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ABSTRACT 

 

Electrochemical magnesium ion intercalation chemistry of MoO3 has been studied in this work. 

Submicron-sized MoO3 has been synthesized from commercial micron-sized MoO3 by a facile ox-

alic acid method, which was confirmed by SEM and XRD. A beaker-type three-electrode meas-

urement cell was designed using activated carbon as the counter electrode, which enabled the test 

of magnesium intercalation into the host material at the working electrode without problem when 

conventional organic electrolytes are used. The electrochemical magnesium intercalation into 

MoO3 has been confirmed by cyclic voltammetry, galvanostatic discharge/charge, powder XRD 

and EDS measurements. Reversible reduction and oxidation peaks were obseved in cyclic 

voltagramms as well as discharge/charge cycles, corresponding to magnesium insertion and 

deinsertion, respectively. The reversibility was also confirmed by XRD measurement which also 

showed that a new phase is formed during the discharge and the discharge/charge processes are 
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a pseudo two-phase reaction. With cycles, a degradation in crystallinity was observed.  

  

Keywords : Submicron-sized MoO3, beaker type three electrode measurement cell, activated 

carbon, pseudo two-phase reaction. 
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1. Introduction 

Researches on Mg-ion rechargeable batteries are still in its early stages. In the very near future, re-

chargeable batteries with high energy density, low cost and high safety will be highly needed. Lithium-

ion batteries have some shortcomings related with safety problems, resource lack, and high cost. Fu-

ture ESS, EV and portable devices requires more electrical energy. Recently researches on post-Li 

ion batteries have been receiving increasing attention to develop power sources based on natural 

abundant materials. We chose the “Magnesium” because, magnesium has green character, natural 

abundance, low equivalent weight, its low price and its safety characteristics. However, Mg batteries 

have not been studied much, because magnesium electrochemistry suffers from several serious limi-

tations contrary to lithium electrochemistry: (ⅰ) difficulty in diffusion of the divalent Mg-ion in solid-

state electrode compared to the monovalent Li-ion, (ⅱ) the growth of an insulating passivation sur-

face film on the Mg-metal anode that makes the electrodes useless electrochemically with the com-

monly used organic electrolytes, and (ⅲ) the narrow electrochemical window of electrolytes for Mg-

ion electrochemical activity [1]. These problems are what magnesium-ion battery researches have to 

overcome. There are several candidates proposed for positive electrode materials such as Chevrel 

phases MxMo6T8 (M=metal, T=S,Se) [2], vanadium oxides [3,4], TiS2 nanotubes [5] and graphite like 
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MoS2 [6]. There are still some research activities in progress aiming to commercialize Mg-ion batter-

ies. Orthorhombic molybdenum trioxide is known to be a typical host material for many monovalent 

and some multivalent cations that are inserted chemically or electrochemically [7]. In particular, MoO3 

is well known for reversible electrochemical insertion/de-insertion of lithium. And, this redox process is 

well understood. The intercalation of lithium in MoO3 is derived from its special structure as shown 

Fig.1. 

 

Figure.1 Crystal structure of orthorhombic MoO3. 

MoO3 has an orthorhombic unit cell with the space group of Pnma, cell parameters a=13.8674Å 

b=3.6976Å. c=3.9644Å.[8] Mo-O octahedra form a double-sheets in the bc-plane. These sheets are 

stacked in a-direction with the van der Waals force between the layers as shown in Fig. 2. So, it al-
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lows the reversible redox reactions, and the cations such as Li+, Na+, and Mg2+ could be intercalated 

into the interlayer space as shown in Fig.3. This work focuses on synthesis, establishment of cell con-

figuration, and characterization of electrochemical insertion properties in non-aqueous electrolytes 

and structural changes during the intercalation of magnesium ions into MoO3 host material. The ulti-

mate aim of this study is to understand the complicated behavior of magnesium electrochemical in-

tercalation into MoO3 structure.  

 

Figure.2  MoO3 layer structure. 

 

 

Figure.3 Scheme of reversible redox reaction of MoO3 
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1.1 Principle of Magnesium battery 

Mg batteries are based on the same principle as Li batteries, where the anode material and 

transport ion are magnesium metal foil and Mg2+ ions instead of Li metal foil and Li+, respectively. 

