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Abstract: Self-powered sensor development is moving towards miniaturization and requires a
suitable power source for its operation. The piezoelectric nanogenerator (PENG) is a potential
candidate to act as a partial solution to suppress the burgeoning energy demand. The present work
is focused on the development of the PENG based on flexible polymer-ceramic composite films. The
X-ray spectra suggest that the BTO particles have tetragonal symmetry and the PVDF-BTO composite
films (CF) have a mixed phase. The dielectric constant increases with the introduction of the particles
in the PVDF polymer and the loss of the CF is much less for all compositions. The BTO particles have
a wide structural diversity and are lead-free, which can be further employed to make a CF. An attempt
was made to design a robust, scalable, and cost-effective piezoelectric nanogenerator based on the
PVDF-BTO CFs. The solvent casting route was a facile approach, with respect to spin coating,
electrospinning, or sonication routes. The introduction of the BTO particles into PVDF enhanced
the dielectric constant and polarization of the composite film. Furthermore, the single-layered
device output could be increased by strategies such as internal polarization amplification, which
was confirmed with the help of the polarization-electric field loop of the PVDF-BTO composite film.
The piezoelectric nanogenerator with 10 wt% BTO-PVDF CF gives a high electrical output of voltage
7.2 V, current 38 nA, and power density of 0.8 µW/cm2 at 100 MΩ. Finally, the energy harvesting
using the fabricated PENG is done by various actives like coin dropping, under air blowing, and
finger tapping. Finally, low-power electronics such as calculator is successfully powered by charging
a 10 µF capacitor using the PENG device.

Keywords: dielectric; lead-free; piezoelectric nanogenerator; energy harvesting

1. Introduction

In the present era, the development of a sustainable and flexible energy harvester that
harvests energy from listed mechanical sources to power electronics and nanosystems is
attaining huge attention [1,2]. Nanogenerators provide a pathway towards sustainable
power sources due to their superior characteristics of easy, less cost fabrication, mass
production, improved energy conversion efficiency [3,4]. Currently, the quest is to develop
flexible nanogenerators working on principles of piezoelectricity [5] and triboelectricity [6].
Nanogenerators based on the piezoelectric principle have gained immense attention due to
many advantages such as wide piezoelectric materials selection, easy fabrication, and quick
response [7,8]. The various structure and shapes of the flexible piezoelectric nanogenerator
can be achieved by using several polymers like PVDF, PVDF-copolymer [9], PDMS [10],
Nylon [11], and polyamide [12]. Among these, PVDF and its copolymers are chosen for
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several studies owing to its good electromechanical coupling, chemical stability, and high
piezoelectric coefficient [13,14].

The PVDF has five crystalline polymorphs such as α, β, γ, δ, and ε phases [15,16]. The
presentation of the phases in the PVDF solely depends on the processing methodology [17].
The β phase bears the highest electroactive properties [18]. There are several strategies
followed to achieve the electroactive β phase, such as applying stretching mechanically
with heating, applying high voltage, and doping of piezoelectric materials or metallic
nanoparticles [19,20]. Mokhtari et al. explored the textile architecture and achieved an
energy conversion efficiency of 22.5% for the coiled hybrid piezo fiber energy generator [21].
Mokhtari and co-workers tested pizeofibers that were capable of producing a maximum
voltage output of 4 V and a power density of 87 µW·cm−3, which were 45 times higher than
earlier reported for piezoelectric textiles [22]. Pereria et al. fabricated the BTO-PVDF-TRFE
composites and achieved a power output of 0.28 µW [23]. Zhao et al. suggested that the
BaTiO3 NPs increase the piezoelectric potential and reinforce the local stress of PVDF [24].
Ponnamma et al. fabricated hybrid composite (3 wt% BaTiO3, PVDF-HFP, 1 wt% h-BN)
generated a piezoelectric output voltage (2.4 V) with high dielectric constant 45 and low
dielectric loss 7.8 [25]. PVDF-ZnO-BTO composite film (CF) was fabricated by Sabry et al.
that was capable of generating 11 V at 1.328 N force [26]. The authors added a comparison
table of the various PVDF-ceramic composites, their preparation approach, and electrical
output response in Table S1.

