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ABSTRACT

Medical devices are safety-critical systems that have been gradually becoming more complicated and
software issues are increasingly on the rise. To solve this problem, the quality of the software for the medical
devices should be thoroughly guaranteed through verification. Every possible state and path should be verified.

To enhance the quality of the software-related safety issues model-based development can be useful. In
model-based development the purpose of formal modeling is to permit precise understanding, specification, and
analysis of the system. Model-based development is a software development approach to design the system
model and verify if the designed model meets every system requirement [1]. After verifying all of the safety
requirements are satisfied, a C source code can be generated through the code generation tool.

However, there is a challenge for meeting the timing requirements in model-based development due to
timing semantics mismatch between the model and the implemented system. Even though the model conforms
to the timing requirement through the verification process, the implemented system from the model may not
conform to the requirement. A layered approach for timing testing in the model-based development is proposed
in this thesis. A four-variables model is used to test and measure the timing gap between the model and the
implemented system. The R-testing is performed in order to detect the timing requirement violation and M-
testing is performed in order to measure the timing gap between the abstract model and the implemented system.

An infusion pump is used for the case study.

Keywords: model-based development, safety-assured software, medical devices, infusion pump, timing
semantics mismatch.
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I. INTRODUCTION

With embedded systems getting smarter and more complicated, the amount of software for
the systems is also increasing. This leads to more frequent system faults due to software
errors and the importance of the software-related safety issues is on the rise. The issue is the
lack of a systematic development process. Informal system design, typically relies on
documentations and engineering practices. It is difficult to verify and validate the correctness
of the early development stages in this case. In addition, the code is typically written from the
informal system design in a manual fashion. This is error-prone, and requires extensive
testing. This development process leads to lack of safety and inefficiency.

To enhance the quality of the software, model-based development is widely used in the
industry and research institutions because the system is designed in a way that formal
verification can be performed in the early stage of the development process. This approach
enhances the safety and efficiency of the software development process.

However, there is a challenge of the timing testing in the model-based development.
Testing methodologies have been studied in the model-based development [2], but the timing
testing approach has not been studied well. In addition, model-based development is strong in
the functional aspects, but weak in the timing aspects when verification is performed at the
abstract model level because timing behavior is abstracted to avoid the verification
complexity [3]. Furthermore, another reason why model-based development is weak in the
timing aspects is that timing semantics mismatches between the abstract model and the
implemented system. For example, UPPAAL [4] and Stateflow/Simulink [5, 6], which are the
modeling tools, have instantaneous transition semantics. That is, the input and output

transition occurs simultaneously taking zero time. The implemented system requires non-zero
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computation time to implement such semantics because some computation phases such as
reading time, reading input, input-transition, writing output, and output-transition are taken.
Even though the timing requirements are satisfied at the model level, they might not be
satisfied at the implemented system level.

Hence, timing testing is essential to verify and validate that the timing requirements are
satisfied not only in the model, but also in the implemented system. A layered approach is
proposed in this thesis. Our approach has two levels testing which are R-testing and M-
testing. R-testing checks if the implemented system meets the timing requirements. In this
testing, only input (sensor) and output (actuator) information from the target platform is used.
If the result of R-testing shows that the implemented system does not conform to the timing
requirements, M-testing is followed. M-testing is performed in order to measure how much
timing deviation occurs due to the semantics mismatches. In this testing, not only input
(sensor) and output (actuator) information from the target platform, but also abstracted input
and output of the automatically generated code from the abstract model are used. To perform
the tests, testing points are necessary in terms of both physical environment and the
automatically generated code from the model. In order to express the abstraction boundary of
the implemented system Parnas’ four-variables model is used [7]. Monitored (m), input (i),
output (0), and controlled (c) variables are used in the four-variables model. Only monitored
(m) and controlled (c) two variables are used for the R-testing. All four variables, monitored
(m), input (i), output (0), and controlled (c), are used for the M-testing. The results of the
testing provide a tester with a way to optimize the implemented system.

