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Machine learning decodes chemical 
features to identify novel agonists 
of a moth odorant receptor
Gabriela caballero-Vidal1,4, Cédric Bouysset  2,4, Hubert Grunig2, Sébastien fiorucci  2, 
nicolas Montagné1*, Jérôme Golebiowski2,3* & emmanuelle Jacquin-Joly  1*

odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile 
sensing. Although they determine the odor space of a given species, their functional characterization is 
a long process and remains limited. To date, machine learning virtual screening has been used to predict 
new ligands for such receptors in both mammals and insects, using chemical features of known ligands. 
In insects, such approach is yet limited to Diptera, whereas insect odorant receptors are known to be 
highly divergent between orders. Here, we extend this strategy to a Lepidoptera receptor, SlitOR25, 
involved in the recognition of attractive odorants in the crop pest Spodoptera littoralis larvae. Virtual 
screening of 3 million molecules predicted 32 purchasable ones whose function has been systematically 
tested on SlitOR25, revealing 11 novel agonists with a success rate of 28%. Our results show that 
Support Vector Machine optimizes the discovery of novel agonists and expands the chemical space of 
a Lepidoptera OR. More, it opens up structure-function relationship analyses through a comparison 
of the agonist chemical structures. this proof-of-concept in a crop pest could ultimately enable the 
identification of OR agonists or antagonists, capable of modifying olfactory behaviors in a context of 
biocontrol.

Animals are exposed in their environment to a plethora of odorant molecules from a variety of chemical struc-
tures. Some of these molecules contain valuable information to carry out essential activities such as the identifi-
cation of food sources, oviposition sites, mating partners, conspecifics and predators. Animals detect odorants 
via olfactory sensory neurons (OSNs) housed in dedicated olfactory organs, and the mechanisms underlying this 
detection have been particularly well studied in insects and mammals1. In insects, the primary olfactory organs 
consist of the antennae and the maxillary palps, which are covered by olfactory sensilla that house the OSNs2. 
In mammals, OSNs are mainly localized within the olfactory epithelium of the nasal cavity. In both insects and 
mammals, large multigenic families of odorant receptor proteins (ORs) mediate odorant recognition, each OSN 
expressing a single receptor (plus Orco in insects, see below) that controls its detection spectrum. These ORs are 
seven-transmembrane (TM) domain receptors3–5, yet mammalian and insect ORs belong to distinct unrelated 
families6. Mammalian ORs are members of the class A rhodopsin-like G protein–coupled receptors (GPCR)7, 
whereas insect OR membrane topology is opposite to that of GPCRs, with a cytoplasmic N-terminus and an 
extracellular C-terminus8. Furthermore, insect ORs form heteromers with a well conserved coreceptor named 
Orco8–10, and these heteromers are gated directly by chemical stimuli11.

Understanding how the OR repertoire of an animal contributes to odor sensing and adaptation to a specific 
environment relies on the capacity to identify natural ligands of these ORs, a process called deorphanization. Yet, 
the ligands of several mammalian and insect ORs have been identified using different expression systems12–19. 
However, the number of chemicals used to stimulate the ORs is limited due to practical handling and duration 
of the experimentation. Consequently, potential stimuli that are tested on ORs of a given species are generally 
only a small portion of the vast array of ecologically relevant odorants. In insects, such sets of potential stimuli 
consisted of up to 100 molecules used to challenge Drosophila melanogaster19 (even up to 500 in one study but 
with only one replicate20) and Anopheles gambiae ORs16,17, but only fifty have been used to stimulate the ORs of a 
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moth, Spodoptera littoralis18. Given that the potential odor space for an animal is almost unlimited, it is likely that 
the main ligand(s) of some deorphanized ORs still remains unidentified. The problem of selecting the candidate 
molecules to be tested becomes even more critical when trying to identify agonists or antagonists of particular 
ORs that are not natural ligands but could have an impact on the behavior of pest and disease vector insects21.