Electrochemical magnesium deposition/dissolution reactions occur at the anode side, and intercala-

tion reactions occur at the cathode side. For lithium battery case, the interphase between electrode 

and organic electrolytes is formed and it is called as solid electrolyte interphase (SEI) layer. This layer 

is electronically insulating but Li+ ion conducting, and thus lithium can be used as an anode material 

in conventional organic electrolyte system. On the other hand, magnesium also forms a SEI layer in 

organic electrolyte system [9]. However, the layer is an insulator for both electrons and Mg2+ ions. 

That is the reason why the magnesium metal anodes can not been used as a reversible electrode 

material in conventional organic electrolyte systems. Since we cannot use magnesium metal as the 

anode in our experiments, we have designed an appropriate three-electrode measurement cell for the 

electrochemical characterization of magnesium ion intercalation into the host material as shown in 

section 2.3. 
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2. Experiments 

2.1 Synthesis of submicron-sized MoO3 

There are various ways to improve electrode kinetics, such as decreasing particle sizes for the ac-

tive materials, or modifying material morphologies as 1D nanorods, nanowires, and nanobelts. In this 

study, a facile synthesis technique was utilized to decrease the MoO3 particle sizes [10]. Molybdenum 

trioxide (99.5%, Sigma Aldrich), oxalic acid (98%, Sigma Aldrich) were used. Micron-sized MoO3 (4g) 

and oxalic acid (H2C2O4) (15.01g) in a stoichiometric ratio of 1 : 6 were added to 200ml of distilled 

water and stirred at 80°C until they are dissolved completely. The solution was dried completely at 

80°C for 5hrs, and further calcined at 500°C in air for 4hrs.  

 

2.2  Preparation of electrodes and electrolyte, and materials 

 charcterization 

The electrolyte was prepared in glove box as 0.25M Mg(ClO4)2 (ACS regent, Sigma Aldrich) in ace-

tonitrile (99.8%, SAMCHUN CHEMICALS),. Because it was hard to completely remove the water con-

tent from Mg(ClO4)2 salt, the prepared solution of the fresh electrolytes contained quite a big amount 

of water, about 2000ppm. Thus, the water was to be removed from the electrolyte by a further drying 
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treatment using zeolite mesh (200mesh, Wako) and molecular sieve (3A, Yakuri), which are kept in 

the solution for more than a day. Then, the water content of the finally dried electrolytes were ~10ppm. 

The XRD patterns of the materials and electrodes after electrochemical experiments were meas-

ured with a Bragg-Brentano type diffractometer (Miniflex 600, Rigaku) with CuKα radiation and graph-

ite monochromator in a two-theta range between 5 to 70°, a step size of 0.02° and a duration time of 

0.5 s. The materials morphology and elements analysis have been carried out with scanning electron 

microscope (SEM) and energy dispersive x-ray spectroscopy (EDS, S-4800, HITACHI). 

 

2.3 Electrochemical cell configuration and characterization 

. 

Figure.4  Beaker-type cell configuration for electrochemical experiments 

Fig.4 shows the experimental beaker-type cell configuration for testing electrochemical properties of 
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MoO3. The cells were assembled in a glove box with Ag/Ag+ (0.01 M AgNO3 and 0.25 M Mg(ClO4)2 in 

acetonitrile) as the reference electrode, glass fiber as the separator and activated carbon pellet as the 

counter electrode. The reference electrode was calibrated by CV measurement with ferrocene solu-

tion as shown in Fig.5.  

 

Figure.5  Cyclovoltammogram to calibrate reference electrodes (Ag/Ag+ (0.01 M AgNO3 and 0.25 M 

Mg(ClO4)2 in acetonitrile) tested with ferrocene in 0.25 M Mg(ClO4)2 solution . 