The proposed approach is applied to an infusion pump for the case study. The infusion
pump is developed based on the model-based development. R-M testing is performed to
check the conformance between the timing requirements and the implemented system.

The main contributions of this thesis are as follows:



® \We present the test design using the four-variables model that expresses the abstraction
boundary of the implemented system.

® \We propose the layered approach for the timing requirements testing in the
implemented system developed by the model-based development.

® \We apply the layered approach to an infusion pump system for a case study in order to

show the applicability.

1. BACKGROUND

1. Model-Based Development

First of all, safety requirements from the system experts should be documented. Formal
modeling can be started from the understanding of the safety requirements. There are some
modeling tools such as UPPAAL [4], Stateflow [5], Simulink [6], TIMES TOOL [8] or
SCADE, but each of them has different modeling properties. Among them Simulink /
Stateflow is chosen for our study. After finishing the modeling, verification should be
performed thoroughly. Verification can be performed through the query language or
simulation. If any safety requirement is not sufficient in the model, the model should be
modified until all safety requirements are adequate. Once this step is finished, a C source
code can be obtained by using the code generation tool. We first need to understand how the
code works and then attach some interfacing code to interact with the hardware. In our case, a
Patient Controlled Analgesic (PCA) infusion pump is used for the case study. Figure 1 shows

the brief process of model-based development.
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[Verification

Figure 1. Process of model-based development

2. Patient Controlled Analgesic (PCA) Infusion Pump

There are many types of medical devices such as a pulse oximeter, pacemaker, and infusion
pump. Among them, we have chosen an infusion pump. Infusion pumps are medical devices
that deliver fluids, including nutrients and medications, into a patient’s body in a controlled
manner. Infusion pumps are used worldwide in hospitals as well as in home care.
Nevertheless, more than 56,000 reports of adverse events associated with the use of infusion
pumps, including serious injuries and deaths were reported from 2005 through 2009 [9].
Medical devices are safety-critical systems because they are related to the patient’s life. The
Food and Drug Administration (FDA) has recognized that this is a serious problem and
launched the Infusion Pump Improvement Initiative [9]. Through this initiative, the FDA will
take broad steps such as establishing additional requirements for infusion pump
manufacturers, proactively facilitating device improvements, and increasing user awareness
to prevent infusion pump problems. These are the reasons why infusion pumps have been
chosen for our research. A PCA (Patient Controlled Analgesic) infusion pump has been
selected specifically because it is one of the most common infusion pumps. The purpose of
the PCA infusion pump is pain-relief treatment (e.g., morphine). The patient may request
additional doses (called bolus) by pressing the “request” button attached to the pump. Then a
small amount of drugs will be injected into the patient. The infusion pump mentioned in this

thesis is the PCA infusion pump.
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I11. TIMING SEMANTICS MISMATCHES IN THE MODEL-
BASED DEVELOPMENT

In this section, each step of the model-based development is handled through the infusion

pump case study.

(1)
il Zovery Requirement -
Model (M) Verification e

(2) Code Generation

[ Code(M) ]

|
(3) Platform Interfacing

| (Goal) Conformance of SUT

w.r.t Requirements
Code(M)

| —
)

Interfacing Code

Hardware Platform
Platform(P)

1
1
1
1
1
1
1
\ / 1
) !
1
1
1
1
1
1

Implemented System
(SUT)

________________

Figure 2. The goal of the layered approach in the model-based development

Figure 2 illustrates the goal of the proposed approach in the model-based development. In
the step Figure 2-(1), modeling is performed with regard to the system requirements using the
modeling tool such as UPPAAL or Simulink/Stateflow (Like mentioned in the
BACKGROUND section, Simulink/Stateflow is chosen for our research). System
requirements are provided as a document and some requirements of the infusion pump are
written below.

® (REQ1) A bolus dose shall be started within 200ms when requested by the patient.

