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Abstract: Spatialinterference of quantum mechanical particles exhibits a
fundamental feature of quantum mechanics. A two-mode entangled state of
N particles known as N00N state can give rise to non-classical interference.
We report the first experimental observation of a three-photon N00N state
exhibiting Young’s double-slit type spatial quantum interference. Compared
to a single-photon state, the three-photon entangled state generates interfer-
ence fringes that are three times denser. Moreover, its interference visibility
of 0.49±0.09 is well above the limit of 0.1 for spatial super-resolution of
classical origin.
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1. Introduction

Double-slitinterference exhibited by single-photons or single-electrons is one of the most fun-
damental effects in quantum physics and is intimately tied to many foundational concepts in
quantum physics such as complementarity, the uncertainty principle, and Born’s rule [1–3]. A
typical photon number-path entangled state, the N00N state|ψ〉 = (|N〉a|0〉b + |0〉a|N〉b)/

√
2,

whereN is the number of quanta and the subscript refers to the spatial mode, naturally arises
in generalizing the double-slit experiment to theN-quantum case and was first discussed in
the context of photonic de Broglie waves [4]. Such states are of fundamental importance in
quantum physics as they represent macroscopic quantum superposition or ‘Schrödinger cat’
states [5]. Moreover, recent research has shown that the N00N state is at the heart of many
quantum-enhanced measurement schemes [6]. For instance, quantum lithography which en-
ables drawing of arbitrary high-contrast patterns with resolution beyond the classical Rayleigh
limit requires the N00N state [7,8]. Also, various quantum metrology schemes aimed at achiev-
ing the Heisenberg-limited sensitivity are based on the use of the N00N state [9,10].

Many ideas have been proposed on how to prepare the photonic N00N state [6, 11–14].
Experimental demonstrations of the N00N state, however, have been rather limited. To date,
up to five-photon N00N states have been reported in literature [15–24]. However, for four- and
five-photon N00N states, experimental demonstrations so far are limited to the measurement-
based projection of the N00N state [21–24].

The Young-type double-slit experiment demonstrating spatial quantum interference of the
N00N state as originally proposed for quantum lithography, on the other hand, has only been
reported for theN = 2 N00N state using spontaneous parametric down-conversion (SPDC)
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[16–18]. Despite scientific importance, theN = 2 case based on SPDC does not offer any
resolution breakthrough because it simply retrieves the resolution already obtainable with the
pump laser. For truly demonstrating quantum-enhancement of spatial resolution beyond the
classical limit, it is essential to show spatial interference fringes for the N00N state withN ≥ 3.
However, all known N00N-related experiments forN > 2 reported to date have dealt exclusively
with polarization interferometers with a detector fixed in space, thus only exhibiting temporal
interference fringes.

In this paper, we report the first experimental demonstration of the Young’s double-slit type
spatial quantum interference of the three-photon N00N state, exhibiting three times denser
spatial interference fringes than that of the single-photon state. This is the first time, to the
best of our knowledge, that the spatial quantum interference of the N00N state is observed for
more than two photons.

2. Experiment

The schematic of the experimental setup is shown in Fig. 1. First, let us describe the three-
photon N00N state generator which is based on Ref. [20]. Pairs of horizontally polarized pho-
tons centered at 780 nm are generated at the 2 mm thick type-I BBO crystal via the SPDC
process pumped by a femtosecond pump pulse centered at 390 nm, see Fig. 1(a). The pump
pulse has a duration of 200 fs and a repetition rate of 76 MHz. The photons of each SPDC
pair are then brought back together in a single spatial mode with the help of polarizing beam
splitters (PBSs), a quarter-wave plate (QWP1) oriented at 45◦, and a movable mirror (M). If the
mirror M is set so that the delay time between pairs of SPDC photons is zero, the state becomes

|ψ〉in =

[

γa†
Ha†

V +
γ2

2
a†2

H a†2
V +

γ3

6
a†3

H a†3
V + · · ·

]

|0〉 , (1)

wherea†
H (a†

V ) denotes the creation operators for a horizontally (vertically) polarized photon.
Each term represents single-, double-, and triple-pair emission of SPDC. Our N00N state gen-
eration and detection rely on the second term, and the third term contributes to the noise of
experimental data, as will be shown later.