Several recent studies revealed that the application of machine learning in the context of virtual screening 
opens up the possibility to enlarge animal odor spaces. Machine learning based on odorant chemical descriptors 
allowed predicting receptor–odorant interactions in both insects22–25 and mammals26, although their ORs do not 
belong to the same protein families. Notably, quantitative structure-activity relationship (QSAR) is an in silico 
ligand-based method used to predict biological activity of untested chemicals, based on chemical features shared 
by active molecules27. In D. melanogaster, virtual screening of more than 240,000 chemical structures identified 
a large array of novel OR activators and inhibitors25. An in silico screening of 0.5 million compounds identified 
agonists or antagonists targeting the mosquito CO2 receptor, leading to the discovery of new attractants and 
repellents for those harmful disease vectors24. More recently, antagonists for the insect coreceptor Orco have been 
identified by screening a library of 1280 odorant molecules28. In mammals, a more modest virtual screening of 
258 chemicals anyhow identified new agonists of four human ORs26. Although efficient, this approach requires 
prior knowledge on the response spectrum of a given OR and its application has thus been restricted to model 
species with cumulative odorant-receptor functional data.

We have recently deorphanized a large array of ORs in the noctuid moth Spodoptera littoralis through heter-
ologous expression in Drosophila OSNs18. This offers an unprecedented opportunity to test such a computational 
approach in a non-dipteran insect. Spodoptera littoralis is a polyphagous moth29 present in Africa, the Middle 
East and Southern Europe30. At the larval stage, S. littoralis is responsible for extensive damage in a large number 
of crops of economic importance29. Establishing machine learning virtual screening efficiency in such an herbiv-
orous pest species will open new routes for the identification of possible agonists and antagonists to be used in 
biocontrol strategies. In addition, screening structurally related molecules can bring crucial information to deter-
mine structure-function relationships. Here, we focused on S. littoralis OR25 (SlitOR25), an odorant receptor 
that is particularly suitable for this approach. Over a panel of 52 volatile organic compounds, SlitOR25 is strongly 
activated by nine agonists and moderately activated by four18. Also, it is expressed at both larval and adult stages 
and its activation has been correlated with caterpillar attraction31. Based on properties of the previously identified 
SlitOR25 ligands, we carried out an in silico screening of a chemical space of more than three million chemicals, 
leading to the prediction of 90 potential agonists, of which 32 were commercially available. The activity of these 32 
compounds was further functionally tested on SlitOR25 expressed in Drosophila OSNs. We revealed enrichment 
of SlitOR25 agonists, with a hit rate of 28%. With the current lack of any OR structure - apart that of Orco32-, this 
machine-learning protocol based on chemical molecular descriptors thus represents an efficient tool for address-
ing ligand structure-function relationship in addition to identifying novel unexpected ligands for moth ORs, 
extending their odor space outside the presupposed relevant odorants.

Results and Discussion
In silico prediction of SlitOR25 agonists. First, the published SlitOR25 chemical space18 was analyzed 
through calculation of its known ligand chemical descriptors and projection on the Drosophila melanogaster 
Database of Odorant Responses (DoOR v2.0)33, considered as prototypical. Figure 1a simplifies this chemical 
space using a t-distributed stochastic neighbor embedding (t-SNE) algorithm in two dimensions. Agonists were 
split into two distinct clusters, suggesting that a machine learning model (Fig. 1b) should be able to identify rules 
to separate them from non-agonists (see Supplementary Table S1 for a list of the considered molecules). Then, 
the external dataset to be screened was obtained by filtering ~90 million molecules from the PubChem database 
as described in the method section. More than three million molecules corresponding to organic potentially 
volatile molecules were extracted and were evaluated by the optimized Support Vector Machine (SVM). After an 
additional filter associated with the applicability domain obtained by a similarity search with the known agonists, 
90 molecules were predicted as agonists (Fig. 1c and Supplementary Table S2). The performance of the SVM is 
resumed in Table 1 and Supplementary Table S3.