® (REQ?2) If the syringe becomes empty during infusion, an empty reservoir alert shall be

issued and the current infusion should stop within 50ms.
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For example, Figure 3 shows the way to model the REQ1.
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Figure 3. Abstract model of the infusion pump developed by Simulink/Stateflow

Figure 3 is a part of the abstract model of the infusion pump with regard to the system
requirements using Simulink/Stateflow. When an event, E_BolusReq, is triggered from the
environment (i.e., patients), state transition from Init state to BolusRequested state occurs.
After this state transition from BolusRequested state to Infusion state occurs subsequently. At
this transition the value of an output variable, InfuProgress, is changed from 0 to 1. E_CLK
event implies the digital clock and before(100, E_CLK) is one of the syntax in the
Simulnk/Stateflow to model the temporal logic. Once modeling is finished, the model can be
verified through Simulink Design Verifier or model simulation. The model should be
modified until the model verifies that it satisfies all the requirements. In our case-study 5
input events are fed into the Stateflow model from the external Simulink block and 4 outputs
are produced from the external Simulink block. The variables of the 5 input events and the 4
outputs are defined here.

® E CLK event: This input event indicates the digital clock. It is used for the temporal
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logic such as before, after, or at in the Stateflow [10].

E_BolusReq event: This input event indicates that the bolus request button is pressed
from the environment (i.e., patients). When this event happens, the expected output is to
operate the infusion pump motor so that the bolus is injected into the patient’s body
through the syringe.

E_ClearAlarm event: This input event indicates that clear alarm button is pressed from
the environment (i.e., patients). When this event happens, the expected output is to
clear the buzzer alarm.

E_EmptyRsv event: This input event indicates that there is no more of the drug in the
syringe and that it is empty. When this event happens, the expected output is to raise
the empty reservoir alarm and stop the infusion pump motor.

E_LowRsv event: This input event indicates that the amount of the drug in the syringe
is low. When this event happens, the expected output is to raise the low reservoir alarm
and stop the infusion pump motor.

Y.InfuProgress: This output variable interacts with the infusion pump motor. When the
value of the Y.InfuProgress is 0, it implies that the motor does not operate. When the
value of the Y.InfuProgress is 1, it implies that the motor operates.

Y.empty_alarm, Y.low_alarm: These output variables interact with the buzzer alarm.
When the value of the Y.empty _alarm or Y.low_alarm is O, it implies that the empty
reservoir alarm or low reservoir alarm is not raised. When the value of the
Y.empty_alarm or Y.low_alarm is 1, it implies that the empty reservoir alarm or low
reservoir alarm is raised. Y.empty alram == 1 or Y.low_alarm == 1 is the expected
output of the input event E_EmptyRsv or E_LowRsv respectively.

Y.timeout_alarm: This output variable interacts with the buzzer alarm. The timeout

alarm is raised when the violation of the timing requirements occurs.

13



The empty reservoir alarm, low reservoir alarm, and timeout alarm are distinguished by the
pulse width modulation associated with the alarming speed.

As shown in Figure 2-(2), automatic code generation is performed to generate source code
(denoted as Code(M)) that preserves the model structure from the verified model by using
Real-Time Workshop. The number and contents of the generated source and header files

depend on which syntax is used in the model.

(@) (b)
& Configurat ™ odelTracePattem_vé/Configuration (Active o] html
[ setet: - )
Py — e ol o Brwse... @4 buildinfo
Language: c - e ¢
| pescrption: Embedded Coder :jlf;_} codelnfo
; defines
ion level: | Optimizations off (faster bullds) ~ S
<] ert_main
Makefile configuration
Generate makefie |_| modelsources

Make command:

€] ModelTracePattern_v4
n] ModelTracePattern_v4
Data specification override
Ignore custom storage dlasses Ignore test point signals Q ModelTrac ePattern_vA_data
Code Generation Advisor _"_] ModelTracePattern_v4_private

Prioritized objectives: Unspecified Set objectives ...