Perovskite ferroelectric oxides are one of the widely investigated materials with a
general chemical formula of ABO3 [27]. BTO ceramics are categorized under the oxygen
octahedron group. BaTiO3 undergoes the ferroelectric-paraelectric transition (Tc) about
120 ◦C [28]. It exhibits a cubic structure (space group Pm3m) above the Tc, and below this
temperature, it bears a tetragonal structure (space group P4mm). In the cubic symmetry,
the Ti4+ ion present in the oxygen octahedra center causing the non-ferroelectric behavior
of BTO. During the tetragonal symmetry, BTO bears ferroelectric properties as Ti4+ ion
shifts from the center towards one of the two oxygen ions along the axis. BTO bears
more structural changes such as the temperature declines from 120 ◦C to below, it has
orthorhombic crystal symmetry (space group Amm2) at 5 ◦C, at −90 ◦C it transforms to
rhombohedral crystal symmetry, and at 1460 ◦C it transforms to hexagonal crystal symme-
try. BTO is a lead-free ceramic with reported piezoelectric coefficient values ranging from
350 to 460 pC/N by several synthesis routes, and it can act as an alternative towards the
toxic lead-based compositions [29,30]. The polymer ceramic composites have several merits
such as mechanical flexibility and rather simple process to control the film thicknesses and
sizes [31,32]. The limitations of the high brittle nature of the BTO ceramics can be resolved
by integrating in particle forms into the PVDF, further improving the electroactive phase
of PVDF.

The present work focuses on the fabrication of the thin polymer-ceramic CFs via
solvent casting route. Mixed phases of the PVDF and BTO are seen from the XRD spec-
tra confirming the crystallinity and the distribution of the particles within the matrix is
depicted from the SEM micrographs. The improved dielectric constant and low loss of
the PVDF-BTO CF is also confirmed. The flexible piezoelectric nanogenerator is designed
and experiment with in terms of the different wt%, and with the optimized PENG device,
other experiments and several testing of charging capacitors and the powering calculator
is carried out. The solvent casting route is a cheap fabrication technique that has been
adapted for this work as a facile approach, as compared to complicated spin coating, elec-
trospinning, or sonication routes. The introduction of the BTO particles into PVDF leads
to the improvement of the dielectric constant and polarization. The Polarization-electric
field loop confirms that the BTO particles could enhance the internal polarization of the
PVDF. Furthermore, the single-layered device output can be increased by strategies such as
internal polarization amplification. This work paves the way to fabricate new piezoelectric
material for energy harvesting.
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2. Processing and Experimental Techniques
2.1. Synthesis of BaTiO3 Particles

The BTO particles were synthesized by mixing the various precursors and heat treat-
ment at high temperature. The high purity barium carbonate and titanium oxide were
procured from Loba Chemie, Mumbai, India. The stoichiometric proportion of the powders
were carefully measured using a digital weighing balance. The powders were transferred
to an agate mortar and mixed for 2 h in a methanol medium. The homogeneously mixed
powders were put into an alumina boat and calcined inside a box furnace at 1200 ◦C for
4 h. Further, the lump was ground into fine particles utilizing an agate mortar and pestle.

2.2. Synthesis of PVDF-BaTiO3 Composite Film and PENG Device

The composite film (CF) of the PVDF-BTO was prepared by a cost-effective solvent
casting method. For this, a solvent of N-Methyl-2-Pyrrolidone (NMP) was procured from
Sisco Research Ltd., Mumbai, India. The PVDF pellets were procured from Sigma Aldrich,
St. Louis, MO, USA. The PVDF pellets were measured in proper ratio and put into the
NMP solvent at 60 ◦C upon a magnetic stirrer with a magnetic bead inside it. The clear
transparent solution was obtained after 1 h, and the various wt% of the BTO particles were
put into the solution. Dispersions with different concentrations of BTO (1 wt%, 5 wt%,
7 wt%, 10 wt%) were prepared. Further, it was allowed to mix for 1 h at room temperature
until a homogenous mixture was achieved. Then the PVDF-BTO solution was poured onto
a glass Petri plate and left inside an electric oven at 70 ◦C for two hours. After curing,
a free-standing flexible PVDF-BTO CF was obtained.