Effect of predicted agonists on SlitOR25 activity. Among the predicted novel agonists of SlitOR25, 
32 molecules were commercially available at high purity (Table 2). These molecules were mainly fluorinated 
derivatives of known ligands (acetophenone, benzyl alcohol, benzaldehyde). To verify whether these were indeed 
agonists of SlitOR25, we performed single-sensillum recordings on D. melanogaster flies expressing SlitOR25 in 
ab3A OSNs instead of the endogenous receptor OR22a, a heterologous expression system known as the “empty 
neuron”34. A first screen with a high concentration of the 32 candidate agonists (10−2 dilution) revealed that nine 
of them elicited a significant response (p < 0.05, Fig. 2), representing a 28% success rate. For comparison, 30% of 
138 in silico predicted odorants activated the mosquito CO2 receptor in a first round24. Machine learning models 
based on ligand topology predicted 138 antagonists for mosquito Orco, out of which 45 were active (32%)28. In 
this last study, it has to be noticed that 58 active antagonists were used to feed the machine learning, a number 
that is much higher than the 13 ligands we used. In Drosophila, another study revealed that the success rate of 
an optimized QSAR greatly depends on the receptor (varying from 27% to 71%)25 and that lowest rates were 
obtained for ORs tuned to aromatics (around 30%). Here, we add new evidences that machine learning is of great 
help to discover novel ligands for Lepidoptera ORs.

Looking in detail at the new ligands identified for SlitOR25, none presented a reverse agonist activity (reduc-
tion of spontaneous activity), whereas this has been observed for 13% of predicted ligands for D. melanogaster 
ORs when tested on OSNs25. This is likely attributed to the nature of the screened receptor, where reverse ago-
nists would be part of a far-removed chemical space compared to agonists. However, with the current lack of 
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any structure of an insect OR (apart that of Orco)32, providing a mechanistic view on the way agonists work is 
extremely difficult.

Dose-response analyses. To compare the responses evoked on SlitOR25 by the nine newly identified ago-
nists to those evoked by the previously known natural ligands, we conducted dose-response SSR experiments, 
using dilutions ranging from 10−7 to 10−2, and effective doses 50 (ED50s) were calculated. Statistical analyses 
for the responses of all molecules tested in dose-response are detailed in Table 3. For predicted molecules struc-
turally related to the ligand acetophenone (Fig. 3a), statistically significant responses (p < 0.05) were observed 
for all tested molecules from 10−6 dilution. For the newly predicted ligands structurally related to benzaldehyde 
(Fig. 3b), detection thresholds varied from 10−7 (2,6-difluorobenzaldehyde) to 10−4 (2-fluorobenzaldehyde) dilu-
tion, whereas that of benzaldehyde was 10−6. The predicted agonist 2-fluorobenzyl alcohol exhibited a higher acti-
vation threshold than the structurally related-known ligand benzyl alcohol (Fig. 3c). Our results demonstrated 
that machine learning was very efficient in identifying new strong ligands for SlitOR25.

Independent of the pharmacophore approach and by visually inspecting the structures, the presence of a Fluor 
atom at the ortho position in the ring (position 2) maintains the agonist behaviour for the three chemical families 
(aldehydes, ketones, alcohol). Multiple fluorinations had either a weak beneficial effect on benzaldehyde deriva-
tives or decreased or abolished the response in other series (Supplementary Fig. S1).

The predicted molecules we functionally tested present strongly intertwined chemical spaces. The functional 
assays we conducted revealed that some were strong agonists and other were non-agonists (Supplementary 
Fig. S1), allowing us to tentatively recapitulate the features required for being an agonist through a pharma-
cophore approach (Supplementary Fig. S2). However, the model was not able to discriminate agonist from 
non-agonists based on the position of the Fluor atom on the aromatic cycle.

Figure 1. Analysis of insect odorant molecular space and protocol used for Spodoptera littoralis OR25 
(SlitOR25) virtual screening. (a) Visualization of SlitOR25 and Drosophila melanogaster olfactory chemical 
spaces based on a t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction method. The 
agonists (ago) and non-agonists (non-ago) of SlitOR25 are shown in red and blue, respectively, and agonists of 
D. melanogaster are shown in gray. Chemicals of the training set are shown in squares while those of the test 
set are shown as triangles (b) Workflow of the Support Vector Machine (SVM) model based on an 80%/20% 
split of the initial database. Forty-two molecules constituting the training set were used to find optimized 
SVM parameters while 10 molecules were kept for a blind evaluation by the optimized SVM (Supplementary 
Table S1). C-SVC: C-Support Vector Classification. (c) Virtual screening of more than three million molecules 
extracted from the PubChem database resulted in 90 agonist candidates.