Check model before generating code: [Off *) [ cmckmoteisn || ModelTracePattern_v4_ref.rsp
4 Ganertcodeonly \h] ModelTracePattern_v4_types
<) rt_zcfen

0] rt_zcfen

|| tw_proj.tmw

) () rtwtypes

) o] (Lo ) [ bow {@H rtwtypeschksum

Template makefie:

Figure 4. (a) Real-Time Workshop, (b) generated header and source files from the model through Real-Time

Workshop

Figure 4-(a) shows Real-Time Workshop window. There are some platform-dependent
options to apply the generated code to the target platform (denoted as Platform(P)) properly.
Figure 4-(b) shows the generated files from the model through automatic code generation. In
our study 5 header and 4 source files are generated from the model.

Code(M) cannot execute alone on the Platform(P) without adding interfacing code to
Code(M). As shown in Figure 2-(3), adding the interfacing code to Code(M) is performed.

Contents of the interfacing code are dependent on the target platform, operating system,
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implementation method such as the dependency between tasks and the way to trigger the
input event (e.g., sampling or interrupting method) and so forth. For example, the
input/output interfacing code connects the input/output of the physical environment with the
input/output variables of Code(M). To amplify the input/output interfacing code, when the
patient presses the bolus request button, input interfacing code converts the electrical signal
change into updating the input variable of Code(M) (i.e., E_BolusReq) from false to true.
Likewise, when the output variable of Code(M) (e.g., Y.InfuProgress) is updated from false
to true, the output interfacing code converts the update into generating the electrical signal
change to operate the physical actuator of the infusion pump. In our case study the model
consists of 4 inputs and 4 outputs. Therefore, 4 input interfacing codes and 4 output

interfacing codes are added to Code(M).

( 1\
Code(M)
L (generated from Real-Time Workshop) y
[ Code(M) ] a 1)
Interfacing Code
Interfacing Cod [::>
l . \ Real-Time Operating System (FreeRTOS)

[Hardware PIatform(Pi

Implemented System Microcontroller(ARM?7)
(SsuUTm)
o Relgzrlv;)ir Ri::emr L Buzzer || A2
Button S Motor LED
ensor Sensor

Implemented System for the Case Study
(SUT)

Figure 5. Integrated system for the infusion pump case study

Figure 5 illustrates the integrated system for the infusion pump case study. Sensors (e.g.,
bolus request button, low reservoir detecting sensor, empty reservoir detecting sensor, alarm
clear button) and actuators (e.g., pump motor, buzzer) of the infusion pump hardware are
interfaced with the micro-controller(ARM7) that operates FreeRTOS [11].

In the model-based development process, timing requirements might not be satisfied in the
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implemented system level even though the conformance of the timing requirements is

verified in the model level. Figure 6 shows one example case.

(b)

Tek Ak @ Stop M Pos: 202.0ms TRIGGER

Type

Source
T
¥ Slope

(1) —@—> 100ms <—— Rising

(2) 192ms <=
©) — > 92ms «—— Mode
Auto

Coupling

CH2 5004 M 50.0mns CH2 .~ 200mY
Use multipurpose knob to set trigaer source

(©)
Figure 6. (a) Time scope when event E_BolusReq is triggered in the model, (b) Time scope when bolus infusion
starts in the model, (c) Time scope of event E_BolusReq and output infusion pump motor in the implemented

system

Figure 6-(a) and (b) illustrate the system behavior in the model with regard to the timing
16