All the measurements were tested at room temperature and carried out in a glove box with less than 

1 ppm of water and oxygen-content. A slurry mixture of MoO3 (active material) , carbon black (SuperP, 

Timcal) and PVdF (binder, KF1100) in a weight of 8 : 1 : 1 was well mixed using a THINKY mixer 

(Thinky). The primer (Henkel, Dag EB-012) was used to enhance adhesion between stainless steel 

with active materials. Then, the working electrodes were prepared by coating the mixture on primer 
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coated stainless steel foils of 10m thickness, using a Mini coater (Hohsen), followed by drying at 

80°C and pressing (Wellcos Corporation). The electrodes have a thickness of 35m, a loading densi-

ty of ~0.39mAh/cm2, and porosity of ~68%. The counter electrodes were prepared in a form of pellets 

using a die, which were mixtures of activated carbon (Daejumg Chemicals & Metals) and 

poly(tetrafluoroethylene) (Sigma Aldrich) in a weight of 7 : 3.  
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3. Results and Discussion 

3.1 Materials preparation  

3.1.1 Synthesis of submicron sized MoO3 

 The method used in this work is a low cost and template free method to synthesize submicron-sized 

particles by thermal decomposition. In order to confirm the phases, the diffraction patterns for micron-

sized (pristine) and submicron-sized (synthesized) MoO3 are compared in Fig.6. The reflection peaks 

are broadened for the submicron-sized MoO3, indicating smaller crystallite particle sizes than the raw 

material, which is consistent with the SEM images shown in Fig.7. 

 

Figure.6  XRD patterns commerical MoO3 and after synthesis MoO3  
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Figure.7  SEM images of MoO3 particles : (a) Micron-sized particles of commercial (pristine) 

material; (b) Submicron-sized particles by thermal decompostion at 500°C for 4hr 

The SEM images of MoO3 particles show clearly the difference of the particles sizes. The particle 

sizes of the commercial (pristine) MoO3 are micron-sized with 20~40 µm (Fig.7a). For the synthesized 

MoO3 by thermal decompostion at 500°C for 4hr (Fig.7b), the particles become submicron-sized with 

200~500nm, which are much smaller (about 1/100) than the starting material of MoO3. 
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3.2 Galvanostatic measurements  

In our test cells, the activated carbon pellet used for the counter electrode could be one of the most 

important key roles for making the electrochemical intercalation test enabled. The designed electro-

chemical test cell is a hybrid cell of capacitor and battery. Ion adsorption and desorption reactions 

occur at the activated carbon electrode, which is the principle for a capacitor. On the other hand, an 

intercalation reaction occurs at the MoO3 working electrode, which is the principle for a typical metal 

ion battery. In the electrolyte, magnesium perchlorate is dissociated into Mg2+ and (ClO4)- ions. Thus, 

when the discharge (reduction) starts, Mg2+ ions are inserted into the layer of the MoO3 structure. At 

the same time, (ClO4)- ions are adsorbed on the activated carbon surface. In the case of charge, the 

reverse reaction occurs. The activated carbon, just enabling adsorption and desorption reactions, 

does not form any passivation barrier. There is no passivation problem that is observed on Mg metal 

surface with a conventional organic electrolyte. Thus, such a cell configuration enables us to test the 

electrochemical Mg2+ insertion/de-insertion reactions into the positive electrode materials. Otherwise, 

even the test itself was not possible. Fig.8 shows the scheme of the mechanism of the experimental 

cells during discharge and charge.  

MoO3 is known for a poor electrochemical stability. In Li-ion battery case, during the first lithiation, 



12 
 

MoO3 reaches almost the theoretical value of the specific charge of 300-350 Ah/kg, which enters into 

a significantly fading in subsequent cycles [11]. This problem is ascribed to the low conductivity for 

both electrons and cations, and the rearrangement of molybdenum and oxygen atoms during the first 

insertion [12]. Considering such a property of MoO3, the experiments were performed with low C-

rates. When the cell was tested with C/20 rate or little faster rate, the potential of cell was dropped (or 

elevated) very fast, thus leading to the lower (or upper) cut-off voltage, due to a severe overpotential. 

Discharge or charge test with slow rate (C/200 rate) was necessary to make the overpotential low 

enough to perform the experiments within a tolearable voltage window less than 2V range. It is obvi-

ous that the slowly tested cells (C/200 rate) reach equilibrium at each stage of the discharge/charge, 

so as to make the structural and electrochemical analysies more reliable.  

The Mg2+ intercalation reaction into MoO3 can be described as follows :  

            

In the following section, we will discuss about XRD patterns related with discharge and charge curves. 