The half-wave plate (HWP1) is oriented at 22.5◦ and the partially-polarizing beam splitter
(PPBS) has an amplitude reflection coefficient of

√

2/3 for vertical polarization. The double
pairsof |ψ〉in is, then, transformed by passing through the PPBS to become

|ψ〉 =

√
2γ2

6

[

a†
V1⊗

(

1
3

a†3
V2−a†2

H2a†
V2

)]

|0〉+
[

1
8

a†4
H2−

1
12

a†2
H2a†2

V2 +
1
72

a†4
V2

]

|0〉+ |etc〉, (2)

the subscripts 1 (2) refers to the reflected (transmitted) mode of the PPBS [20]. Note that, in
Eq. (2), the four-photon amplitudes that do not result in at least three photons in mode 2 are
expressed as|etc〉 and they do not contribute to theN = 3 N00N state interference as they
cannot be registered at the three-photon detector.

The first term in Eq. (2) is now relevant to our purpose: if a single-photon detection occurs at
the single-photon counter SPC1, the three-photon state in mode 2 after QWP2 oriented at 45◦

is given as
|ψ〉p = (|3〉H |0〉V + i|0〉H |3〉V )/

√
2. (3)

In other words, the three-photon polarization N00N state|ψ〉p is heralded in mode 2 (at the
entrance of the single mode fiber SMF) whenever there is a single-photon detection at SPC1
[20]. A three-photon absorber located at mode 2, if followed by a shutter triggered by SPC1,
would be able to record genuine three-photon quantum interference fringes due to the N00N
state.
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(a) N00N state generator
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BP

BP

HWP

HWP
HWP

Quartz

SMF

SPC 2~4

Pol.
lens

Scanning

Fiber Tip

Mirror (M)

IF

Type-I

BBO

Pump

pulse

a

b

Input

H-pol.V-pol.

d
L

(c) Front view

QWP1

QWP2HWP1

HWP2

Fig. 1. Schematic of the experimental setup. (a) The polarization N00N state|ψ〉p is pre-
pared in a single spatial mode. IF is an interference filter with full-width at half-maximum
bandwidth of 5 nm at SPC1 (10 nm at SMF) centered at 780 nm. (b) Mode converter which
losslessly transforms|ψ〉p to |ψ〉s and Young-type double-slit interferometer. (c) Front
view of the mode converter.

Finally, the polarization N00N state|ψ〉p is transformed to the spatial two-mode three-photon
N00N state|ψ〉s,

|ψ〉s = (|3〉a|0〉b + |0〉a|3〉b)/
√

2, (4)

by using the mode converter shown in Fig. 1(b) and 1(c). The mode converter, which consists of
half-wave plates (HWP), birefringent prisms (BP), quartz plates, and a polarizer (Pol), is based
on the following operation principle. The first and second BPs are aligned so that their optic
axes are oriented respectively at+θ and−θ with respect to the vertical polarization. The first
two HWPs are used for rotating the horizontal-vertical polarization basis of the photons so that
they overlap with the rotated optic axes of BPs. The third HWP and the quartz plates are used
to match the polarization states of photons in spatial modesa andb. An additional horizontal
polarizer (Pol) is used to clean up the polarization state so that all three photons in Eq. (4) are
guaranteed to have the same polarization.

The spacingd = 2Lsinθ between the modesa andb is determined by the angleθ and the
beam walk-off (i.e., e- and o-ray separation)L of a single BP (see Fig. 1(c)). In the experiment,
considering the numerical aperture (0.12) and mode field diameter (5.6µm) of SMF, the 1/e2

beam diameter of each spatial mode is estimated to be 1.4 mm. The beam spacingd was chosen
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asd = 2.2 mm, which leads to a mode overlap of 0.8 %. Our mode converter design provides
excellent interferometric phase stability between the spatial modesa andb.

To observe the double-slit interference fringes of the three-photon N00N state|ψ〉s, a single-
mode fiber (identical to SMF) tip was scanned at the focus of a lens (15 mm focal length) by
using a piezo-controlled translation stage, see Fig. 1(b). The group delay between the spatial
modesa andb was compensated by a set of mirrors (not shown in the figure) in front of the
focusing lens. The other end of the fiber tip was connected to three single-photon detectors
(SPC2∼4) via a set of 3 dB fiber beamsplitters. The three-fold coincidence SPC2–SPC3–SPC4
triggered by SPC1 constitutes the proper measurement for the heralded three-photon N00N
states,|ψ〉p and|ψ〉s.

3. Temporal interference of three-photon N00N state

The quality of the polarization N00N state|ψ〉p is directly responsible for the quality of the
spatial N00N state|ψ〉s, which in turn affects the double-slit interference visibility with|ψ〉s.
Hence, it is of utmost importance to ensure that the three-photon polarization N00N state is
prepared with high purity. Thus, we have first measured the temporal interference fringes due
to |ψ〉p as in other N00N state experiments [10,15,19–24].