requirement that is a bolus dose shall be started within 100ms when requested by the patient.
When event E_BolusReq is triggered, the related output value (i.e., Y.InfuProgress) should be
changed from false to true within 100ms. Figure 6-(a) and (b) show that it takes 17.5ms
(125ms — 107.5ms = 17.5ms) from the event occurrence to the output value change, which
means the timing requirement is satisfied in the model. However, Figure 6-(c) shows the
violation of the timing requirement in the implemented system by using an oscilloscope. The
orange and blue lines indicate the bolus request button and infusion pump motor respectively.
In Figure 6-(c), section (1) (i.e., 100ms) indicates the constraint of the timing requirement.
Section (2) (i.e., 192ms) indicates measured time from the bolus request to the infusion start
and section (3) (i.e., 92ms) indicates the timing deviation between the timing requirement
constraint and the implemented system. This timing assurance gap is made due to the
abstraction of the timing aspects using a modeling language. It takes zero time to transit the
states and produce the related output in the model, but it is hard to realize this timing
semantics because some computation phases are necessary such as read input, input-transition,
write output, and output-transition in the implemented system.

Due to the timing semantics mismatch between the model and the implemented system it is
necessary to perform timing testing in order to assure if the timing requirements are also
satisfied in the implemented system. It is not efficient if all testing with regard to the system
requirements is performed because the conformance of the generated with regard to the
functional requirement aspect is assured by automatic code generation. That is, we have
confidence on Code(M) with regard to the functional requirement, so testing for the
functional requirement aspect does not need to be performed. On the other hand, there is less
confidence on the timing requirement aspect in the implemented system. Our goal is to check
conformance of the implemented system with regard to the timing requirements and measure

the timing deviation precisely so that the results of the test give some clue to the tester in
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order to optimize the final implemented system.

IV. THE LAYERED APPROACH FOR THE TIMING
TESTING

In this section the four-variables model and two different levels of timing testing, R-testing

and M-testing, are explained.

1. Mapping the four-variables to the implemented system

The uniform separation at the boundary between the hardware platform and the real
environment is necessary to perform the timing testing precisely. The four-variables model is
a famous technique in order to map the system requirements [7]. The four-variables model
consists of monitored (m), input (i), output(o), and controlled (c) variables. The four variables
are interfaced with the sensor device, actuator device, and the software of the system. The
four-variables model is used for our layered approach for the timing testing.

Monitored (m) and Controlled (c) variables: monitored (m) and controlled (c) variables
interact with the physical environment and the hardware platform. Monitored (m) variable is
interfaced with the sensor or input devices such as bolus request button, clear alarm button,
empty reservoir detecting sensor, or low reservoir detecting sensor in the infusion pump
system. For example, once the bolus request button is pressed as an input event, the value of
the relevant monitored (m) variable is changed from false to true. Another example is that
when the event E_EmptyRsv is triggered, which means the syringe reservoir is empty, the
value of the relevant monitored (m) variable is changed from false to true. Likewise, the
controlled (c) variable is interfaced with the actuator or output devices such as the infusion

pump motor or buzzer in the infusion pump system. For example, once the infusion pump
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motor as an output of an event E_BolusReq operates, the value of the relevant controlled (c)
variable is changed from false to true. Contrariwise, once the infusion pump motor operation
stops, the value of the controlled (c) variable is changed from true to false. Another example
is that when the alarm as an output of an event E_EmptyRsv goes off, the value of the
relevant controlled (c) variable is changed from false to true.

Input (i) and Output (0) variables: input (i) and output (o) variables interact with the
software Code(M) that is automatically generated from the Real-Time Workshop. Code(M)
includes each input variable related with the input events. That is, every input event, E_CLK,
E_BolusReq, E_ClearAlarm, E_EmptyRsv, E_LowRsv, has their own variable in Code(M).
Code(M) also includes the output variables. In our case-study the infusion pump system
model produces 4 outputs for three types of alarms and the pump motor actuator. The value
of the input and output variables in Code(M) is changed from false to true when the relative
input event is triggered. For example, when event E_BolusReq is triggered, the input variable
U.E_BolsReq and output variable Y.InfuProgress is changed from false to true. The value of
the output variable Y.InfuProgress is true means that the infusion pump motor should operate
for the bolus infusion. It is possible for the abstract model level to operate the pump motor
once the event E_BolusReq is triggered. However, this is not possible for the implemented
system because several computation phases such as reading input / output, writing input /
output, state transition are necessary in the implemented system.