Dataset %CC Precision Recall MCC

Training 0.90 ± 0.03 0.77 ± 0.05 0.84 ± 0.08 0.77 ± 0.07

Test 0.92 ± 0.06 0.88 ± 0.16 0.91 ± 0.12 0.83 ± 0.12

Table 1. Five-fold random split Support Vector Machine performance metrics. %CC: percentage of instances 
correctly classified, MCC: Matthews Correlation Coefficient.
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Alternatively, a statistical analysis of the descriptors able to discriminate between agonists and non-agonists 
revealed 105 descriptors out of the 394 processed initially. These descriptors can either be constitutional, topo-
logic, or electronic. They are challenging to interpret but could serve as a basis for a further screening protocol.

conclusion
Machine learning widens the chemical space of a moth odorant receptor. In this study, we have 
used machine learning to predict novel agonists for SlitOR25, a broadly tuned receptor in the Lepidoptera S. 
littoralis. A Support Vector Machine was fed with 52 ligands for which the activity was already reported. After 
optimization, a database of more than 90 million chemicals was filtered and screened. Out of the three million 
of potentially useful molecules, 90 were predicted as agonists, of which 32 were commercially available. In vivo 
functional assays and dose-response analyses on these latter assessed nine novel molecules as moderate or strong 
agonists for the receptor.