For the PENG device fabrication, the film was cut into dimensions of 1.5 cm × 1.5 cm,
and the gold coating was done to act as an electrode. The electrode area was kept as
1 cm × 1 cm. Further, to measure the system’s energy output, thin copper tape was attached
to the opposite side of the device. It was then transferred to antistatic tape to neglect
any of the electrostatic charges present in the environment. Then the entire device was
encapsulated using a PDMS layer. The PENG devices were poled at 1 kV for 30 min at RT
to align dipoles.

2.3. Experimental Techniques

The structural analysis of the BTO particles and PVDF-BTO CFs were performed using
a powder X-ray diffraction (PANalytical Empyrean, Almelo, The Netherlands, Cu-Kα
radiation) under a scanning step size of 3◦/min. The surface morphology was taken using
a Hitachi S-4800 scanning electron microscope fitted with an EDS detector. The CF was
cut into small pieces, and the electrode was done with gold sputtering onto opposite sides
for electrical characterization at room temperature. The dielectric measurement was taken
using an N4L PSM LCR meter. The periodic contact-separation of the device was performed
by a linear motor (LinMot Inc., Lake Geneva, WI, USA). An electrometer 6514 (Keithley,
Solon, OH, USA) was used to measured voltage and current from the piezoelectric device.

3. Results and Discussion

The systematic synthesis route is the possible way to properly obtain a high crystalline
material and with superior properties. In Figure 1a, the mixing of the high purity barium
carbonate and titanium oxide is mixed using a mortar and pestle in the presence of the
methanol for 4 h and then transferred into an alumina crucible. The mixture is calcined at
1200 ◦C for 4 h. The morphological properties, such as particle size and shape of prepared
BTO particles were analyzed from the captured SEM image, as shown in Figure 1a. The
SEM image reveals the polyhedron shape of particles with a very smooth surface and
edges. The particle size histogram with a Gaussian peak fitted curve is shown in Figure S1a.
It depicts the presence of particles having a size distribution in the range of 200 to 1300 nm.
The average particle size was about 460 nm, which was calibrated from the Gaussian peak
fitting of the particle size distribution histogram. Figure 1b shows the formation of the
PVDF-BTO CF. In this, the PVDF pellets are dissolved in the NMP solvent and heated at
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60 ◦C for 1 h using a magnetic stirring. Then the BTO particles are added to the transparent
solution and the temperature is reduced to room temperature with continuous mixing
giving rise to a PVDF-BTO homogenous solution. It is then poured onto a glass Petri dish
and left for curing. The contact angle measurement of the PVDF-BTO films shows an
angle greater than 100 degrees, which suggests the higher hydrophobic nature of the films.
Figure 1c shows the XRD pattern of the BTO particles at room temperature. The peaks
are well-matched with reported JCPDS data: 01-075-0583. The POWD MULT software
was used to derive the lattice parameters following a least-square refinement rule. The
values of a: 3.988 (
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shifting occurred in the polymer-ceramic CF.
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Figure 1. Synthesis of particle and piezoelectric nanogenerator; (a) BaTiO3 particles by solid-state
reaction method and surface morphology of the polycrystalline particles; (b) the solvent casting
route and systematic steps for formation of the PVDF-BTO composite film, the contact angle of the
composite film showing hydrophobic nature of their surfaces; (c) XRD pattern of the BaTiO3 particles
and (d) shows the XRD pattern of the PVDF-BaTiO3 composite films at different wt% of particles
(1, 5, 7, 10 wt%) into the PVDF matrix.