The first step in preparing the three-photon N00N state is to ensure that photons arrive at
the second PBS simultaneously. This can be done by observing the Hong-Ou-Mandel (HOM)
interference between detectors SPC1 and SPC2 while scanning the mirror M [20, 25]. In the
experiment, we observed the HOM dip with 95.4% visibility at 70 mW pump power.

The heralded three-photon state just before QWP2 is the N00N state composed of the left-
and right-circularly polarized three-photon states. Thus, to observe temporal quantum interfer-
ence due to|ψ〉p, we replace QWP2 with a HWP2 and a horizontal polarizer (Pol.) as shown
inset of Fig. 1(a) and connect the output end of SMF to the fiber-coupled three-photon detector
(SPC2–SPC3–SPC4) depicted in Fig. 1(b). It is then possible to introduce a phase difference
χ between the left-circular and right-circular polarization modes of|ψ〉p by rotating HWP2 by
χ/4 and the temporal N00N state interference can be observed in four-fold coincidences be-
tween the trigger detector and the three-photon detector. The experimental data for the temporal
interference measurements are shown in Fig. 2. The error bars denote statistical uncertainty cal-
culated as square root of the measured counts. We first measured, as a reference, the heralded
single-photon interference shown in Fig. 2(a). In Fig. 2(b), the response of the three-photon de-
tector, three-fold coincidences among SPC2–SPC3–SPC4, is shown. In this case, the first two
terms of Eq. (2) affect the outcome and the three-fold coincidence probabilityP is calculated
to be

P ∝ η3γ4 [4sin2 (3χ/2)+8(sin(χ)+sin(2χ))2 +(2−η)(1+2cos(χ))4], (5)

where it is assumed that the three-photon detector consists of three single-photon detectors
connected with 3 dB fiber beamsplitters as shown in Fig. 1(b) andη is the detection efficiency
at each detector. The first term is due to the heralded three-photon N00N state term, i.e., the first
term in Eq. (2), and the second/third terms are from the second term in Eq. (2). The amplitudes
expressed as|etc〉 in Eq. (2) do not contribute to the outcome of the three-photon detector. The
experimental data in Fig. 2(b) is in good agreement with the above theoretical calculation.

In Fig. 2(c), we show the heralded three-photon N00N state interference observed in four-
fold coincidences. The data, however, is affected by the coincidences due to non-N00N state
terms, i.e., 2nd and 3rd terms in Eq. (5) when higher order emission of SPDC shown in Eq. (1) is
present. The major noise appears at the phase difference of multiples of 360 degree as shown in
Fig. 2(c). At these points, double-pair emission cannot result in the four-fold coincidence, and
the four-fold coincidence probability due to triple-pair generation of SPDC equals the single

#154504 - $15.00 USD Received 16 Sep 2011; revised 21 Oct 2011; accepted 14 Nov 2011; published 22 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  24961



(a) SPC 1&2 (b) SPC 2&3&4

(c) SPC 1&2&3&4

104106

(d) SPC 1&2&3&4

(e) SPC 1&2&3&4 (f) SPC 1&2&3&4

@ 70 mW

@ 70 mW

@ 70 mW

@ 70 mW

@ 300 mW @ 300 mW

V=0.86

V=0.74
160

120

80

40

0

4
-f

o
ld

 c
o
in

ci
d
en

ce
s

7206004803602401200

Phase difference (deg.)

4.0

3.0

2.0

1.0

0.0
2
-f

o
ld

 c
o
in

ci
d
en

ce
s 

7206004803602401200

120

90

60

30

0

4
-f

o
ld

 c
o
in

ci
d
en

ce
s

7206004803602401200

2.0

1.5

1.0

0.5

0.0

3
-f

o
ld

 c
o
in

ci
d
en

ce
s

7206004803602401200

120

90

60

30

0

4
-f

o
ld

 c
o
in

ci
d
en

ce
s

7206004803602401200

160

120

80

40

0

4
-f

o
ld

 c
o
in

ci
d
en

ce
s

7206004803602401200

Phase difference (deg.)