13 
 

 

 
Figure.8  Scheme of discharge and charge of Experimetal cell 
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3.3 Structural change during first magnesium insertion process  

 

Figure.9   Discharge curve of MoO3(cell’s specific capacity is 186.715 mAh/g for △X=0.5)  

 

 

Figure.10   During the magnesium insertion for Submicron MoO3  

The discharge curves of MgxMoO3 and the corresponding changes in XRD patterns during magnesi-

um insertion are shown in Fig.9 and Fig.10, respectively. The XRD patterns from A to F in Fig.10 refer 

to the corresponding points on the discharge curve in Fig.9. The discharge curve shows a linear and 

gentle slope, indicating that the magnesium insertion reaction into MoO3 could be a single phase re-
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action. It is, however, obvious that at least a new phase appeared immediately when MoO3 is dis-

charged (or reduced), but a smaller amount of the original phase still remains in the XRD pattern, 

though the amount seems to be more reduced with discharge. Thus, the reaction may be a pseudo 

two-phase reaction, and the sloping curve could be due to decreased electronic conductivity of Mgx-

MoO3 with higher x content, resulting in increased overpotential during the discharge. A dramatic and 

immediate change in the XRD patterns with discharge is a strong evidence indicating the possibility of 

Mg2+ ions insertion into the bulk host material of MoO3, not surface reaction or electrolyte decomposi-

tion reaction. As the more magnesium ions are inserted to MoO3, the pristine MoO3 gradually disap-

pears and a new phase grows up. Pristine MoO3 almost disappears around the Mg0.5MoO3. The com-

plicated XRD pattern for the new phase means MoO3 structure is distorted a lot as Mg2+ ions are in-

serted.  

 

Figure.11  SEM image of discharged state of Mg0.5MoO3 
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Fig.11 shows a SEM image for the discharged state of Mg0.5MoO3. A lot of cracks are seen in the 

electrode. MoO3 is known to suffer from slow kinetics and volume change [11]. The cracks seem to be 

a consequence of a large volume change during magnesium insertion, which is consistent with the 

dramatic change in structure. The loss of electronic paths due to the cracks may also be responsible 

for the linearly sloping discharge curve for the two-phase reaction that is supposed to show a flat 

curve.  
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3.4 Structural change during magnesium de-insertion process 

 

Figure.12  Charge curve of Mg0.5MoO3 

In order to see the reversibility of magnesium insertion/de-insertion reaction, a series of experiments 

have been done as follows: a samle was first discharged to a state at △X=0.1 (=Mg0.1MoO3), and 

then it is returned to a state at △X=0 (=MoO3) by charging. In this way, several samples were 

prepared with different depth of discharge (DOD) (△X=0.2, △X=0.3, △X=0.4, △X=0.5), followed 

by being charged to the original state of △X=0. For example, one cycle of discharge (△X=0.5, or 

Mg0.5MoO3) followed by charge (△X=0 or Mg0MoO3=MoO3) is shown in Fig.12, for which the specific 

capacity corresponds to 187 mAh/g. The XRD patterns for the returned phases that had experienced 

different DOD. values before charging are shown in Fig.13. It is clear to see that the XRD patterns for 

the returned phases are almost the same as the pristine MoO3, suggesting that magnesium intercala-

tion into MoO3 is reversible. It was also observed that the crystallinity became worse according to the 

broader reflection peaks for the returned phases. The higher DOD. a sample experiences, the more 
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degradation in crystallinity it shows. In other words, the more deformation in crystal structure a sam-

ple experiences, the less it keeps the original phase. According to this fact, it is anticipated that MoO3 

would experience a strong capacity fading with cycles, as observed in Li intercalation case. 

.  