Compounds CAS Provider Purity

1-Naphthaldehyde 66-77-3 Alfa Aesar 97%

2′-Fluoroacetophenone 445-27-2 Alfa Aesar 97%

Phenylglyoxal monohydrate 1074-12-0 Acros organics 97%

Terephthalaldehyde 623-27-8 Alfa Aesar 98%

Isophthalaldehyde 626-19-7 Alfa Aesar 98%

1,3-benzenedimethanol 626-18-6 Alfa Aesar 98%

2-Fluorobenzaldehyde 446-52-6 Alfa Aesar 97%

2-Fluorobenzyl alcohol 446-51-5 Alfa Aesar 98%

4-Fluorobenzaldehyde 459-57-4 Alfa Aesar 98%

4-Fluorobenzyl alcohol 459-56-3 Alfa Aesar 97%

3,4-Difluorobenzaldehyde 34036-07-2 Alfa Aesar 98%

3,4-Difluorobenzyl alcohol 85118-05-4 Alfa Aesar 99%

2,3,4-Trifluorobenzyl alcohol 144284-24-2 Alfa Aesar 97%

Salicylic acid 69-72-7 VWR chemicals 98%

3-Fluorobenzyl alcohol 456-47-3 Alfa Aesar 98%

3- Fluorobenzaldehyde 456-48-4 Alfa Aesar 97%

2,5-Difluorobenzaldehyde 2646-90-4 Alfa Aesar 98%

2,6-Difluorobenzaldehyde 437-81-0 Alfa Aesar 97%

3,5-Difluorobenzyl alcohol 79538-20- 8 Alfa Aesar 97%

3,5-Difluorobenzaldehyde 32085-88-4 Alfa Aesar 97%

2,4-Difluorobenzyl alcohol 56456-47-4 Alfa Aesar 98%

2,4-Difluorobenzaldehyde 1550-35-2 Alfa Aesar 98%

2,3-Difluorobenzaldehyde 2646-91-5 Alfa Aesar 98%

3,4,5-Trifluorobenzyl alcohol 220227-37-2 Alfa Aesar 97%

2,4,5-Trifluorobenzyl alcohol 144284-25-3 Alfa Aesar 98%

1,3-Indanedione 606-23-5 Alfa Aesar 97%

p-tolualdehyde 104-87-0 Alfa Aesar 98%

4′-Fluoroacetophenone 403-42-9 Alfa Aesar 99%

2′,4′-Difluoroacetophenone 364-83-0 Alfa Aesar 98%

2-Methoxybenzoic acid 579-75-9 Alfa Aesar 98%

2,3-Difluorobenzyl alcohol 75853-18- 8 Alfa Aesar 97%

2,5-Difluorobenzyl alcohol 75853-20- 2 Alfa Aesar 98%

Benzaldehyde 100-52-7 Sigma-Aldrich 99,5%

Z-3-hexenol 928-96-1 Sigma-Aldrich 98%

Methyl salicylate 119-36-8 Sigma-Aldrich 99%

2-phenyl acetaldehyde 122-78-1 Sigma-Aldrich 98%

Benzyl methyl ether 538-86-3 Sigma-Aldrich 98%

Methyl benzoate 93-58-3 Acros organics 97%

Benzyl alcohol 100-51-6 Sigma-Aldrich 99%

Acetophenone 98-86-2 Acros organics 99%

E-2-hexenol 928-95-0 Sigma-Aldrich 96%

E-2-hexenal 6728-26-3 Sigma-Aldrich 98%

1-hexanol 111-27-3 Sigma-Aldrich 98%

1-heptanol 111-70-6 Sigma-Aldrich 99%

Table 2. Predicted agonists (this study) and known ligands18 (in bold) tested on SlitOR25.
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Modeling has already been shown to provide accurate information and facilitate the selection of active mol-
ecules on odorant receptors. In insects, it has been applied only in two Diptera models, the fruit fly and the 
mosquito24,25,28. In this study, we reveal that a conventional machine learning approach is efficient for the iden-
tification of novel agonists for a moth receptor, whose amino acid sequence is unrelated to that of Diptera ORs.

It has to be noticed that none of the novel agonists discovered here has been previously described in the liter-
ature to be active on moth ORs and most are not described as plant emitted volatiles. Although they may not be 
encountered by insects in the wild, we have anyhow extended the chemical space of S. littoralis and the cumulated 
results open up ligand structure-function relationship analyses. More importantly, closed-loop machine learning 
is now possible, where the new highly potent agonists discovered here could be used to train new models, further 
improving predictions in alternative and far removed chemical spaces.

Figure 2. Response of Drosophila ab3A OSNs expressing SlitOR25 to 32 candidate ligands predicted via ligand-
based QSAR approach. Responses are presented ± s.e.m. Grey bars: controls (ethanol solvent, blank). Red bars: 
predicted compounds tested in SSR at high doses (10−2, ethanol dilution). Purple bars: known SlitOR25 ligands 
used as positive controls18 (10−2, ethanol dilution). Asterisks indicate statistically significant differences between 
responses to the odorant and to the solvent (Kruskal–Wallis test followed by a Dunnett multiple comparison 
test, *p < 0.05, ***p < 0.001, n = 10).

Tested molecules

Dilutions

10−7 10−6 10−5 10−4 10−3 10−2

Acetophenone NS *** *** *** *** ***

Benzyl alcohol NS NS NS *** *** ***

Benzaldehyde NS *** *** *** *** ***

2′-Fluoroacetophenone NS *** *** *** *** ***

2-Fluorobenzaldehyde NS NS NS *** *** ***

2-Fluorobenzyl alcohol NS NS *** *** *** ***

3-Fluorobenzaldehyde NS * *** *** *** ***

2,6-Difluorobenzaldehyde *** *** *** *** *** ***

p-Tolualdehyde NS NS *** *** *** ***

4′-Fluoroacetophenone NS *** *** *** *** ***

2′,4′-Difluoroacetophenone *** *** *** *** *** ***

Table 3. Statistics for the responses of SlitOR25 to known (acetophenone, benzyl alcohol and benzaldehyde) 
and new ligands at different doses. Solvent: ethanol. Asterisks indicate statistically significant differences 
between responses to the odorant and to solvent (Kruskal–Wallis test followed by a Dunnett multiple 
comparison test, *p < 0.05, ***p < 0.001, n = 5).
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Methods
Reagents. Reagents were purchased from various vendors (Table 2) at the highest available purity (ranging 
from 96 to 99% depending on the molecules) and were dissolved in ethanol (96% purity, Carlo Erba reagents).

Quantitative structure activity relationship. Softwares. Knime v3.2.1 was used to build the work-
flow, chemical descriptors were computed with Dragon v6.0.40 and the LibSVM v2.89 was used for the machine 
learning protocol35.