Fig. 2. Temporal fringes observed in (a) 2-fold coincidences between SPC1–SPC2, (b)
3-fold coincidences among SPC2–SPC3–SPC4, and (c)∼ (f) 4-fold coincidences. The
heralded single-photon state interference is shown in (a). The heralded three-photon N00N
state interference shown in (c) and (e) are degraded by noise counts due to the triple-pairs
from SPDC. The noise-subtracted three-photon N00N state interference, (d) and (f), show
the three-times faster modulation frequency compared to the single-photon interference
shown in (a). The data acquisition times (for each data point) are 1200 s for (a)∼ (d) and
100 s for (e) and (f). Solid lines are fitting curves based on Eq. (5).

photon detection probability at SPC1 multiplied by the unheralded three-photon coincidence
probability. We calculate this product of the two probabilities over all the data and subtract
from the raw data in Fig. 2(c). When this approximate contribution of the triple-pair emission
is subtracted, the four-fold coincidence shown in Fig. 2(d) exhibits high-visibility (V = 0.86±
0.08) heralded three-photon N00N state interference with three-times greater phase resolution
than the single-photon case shown in Fig. 2(a). Even at a much higher pump power of 300 mW,
similar results are observed, see Fig. 2(e) and Fig. 2(f), albeit with somewhat reduced visibility
(V = 0.74±0.07). Note that the background noise by triple-pairs at 300 mW pump power is
much larger than it of at 70 mW pump power since as we increase the pump power, the SPDC
efficiency amplitudeγ also increases. The observed three-photon N00N state visibilities after
the background noise subtracted, however, are well above the classical limit of 0.1 either in 70
mW or 300 mW of pump power [26,27].

Note that we can minimize these unwanted noise effects by lowering the pump power. In our
experiment, however, we conduct the experiment at high pump power to get higher count rate.
Under our purpose of the experiment, a proof of principle experiment, it is okay since even with
a high pump power, we can get sufficient visibility which is well above the classical limit after
the noise subtraction.
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4. Spatial interference of three-photon N00N state

Having confirmed that the three-photon polarization N00N state,|ψ〉p, is prepared with suffi-
ciently high purity, we now proceed to demonstrate the Young’s double-slit interference with
the N00N state|ψ〉s. For this measurement, QWP2 is now restored at its original location and
the |ψ〉p is transformed to the|ψ〉s state with the mode converter shown in Fig. 1(b). Spatial
interference fringes are measured with the detection scheme also shown in Fig. 1(b) and the
pump power is increased to 400 mW.

The experimental data for the double-slit interference of the three-photon N00N state|ψ〉s

are shown in Fig. 3. As was in the temporal interference data, the error bars are the standard
deviations which correspond to the square roots of the measured counts. We first measured the
spatial profile of the beam at the focus of the lens by blocking modeb. The single-photon and
the three-photon spatial profiles are shown in Fig. 3(a) and Fig. 3(b), respectively. Note that
both the single-photon and the three-photon states are heralded by single-photon detection at
SPC1. Fitting the data with a Gaussian function exp[−(x/w0)

2], we find that the 2w0 widths are
10.8±0.4 µm for the single-photon case and 6.2±0.6 µm for the three-photon case. This is in
good agreement with the theoretical estimation that the three-photon probability distribution is
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Fig. 3. Spatial profile of the heralded (a) single-photon state and (b) three-photon state for
a single beam (no interference). The data accumulation time is 3400 s for each point and
solid lines are Gaussian fits to the data. Interference of the heralded single-photon state
and the heralded three-photon N00N state are shown in (c) and in (d), respectively. The
data were accumulated for 1700 s each point. Solid lines are fitting curves based on the-
oretical calculation. The noise contributions have been subtracted. The|ψ〉s state exhibits
three times faster spatial interference fringes (2.0µm) than that of the single-photon state
(6.0 µm).
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proportional to the cube of the single-photon one.
For the Young-type double-slit interference measurement, both modesa andb are now open

and interference fringes are measured in two-fold and four-fold coincidences at the focus of
the lens as a function of the scanning fiber tip position, see Fig. 3(c) and Fig. 3(d). The fitting
curves are Gaussian envelops multiplied by a raised sine curve. The size of Gaussian envelop is
obtained from the spatial profile without interference shown in Fig. 3(a) and Fig. 3(b). Here the
visibility is calculated from the offset and amplitude of the sinusoidal modulation. In theory,
the fringe patterns are expected to show sinusoidal modulations within the respective spatial
profiles of the single- and three-photon states and the modulation frequency for the three-photon
N00N state should be three times more than that of the single-photon state. The experimental
data, which show fringe spacing of 6.0µm for the single-photon state and 2.0 µm for the three-
photon N00N state, are thus in good agreement with the theory. We point out that, although
the mode field diameter of the scanning fiber tip is larger than the fringe spacing due to the
three-photon N00N state, the fact that the fiber is single-mode at 780 nm allows us to measure
a spatial fringe spacing smaller than the mode field diameter without sacrificing the visibility.
See the Appendix for details.

The asymmetry in both the single- and three-photon interference is due to a non-zero phase
difference of the interfering two beams at the beam center. This phase difference can also be
measured by comparing the magnitude of two sidebands. From the single-photon interference
measurement before and after the three-photon measurement for 13 hours shown in Fig. 3(d),
the phase drift estimated to be 0.01 rad, which confirms the stability of our spatial interferom-
eter.