Figure 2a shows the surface morphology of the CF. It shows that the BTO concentration
increases in the PVDF and there is no clustering of the particles. The 10 wt% BTO-PVDF
CF show more compactness as compared to other CF. The EDS spectra of the 10 wt%
BTO-PVDF shows that all the elements are present without any trace of impurity. Figure 2b
shows the frequency-dependent dielectric constant at room temperature. It shows that the
dielectric contact rises as the BTO particles in the PVDF increases. The pure PVDF shows
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23 dielectric constant values at 1 kHz while the 10 wt% BTO-PVDF CF shows 47 at 1 kHz,
suggesting that there is a rise in connectivity between the particles as the BTO content
rises to improve the dipole-dipole interaction [33]. The reason behind the increase in the
dielectric constant in low frequency is mainly due to the effect of various polarizations,
and with a rise in frequency, the polarization activity fades, leading to constant or reduced
dielectric constant magnitude. Figure 2c shows the dielectric loss versus frequency at room
temperature for various CF. The interfacial polarization could lead to a rise in the loss
factor in the low-frequency region. The heterogeneity in the CF, with a rise in the BTO
content in the PVDF, is also responsible for increasing the loss factor as the BTO. Another
possible cause may be from the air voids ionization, which creates plasma as an electric
field is applied to the CF. Figure 2d shows the digital image of the fabricated piezoelectric
device, which is flexible and bendable. The ferroelectric polarization of the pure PVDF and
PVDF-BTO (10 wt%) is compared in Figure S1b. The remnant polarization of the PVDF is
0.52 µC/cm2, whereas for the PVDF-BTO CF it is 0.66 µC/cm2. It demonstrates that as the
BTO content increases in the PVDF, the dielectric constant and ferroelectric polarization are
both improved in the material. It is also noted that the relation below links the dielectric
property to the piezoelectric voltage co-efficient: gij = dij/(ε0εr). Therefore, as the dielectric
constant increases, the piezoelectric output response should also rise.
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Figure 2. Properties of the PVDF-BTO composite films; (a) the surface morphology of pure PVDF and PVDF-BTO composite
films (1, 5, 7, 10 wt%); the EDS spectra of the PVDF-BTO of 10wt% BTO into PVDF is examined, and all the elements match
well with its chemical composition; (b,c) dielectric constant and dielectric loss of the pure PVDF and composite films; (d) the
image of the flexible PNG10 piezoelectric nanogenerator device.

Figure 3a shows the working mechanism of the piezoelectric nanogenerator device.
In general, if a mechanical force is applied to a PENG device, there is the generation of
positive and negative piezoelectric potential in the materials leading to an electrical output
at both ends of electrodes. It is seen as the pressure is acted upon by the piezoelectric
nanogenerator, the electrons flow from one end to the other, leading to the flow of current
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through an external load. As the force is removed, the stored electrons move through the
external circuit in a reverse manner creating a negative voltage. This repeated process
leads to the generation of the output of PENG. Figure 3b shows the representation of the
dipoles; as we apply a voltage of 1 kV across the piezoelectric CF the dipoles are aligned,
which is required to achieve higher piezoelectric output. Figure 3c shows the layer by layer
arrangement of the PENG device; it has several layers sandwiched into one structure. The
antistatic tape is used to remove any stray charges in the air atmosphere while the PDMS
encapsulation act as a packing layer. Figure 3d,e shows the voltage and current output of
the various PENG devices. The 1 wt% BTO in PVDF (PNG1), 5 wt% BTO in PVDF (PNG5),
7 wt% BTO in PVDF (PNG7), and 10 wt% BTO in PVDF (PNG10) are the abbreviated
names of the fabricated PENG devices. It is seen that the PNG20 shows a higher output of
voltage 7.2 V/current 38 nA. Figure 3f presents the switching polarity test confirming that
the generated outputs are due solely to the piezoelectric effect. It is to note that no change
in phase in the peak pattern, indicative of a true piezoelectric response.
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Figure 3. Experimental for the piezoelectric nanogenerator. (a) Working mechanism of the fabricated
piezoelectric generator, (b) representation of the poling and dipole arrangement on applying different
voltage, (c) layer by layer schematic of the piezoelectric nanogenerator device, (d,e) voltage and
current of the piezoelectric nanogenerator of various composition, (f) the reverse and forward
voltage/switching polarity test of the PNG10 device.

