the tBLG domains. The statisti-
cal results for different tBLG domain with various twisting 
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angles are shown in Fig. 8d. The tBLG with a small twisting 
angle displays a higher current, which indicates excellent 
contact conductance at no twisting among the graphene lay-
ers. Figure 8e shows the interlayer conductance of tBLG 
with various twisting angles. The interlayer contact conduct-
ance decreases with an increase in the twisting angle. The 
twisting angle propagation to the interlayer potential energy 
enhances, at the larger twisting angle [136]. The interlayer 
contact conductance of 0° BLG domain is ~ 4 times higher 
than the 30° tBLG domain, which reveals the twisting angle-
dependent graphene interlayer contact conductance origi-
nated from the decoupling and coupling transitions.

Polshyn et al. [137] discussed the electrical transport 
measurements for different tBLG devices with 0.75° to 2° 
twisting angles in the room temperature. The resistivity (ρ) 
of the tBLG domain (θ = 1.06°) measured near the flat band 

condition for carrier densities spanning the lower-energy 
band is shown in Fig. 8f, g. The resistance peaks or insulat-
ing phases at some integer multiples of ns/4 and supercon-
ducting states at different partial band fillings are revealed in 
Fig. 8f. At nearly all densities, the resistivity (ρ(T)) increases 
with the increase in temperature and remains steady with 
the metallic behavior. The resistivity (ρ(T)) measured in 
tBLG devices with different twisting angles near − ns/2 is 
shown in Fig. 8h. The resistivity is enhanced sub-linearly 
with the increase in temperature and reaches the highest 
point at a temperature TH; the resistivity scales linearly with 
temperature below the temperature TH. At the lowest tem-
peratures, resistivity diverges from a linear dependence on 
temperature. The tBLG devices clearly show the resistivity 
saturation, superconducting, or insulating behavior at mod-
erate temperature regimes. The observed three distinctive 
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temperature regimes are noticeable by the different behavior 
of resistivity (ρ(T)) depending on the carrier density and 
twisting angle.

7  Superconductivity

The unusual superconducting behavior of different mate-
rials has been studied broadly for the last decades. The 
weak interlayer interaction creates the interlayer coupling 

in tBLG, and the strength of interlayer coupling as well as 
twisting angles equally affects the Fermi velocity and the 
VHSs of tBLG, which makes the novel electronic state of 
tBLG, which is different from those in SLG [138–140]. 
The twisting angle among the layers of bilayer graphene 
decides the degree of interlayer coupling and plays a deci-
sive role in its electronic properties [140]. Recently, Cao 
et al. [141] reported the unconventional superconductivity in 
the magic-angle graphene superlattices. The representative 
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device structure of the encapsulated tBLG is shown in 
Fig. 9a. The mini-Brillouin zone is built from the variation 
present among the two K or K′ wave vectors for the two 
graphene monolayers (Fig. 9b). The interlayer hybridiza-
tion takes place between the Dirac cones in each valley, 
where the intervalley interactions are intensely suppressed 
[120, 142]. The longitudinal resistance (Rxx), as a function 

of temperature (T(K)) for two tBLG devices with 1.16° and 
1.05° twisting angles, demonstrated zero resistance at 70 
mK revealing the superconducting state (Fig. 9c). The criti-
cal temperature (Tc) determined using a resistance of 50% 
of the non-superconducting state value was about 1.7 and 
0.5 K for the two tBLG devices. The two-probe conduct-
ance versus carrier density at zero magnetic fields and a 
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0.4 T perpendicular magnetic field of M1 device is shown 
in Fig. 9d, which clearly shows the V-shaped conductance 
created from the renormalized Dirac cones of the tBLG band 
structure at charge neutrality point (n = 0). It also shows the 
states of insulating at the superlattice bandgaps n = ± ns. The 
insulating state at ± 3.2 × 1012 cm−2 is as a result of the pres-
ence of single-particle bandgaps in a band structure, as well 
as the observed conductance minima connected with many 
body gaps [43]. At 70 mK temperature and − 1.3 × 1012 to 
− 1.9 × 1012 cm−2 electrons per unit cell, the conductance 
was significantly high for nil magnetic fields than in the ver-
tical 0.4 T magnetic field (B⊥), which reveals the presence of 
superconductivity at the magic angle. The density-dependent 
resistance of the tBLG device with a 1.14° twisting angle 
plotted almost over the complete flat band density range 
is shown in Fig. 9e [143]. The tBLG device showed lower 
charge carrier inhomogeneity (δn < 2 × 1010 cm−2), and at 
the magic angle (θ = ~ 1.1), the resultant hybridization and 
moiré superlattice among the graphene layers caused the 
development of a remote flat band at the charge neutrality 
point (CNP) [120, 143]. In the flat band, the resistive states 
are observed at the charge neutrality point (CNP) and ± ns/2 
and +3 ns/4. The superconductivity regions emerge in both 

electron- and hole-doped regions at ~ 10 mK base tem-
perature with the dropping of resistance to zero. However, 
for ± ns/2 densities, below the base temperature, no sign 
of superconductivity is observed. The superconductivity 
appears considerably absent or weak on the lower-density 
side and extra stronger in the higher-density side of the insu-
lator in both bands.