In general, spatial super-resolution itself may not necessarily be of quantum origin [28].
However, the fringe visibilityV is an important feature that distinguishes between quantum
and classical cases. For three-photon Young’s double-slit interference, the classical limit of the
fringe visibility can be calculated by considering detection of the intensity cubed (i.e., three-
photon detection) rather than detection linear in intensity (i.e., single-photon detection) and has
been shown to be 0.1 [26, 27]. In this work, the double-slit interference with the three-photon
N00N state exhibitsV = 0.49±0.09 which is well above the classical limit of 0.1.

5. Conclusion

These experimental results are the first demonstration of the Young-type double-slit interference
of the three-photon N00N state. Our work demonstrates clearly both spatial super-resolution
and fringe visibility surpassing the classical limit. This is the first time that the spatial quantum
interference of the N00N state is observed for more than two photons, thus paving the way to-
wards new applications in quantum metrology, quantum imaging, and quantum interferometric
lithography.

Appendix : Spatial interference measurement with a single mode fiber

Consider the experimental setup shown in Fig. 4(a) where two beams of light are brought
together by a lens. At the focus of the lens, the two beams overlap and interference takes place.
The spatial interference fringe pattern (intensity profile) has the fringe spacing ofl and the
envelope profile of 2σx, see the inset in Fig. 4(a).

Suppose that interference fringe is measured with a detector connected to a single-mode
fiber (SMF) scanned in the transverse plane. The coupling efficiencyηk of an incident beam to
a resonator or an optical fiber is

ηk ∼ ∑
k

∣

∣

∣

∣

∫

Ein(x,y)E
∗
k (x,y)dxdy
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∣
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∣
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, (6)
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whereEin(x,y) andEk(x,y) refer to the electric field of the incident beam at the input plane and
the wave function of the resonator (or fiber) mode, respectively [29]. The electric fieldEin(x,y)
at the location of the SMF tip shows interference and it can be written as

Ein(x,y) ∼ sin(f x+φ) exp

[

−
(

x
σx

)2
]

exp

[

−
(

y
σy

)2
]

, (7)

where 2σx (2σy) denotes the horizontal (vertical) envelope. Furthermore, it is well known that
SMF guides only one spatial mode that can be approximately described as a Gaussian (known
as LP01 or HE11 mode),

E0(x,y) ∼ exp

[

−
(

x−∆
σ

)2
]

exp

[

−
( y

σ

)2
]

, (8)

where 2σ is the mode field diameter of the SMF and∆ is a position of the scanning SMF.
Inserting Eq. (8) and (7) to (6) yields the spatial interference pattern measured by the SMF.

An notable result is that the spatial interference is measurable even when the spatial fringe
spacingl is smaller than the mode field diameter 2σ . To demonstrate that such a measurement is
indeed possible, we set up the Young’s interferometer with a He-Ne laser as shown in Fig. 4(a).
By varying the beam sized and the beam spacingL, we are able to change the interference
envelope 2σx as well as the fringe spacingl. The mode field diameter of SMF used in our
experiment is 2σ = 5.4µm.

We first test the measurement setup withl = 39.8µm > 2σ = 5.4µm and the result is shown
in Fig. 4(b). The fringe is clearly resolved with the visibility of 0.82. We now varyL such
that the expected fringe spacingl = 1.9µm, smaller than the mode field diameter of SMF. The
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Fig. 4. (a) Setup for measuring fringes of a Young’s interferometer. (b) The fringe spacingl
is larger than the mode field diameter of SMF 2σ ; l > 2σ . (c) The fringe spacingl is smaller
than the mode field diameter of SMF 2σ ; l < 2σ . The inset shows an overall interference
envelope.
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experimental data are shown in Fig. 4(c) and the visibility is better than 0.89. It is clear that,
dueto the overlap integral of Eq. (6), we are able to measure fringe spacing smaller than the
mode field diameter of SMF.

For the three-photon detection setup shown in Fig. 1(b), the coupling efficiency is given as

ηk ∼
∣

∣

∣

∣

∫

ΨinE∗
k (x1,y1)E

∗
k (x2,y2)E

∗
k (x3,y3)dx1dy1dx2dy2dx3dy3

∣

∣

∣

∣

2

, (9)

whereΨin denotes the incident field. Thus, the three-photon envelope will be reduced by the
factor of

√
3 compared to the single-photon envelope. However, the main result of the previous

analysisstill holds and spatial interference is measurable even when the fringe spacings are
smaller than the envelope.
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