Figure.13 During the magnesium extraction for Submicron MoO3 

 

Figure.14 EDS data for (a) MoO3 electrode (b) Mg0.5MoO3 
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Fig.14. shows a comparison of Energy Dispersive x-ray Spectroscopy (EDS) results for (a) a fresh 

MoO3 electrode, and (b) the Mg0.5MoO3, respectively. Magnesium was observed for the sample of 

Mg0.5MoO3, not for MoO3, as expected. It is to be noted that the EDS samples were washed carefully 

and thoroughly, so that no electrolyte remained before the measurement. Even though the EDS data 

reflect the surface state, the results seem to be a reliable evidence that magnesium ions are 

intercalated to MoO3. 
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3.5 Cyclic voltammetry of MgxMoO3 

 

Figure.15 Cyclic voltammograms of MgxMoO3 in the electrolyte, 0.25 M Mg(ClO4)2 in acetonitrile 

Blue : 2nd cycle, Red : 4th cycle 

The cyclic voltammograms were measured with a scan rate 0.02mV/s from 0 V to -1.5 V versus 

Ag/Ag+. Fig.15. shows CVs for the 2nd and the 4th cycles. In this CVs, reduction and oxidation peaks 

correspond to magnesium insertion and deinsertion, respectively. Reversible insertion/de-insertion 

peaks are observed, also indicating that the Mg2+ intercalation into MoO3 Is reversible, consistent with 

previous results reported in reference [14], where the intercalation/deintercalation of Mg2+ ions 

beetween MoO6 ocatahedron interlayers are described. For a first few cycles, the peak intensity 
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increases, as if MoO3 structure gets activated. That is, the sepecific capacity may increase somehow 

for a few cycles, but the crystallinity becomes worse with more cycles.   
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4. Conclusions 

Electrochemical magnesium ion intercalation chemistry of MoO3 has been studied in this work. 

Submicron-sized MoO3 has been synthesized by a facile oxalic acid method. With SEM and XRD the 

formation of the submicron-sized MoO3 was confirmed. Since magnesium meta cannot be used l as 

an anode material in electrochemical experiments using conventional organic electrolytes, we have 

designed an appropriate measurement cell for test. MoO3 was used as an working electrode for mag-

nesium intercalation host, and activated carbon pellet was used as an counter electrode. The magne-

sium intercalation in MoO3 and its electrochemical properties have been characterized, by cyclic volt-

ammetry, galvanostatic discharge/charge, and powder XRD measurements. Reduction and oxidation 

peaks were obseved at cyclic voltagramms which correspond to magnesium insertion and deinsertion, 

respectively. The Mg2+ insertion/deinsertion reaction into MoO3 was turned out to be reversible with a 

pseudo two-phase reaction during discharge and charge processes. With cycles, a degradation in 

crystallinity was observed 

In this work, we have clearly demonstrated that Mg2+ can be electrochemically intercalated into 

MoO3 host material. It seems, however, that magnesium ion batteries still are a long way to replace 

the lithium ion batteries in terms of energy density and power. But,we could see a possibility of mag-
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nesium ion batteries. Further studies should be focused on discovering new host materials with high 

energy density. The magnesium batteries will surely be promising for energy storage systems in near 

future. 
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요약문 

MoO3에 관한 마그네슘이온 전기화학적 탈/삽입 연구 

 

 

 

MoO3 를 working electrode 로 사용하여, 마그네슘 이온 전기화학적 탈/삽입 연구를 진행 하였다. 

Oxlic acid 합성 방법을 이용하여, Submicron-sized 의 MoO3 를 합성하였고, SEM 과 XRD 로 

확인하였다. 실험은 beaker type-cell, three electorecell test 을 진행하였으며, reference electrode 로 

Ag/Ag+ , counter electrode 로 activate carbon 사용하였다. Activate carbon 을 이용함으로써, 기존 

유기전해액에서는 실험이 불가능했던, host 물질에 대한 magnesium intercalation 실험을 

가능케하였다.  MoO3 에 magnesium intercalation 은 cyclic voltammetry, galvanostic dis-

charge/charge, powder XRD, EDS 로 측정 및 분석을 하였다.  Cyclic voltagramms 에서 가역적인 

환원, 산화 픽이 관찰 되었으며, 충방전 실험 또한, magnesium insertion 과 de insetion 이 확인 

되었다. XRD 분석결과, 충방전 과정에서 MoO3 는 two-phase reacion 을 갖는다는 것을 확인 

하였고, 충방전이 진행됨에 따라, 결정성이 나빠진다는 것을 관찰 할 수 있었다. 

핵심어 : Submicron-sized MoO3, beaker type three electrode measurement cell, activated carbon, 

pseudo two-phase reaction. 
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