Recently, Codecido et al. [144] reported both insulating 
state and superconductivity in a tBLG structure at a ~ 0.93° 
twisting angle. The ~ 0.93° twisting angle is 15% small than 
the previously reported magic angle (θ = 1.1 ± 0.1°) [43, 
139, 140]. The magnetic field (B) and longitudinal resistance 
(Rxx) versus an elongated gate voltage (Vg) range at a 1.7 K 
temperature (Landau fan pattern) are shown in Fig. 10a. 
The satellite peak is observed at Vg = ± 0.85 V, as the lower-
energy moiré bands are filling at densities nm = ± 4 (where 
nm is the number of charges per moiré unit cell) [43, 141]. 
The resistance peak appears at Vg = 0.43 V from which an 
alongside set of Landau levels emanate. The peak on the 
half-filling and the twofold degeneracy of Landau levels 
illustrate the breaking of the symmetry of spin valley [145] 
and the development of a novel quasi-particle Fermi sur-
face. At nm = 0, ± 4, and +2, the resistance peaks are clearly 
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observed in Rxx(Vg) at B = 0 and for different temperatures 
(0.28 to 5.2 K) (Fig. 10b). The Rxx is zero at T = 280 mK, 
for 0.51 < Vg < 0.65 revealing the development of supercon-
ductivity [43]. The development of superconductivity and 
conceivably penetrating superconducting regions might 
be responsible for the increase in Rxx with the increase in 
temperature at nm = 2. As the temperature (T) decreases, 
ρ decreases to zero with the two consecutive steep suc-
cessions at T ~ 0.3 K and T ~ 1.5 K (Fig. 10c); it could be 
associated with non-Planckian dissipation of the extraordi-
nary metal states [146]. The voltage–current (V–I) curves 
at two descriptive densities (Vg = 0.58 V and Vg = 0.50 V) 
are shown in Fig. 10d. The maximum value of the criti-
cal current (Ic) is observed at Vg = 0.58 V and observed the 
supercurrent for an elongated range of density with Ic (~ 1 
to 15 nA). The temperature dependence of the resistance 
peaks is nearly invisible, as the temperature is enhanced 
above ~ 5 K (Fig. 10d). The Arrhenius plot of resistance 
with ~ 1 K energy gap is shown in Fig. 10f. The peaks at 
nm ≈ ± 5 are unlikely to initiate from the angular disorder 
and single-particle gap as a result of an alignment between 
graphene and hBN [147, 148]; these features are uncertainly 
attributed to the development of a novel interrelated insulat-
ing state. θ = 0.93° is the lowest twisting angle reported till 
to the date for tBLG devices showing superconductivity and 
insulating state. 

8  Conclusions

The objective of this review paper is to provide detailed 
information regarding the fabrication of twisted bilayer gra-
phene (tBLG) via different methods, its properties, as well 
as its technological applicability. The tBLG-related research 
field has developed at an enormous speed. The prominent 
tBLG fabrication methods such as micromechanical exfolia-
tion, CVD, graphene flake pickup, CRS, stacking methods, 
and their unique properties are summarized in the initial 
sections. The control over the twisting of two graphene lay-
ers is the major challenge in the fabrication of tBLG. The 
twisted bilayer graphene (tBLG) is a novel arrangement, 
which shows the basic properties are different from those 
of the stacked bilayer graphene. The variation in line width 
and position of the (ZO′)L mode illustrates the influence of 
the twisting angle-dependent electronic band overlaps, onto 
the Raman spectrum. The continuous variation in optical 

and electrical properties of tBLG is strongly dependent on 
the twisting angle (θ) among the two graphene layers. We 
believe that the development and variation in the optical 
properties of tBLG would be extensively used in the future 
in the field of optoelectronics. The tBLG devices displayed 
non-monotonous conductivity variation, which reveals a 
semiconductor to metallic transition. The superconducting 
properties observed in tBLG are due to the electron interac-
tions, which can distinctly influence the properties of moiré 
superlattices at higher densities and smaller twisting angles. 
There are quite a few challenges that are related to achiev-
ing a control over the twisting of two graphene layers for 
the development in the fabrication and characterization of 
twisted bilayer graphene (tBLG). It is expected that theoreti-
cal studies will be published in the future to search for novel 
superconducting and insulating phases of tBLG at a lower 
temperature.
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