Figure 4a,b shows the current and voltage of the PNG10 device at various acceler-
ations/frequencies. It is seen that at higher acceleration/frequencies, the output of the
device is not uniform as the device may be depolarized with higher acceleration. Figure 4c
shows the loading matching analysis of the PNG10 device. The power density (P = V2/R)
of the PNG10 device under optimized conditions is determined by varying the load match-
ing R from kΩ to GΩ and measuring the corresponding voltage. It was observed that a



Crystals 2021, 11, 85 7 of 10

power density of 0.8 µW/cm2 at 100 MΩ was achieved by the PNG10 device. Figure 4d
shows the charging of the various capacitor with different capacitance. Figure 4e shows
the charging and discharging curve of the 4.7 µF capacitor several times, which shed light
upon the fact that the output generated by the PNG10 device is stable for a long time.
Figure 4f shows the stored charge in each capacitor that was calculated using the formula
Q = CV.
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Figure 4. Electrical response of the piezoelectric nanogenerator. (a,b) Voltage and current measure-
ment of the PNG10 device at various accelerations/frequencies, (c) the instantaneous output power
density as a function of different external load resistance, (d) charging curve of two capacitors with
different capacitances, (e) charging and discharging curve of the 4.7 µF capacitors showing stable
output from the device, (f) the amount of stored charge in the different capacitors.

The real-time energy harvesting from the PNG10 was carried out using several activi-
ties. Figure 5 shows the output voltage when a coin was dropped upon the device PNG10
it could sense the impact from the dropping of the coin. In Figure 5b, the PNG10 device
was connected to the fan, and when the fan was turned on at its highest speed, the device
could produce 6.9 V. Figure 5c,d demonstrates the biomechanical energy harvesting from
the PNG10 device was tested by simple finger tapping and the voltage of 1.4 V and current
of 24 nA. To demonstrate, the powering of the calculator in Figure 5e,f, two PNG10 devices
were connected in parallel to increase the current produced from the device, and this was
utilized directly to charge a 10 µF capacitor. The AC signal produced by the two PNG10
devices is converted to DC via a bridge rectifier circuit. When the switch was ON, the
calculator began to work and the capacitor was discharged. Figure 5f shows the digital
image of the demonstration of the powering of the calculator. Hence the fabrication of
the PVDF-BTO CFs based flexible nanogenerator paves the way towards a sustainable
power source and a promising entrant for designing self-power applications. Figure S2a
shows the result of the manual bending test: as the device is flexible, it could easily bend
and produce an electrical output. Figure S2b,c show the electrical response of the device
while performing an exercise like a basic squat exercise. The device generated an electrical
voltage of 6 V and a current of 19 nA, demonstrating that the presented PENG device can
be used for counting the number of times the exercise was performed.
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Figure 5. Applications of harvesting energy and powering electronics. (a) Electrical response of
PNG10 when a coin drop upon it, (b) Electrical response of the PNG-10 device when connected to
fan; (c,d) Voltage and current response of PNG10 device upon finger tapping, (e) connected two
PNG10 devices in parallel and charge a 10 µF capacitor, and (f) Power supply to low power rating
devices like calculator (switch OFF and switch ON condition).

4. Conclusions

The PVDF-BTO composite films are highly flexible and synthesized via cost-effective
processing known as the solvent casting route. The XRD pattern confirms the crystallinity
features, and the surface morphology suggests that the particles are uniformly distributed
upon the PVDF. The BTO particles crystallize with tetragonal symmetry. The dielectric
constant increases with the doping of the BTO particles into the PVDF, showing that there
are dipole-dipole interactions. Individual PENG devices are tested after the polling condi-
tion. The PNG10 device delivers an output of voltage 7.2 V and 38 nA. An instantaneous
power density of 0.8 µW/cm2 at a matching resistance of 100 MΩ is achieved from the
PNG10 device. The stable output of the device can be seen from the continuous charging
and discharging curve of the commercial capacitor. The PENG device can power up the cal-
culator via a bridge rectifier, switch, and charging capacitor of 10 µF. The proposed device
fabrication is adaptable and straightforward to harness energy from different vibrations
or motions in the environment. It is many benefits like eco-friendly, cost-effective, and
easily scalable methods to meet the power requirements of micro/nano electronic devices
in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-435
2/11/2/85/s1, Figure S1: (a) A particle size distribution histogram determined from the SEM images
of BTO particles; (b) P-E hysteresis loop of PVDF and PVDF-BTO (10 wt%), Figure S2: (a) Electrical
response of the PENG device upon the hand bending; (b,c) voltage and current of the PENG device
upon the repetitive Squat exercise Table S1: Comparison of the piezoelectric nanogenerator based on
polymer ceramic composites; device output and composite film preparation.
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