Figure 3. Dose-response activities (measured via SSR), structures and ED50 values of newly identified 
and three previously identified ligands on SlitOR25 expressed in Drosophila ab3A OSNs. SSR responses are 
presented ± s.e.m. Only molecules with a significant activity in the screening tests (p < 0.05, 10−2 dilution, 
Fig. 2) were tested in dose-response using dilutions from 10−7 to 10−2. (a) Molecules structurally related to 
the known ligand acetophenone: 2′-fluoroacetophenone, 4′-fluoroacetophenone, 2′,4′-difluoroacetophenone. 
(b) Molecules related to the ligand benzaldehyde: 2-fluorobenzaldehyde, 3-fluorobenzaldehyde, 
2,6-difluorobenzaldehyde, p-tolualdehyde. (c) Molecule related to the ligand benzyl alcohol: 2-fluorobenzyl 
alcohol.

https://doi.org/10.1038/s41598-020-58564-9
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Training and test sets. The initial database of 52 volatiles (Supplementary Table S1) was obtained from18. 
The previously identified strong agonists of SlitOR25 were benzenoids (acetophenone, benzyl alcohol, benza-
ldehyde, phenyl acetaldehyde, 1-indanone) and short aliphatic alcohols and aldehydes (1-hexanol, 1-heptanol, 
(Z)3-hexenol, (E)2-hexenal)18, which are compounds emitted mainly by flowers and leaves36. The receptor also 
responds to four other molecules (methyl salicylate, methyl benzoate, benzyl methyl ether, (E)2-hexenol), with 
weaker but still significant responses. The SlitOR25 database thus contains 13 agonists and 39 non-agonists. It 
was randomly split into a training set of 42 molecules and a test set of 10 molecules. Molecules of the training set 
were considered for the optimization of the model. Those of the test set were not used to build the model but to 
assess its performance.

External test set. 3 306 388 molecules out of 90 million were extracted from the Pubchem database37 according 
to the following physico-chemical properties obtained directly on the website: each molecule has to contain a 
combination of C, H, O, N, F, S, or Cl elements with less than 20 heavy atoms, a molecular weight lower than 
200 g.mol−1, and a LogP in the range [0, 5].

Chemical space analysis. The Database of Odorant Response (DoOR v2.0)33 was used to analyze the S. littoralis 
chemical space that has been used to train the machine learning model. Excluding salts from the analysis, DoOR 
contains 680 odorants that have been experimentally tested on D. melanogaster. The t-SNE dimensionality reduc-
tion method was used to evaluate how our database of 52 ligands span a typical insect chemical space.

Molecular descriptors. For each dataset of the QSAR model (training, test and external sets) 4885 descriptors 
were computed using the Dragon software (version 6.0.40) based on 3D sdf files obtained directly from Pubchem. 
Constant or near-constant (variance lower than 0.005) descriptors were excluded from the database as well as 
descriptors with at least one missing value. Each descriptor of the final matrix was normalized using a min-max 
protocol (range [0,1]) before the split between training and test sets. Note that a normalization before or after 
the split did not affect the nature of the predicted agonists. Redundant descriptors were removed (absolute pair 
correlation greater than or equal to 0.95). The final SVM matrix contained 394 molecular descriptors. It was used 
for the t-SNE visualization of the database containing both the S. littoralis and D. melanogaster chemical spaces 
(see supplementary Fig. S3 for details on t-SNE). The descriptors were computed on a machine with an intel Xeon 
with 32 GB of memory.

Setting up the QSAR model. Various numerical models, such as Random Forest or Perceptron (data not shown), 
were tested prior optimizing the chosen supervised machine learning method, the Support Vector Machine 
(SVM). A brute force optimization was applied to assess the exhaustive parameter value combination. The C-SVC 
(C-Support Vector Classification) model with a linear kernel was finally used.

The C-SVC parameters were optimized in a two-step process. First a 5-fold-random split was performed with 
a cost ranging from 1 to 10 with a step of 1. Epsilon varied between 0.0001 and 0.1 with a step of 0.01. The model’s 
accuracy remained identical for values in this range. Second, a more precise 5-fold-random split sampling was 
performed, with a cost between 0.5 and 1.5 using a step of 0.1, and epsilon between 0.001 and 0.01 with a step of 
0.001. Again, the accuracy was identical to that obtained with default settings (accuracy 0.9 ± 0.09).

The optimized SVM parameters were accordingly set as follows: cost = 1.0, epsilon 0.001. The leave-one-out 
cross validation method was used. Each of the 13 agonists was given a score of 1 and the non-agonists were given 
a score of 0.

Applicability domain. A Tanimoto score that measures the similarity between compounds and varies between 
0 and 1 (whereby a value closer to 1 indicates greater similarity) was calculated from Pubchem molecular fin-
gerprints (881 Pubchem molecular descriptors obtained from the CDK module of Knime). The use of Pubchem 
fingerprints has already been shown to correctly capture biological activities38. Putative new odorants which had 
a Tanimoto index higher than 0.92 with respect to the Training set were considered belonging to the applicability 
domain. In our case, this corresponds to 90 molecules.

Single-sensillum recordings of Drosophila olfactory sensory neurons. Flies were reared on stand-
ard cornmeal-yeast-agar medium (25 °C, 12 h light: 12 h dark cycle). SlitOR25-expressing flies were obtained 
by crossing the line w;Δhalo/CyO;UAS-SlitOr2518 with the line w; Δhalo/CyO;Or22a-Gal434. Single-sensillum 
recordings were conducted as previously described18. Briefly, a 2- to 8-day-old fly was placed on a microscope 
glass slide under a constant 1.5 L.min−1 flux of charcoal-filtered and humidified air delivered through a glass tube 
of a 7 mm diameter, and observed with a light microscope (BX51WI, Olympus, Tokyo, Japan) equipped with a 
100X magnification objective. Action potentials from ab3A OSNs were recorded using electrolytically sharpened 
tungsten electrodes (TW5-6, Science Products, Hofheim, Germany).

Stimulus cartridges were built by placing a 1 cm2 filter paper in a Pasteur pipette and loading 10 µl of the 
odorant solution onto the paper (10−2 dilution in ethanol), or 10 µL of ethanol as control. Evaporation time before 
using the cartridge was 10 minutes. Odorant stimulations were performed by inserting the tip of the pipette into 
a hole in the glass tube and generating a 500 ms air pulse (0.6 L.min−1). The responses of ab3A OSNs were cal-
culated as in39 by subtracting the spontaneous firing rate (in spikes.s−1) from the firing rate during the odorant 
stimulation.

The absence of the endogenous receptor OR22a in ab3A OSNs was verified using ethyl hexanoate (a strong 
ligand of OR22a) as a stimulus. Then, the SlitOR25 response spectrum was established using the panel of 32 
predicted agonists (Table 2) and four already known ligands as controls. The stimulus cartridges were used at 
most twice per fly (and maximum eight times in total). The entire panel of molecules was tested ten times on ten 
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different flies expressing SlitOR25. Odorants were considered as active if the response was statistically different 
from the response elicited by the solvent alone (Kruskal–Wallis test, followed by a Dunnett multiple comparison 
test, p < 0.05).

For molecules that yielded a statistically significant response, dose-response experiments were conducted 
with odorant dilutions ranging from 10−2 down to 10−7. Each dilution was tested in five different flies expressing 
SlitOR25. ED50 were calculated (except for benzyl alcohol and 2-fluorobenzyl alcohol) using GraphPad PRISM 
V.8.1.2 software.

SlitOR25 pharmacophore hypothesis. For the generation of the SlitOR25 pharmacophore, we consid-
ered a dataset of eleven odorants that are active on SlitOR25, as well as fourteen inactive compounds. All these 
molecules are derivatives of acetophenone described in this work. The pharmacophore was generated with up to 
four features, chosen between H-bond donors/acceptors, hydrophobic sites, and aromatic rings. Even considering 
several conformations for each molecule, the pharmacophore hypotheses generated by the software CATALYST 
(version 4.9.1, Accelrys Inc., San Diego, CA, August 2004) were identical, comprised of an aromatic ring and a 
H-bond acceptor. The addition of exclusion volumes did not improve the model and was thus discarded.
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