Four variables are useful to distinguish the part between the physical environment (e.g.,

infusion pump hardware platform) and the software (e.g., Code(M)).

2. Testing Objectives and Testing Ports
Even though the model conforms to the timing requirements through the verification
process, the implemented system from the model may not conform to the requirement due to
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the assurance gap between the model and the implemented system.

Occlusion
Infusion_Progress Occlusion_Alarm
(A) lllustration of the Model Behavior Time
Occlusion

4

e —— =

Computation Occlusion_Alarm
Phase — :

(B) lllustration of the Implemented System Behavior 1/Me

Infusion_Progress

Figure 7. Assurance gap between the model and the implemented system

Figure 7 illustrates one brief example of the assurance gap between the model and the
implemented system. If occlusion event is triggered during infusion, the pump motor
operation should stop and raise the alarm immediately (i.e., Figure 7-(A), illustration of the
model behavior). However, computation phase is necessary for reading time / input, input /
output transition, writing output in the implemented system. So, the alarm cannot be raised
immediately from the occlusion event. (i.e., Figure 7-(B), illustration of the implemented
system behavior).

Therefore, even if the timing requirements are verified in the model, testing for the timing
requirements should be performed also in the implemented system. A layered approach for
the timing testing is proposed and explained in detail in section C. Our proposed timing
testing has two main objectives. Objectivel is to check whether the timing requirements are
satisfied in the implemented system or not (i.e., R-testing) and objective2 is to measure how
much deviation exists in the implemented system and analyze the source of the deviation (i.e.,
M-testing). The result of the objectivel is a yes or no according to the timing requirements

constraints. On the other hand, the result of the objective? is three types of quantitative
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measurement (i.e., input delay, output delay, Code(M) delay, transition delay).

To perform this testing approach, four variables need to be defined as the port. Monitored,
controlled, input, and output variables are defined as m-port, c-port, i-port, and o-port
respectively. These four ports are used for the precise timestamp for the timing testing.

m-port: m-port is interfaced with the hardware platform to detect the input events. For
example, once event E_BolusReq is triggered (i.e., bolus request button is pressed by the
patient), m-port generates the electrical signal changes.

c-port: c-port is interfaced with the hardware platform to detect the operation of the output
actuators. For example, once the infusion pump motor operates or stops, c-port generates the
electrical signal changes.

i-port: i-port is interfaced with Code(M) to detect the input variable changes. For example,
once the value of the input variable U.E_BolusReq is changed, i-port generates the electrical
signal changes.

o-port: o-port is interfaced with Code(M) to detect the output variable changes. For
example, once the value of the output variable Y.InfuProgress is changed, o-port generates
the electrical signal changes.

Timestamps from all ports are measured by using an oscilloscope.

3. R-testing and M-testing

A layered approach for the timing testing performs two different levels testing to achieve

the objectivel and objective2.
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Figure 8. Experiment framework: (a) the overall testing framework (b) the R-M testing framework
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R-testing: R-testing is performed before the M-testing. R-testing is performed to check
whether the conformance of the implemented system with regard to the timing requirements
is satisfied or not. If the result of the R-testing is a yes, M-testing does not need to be
performed. On the other hand, if the result of the R-testing is a no, M-testing needs to be
followed. Figure 8-(a) illustrates that only timing requirements information is provided to the
tester for the R-testing. In terms of four variables, Figure 8-(b) illustrates that only monitored
and controlled variables information is provided to the tester for the R-testing. That is, R-
testing only utilizes the input / output of Platform(P) to test the timing requirements. To
perform the R-testing some assumptions are needed. The assumptions are:

® The R-tester should be able to change m variables.

® The R-tester should be able to observe the changes in c variables.

® The R-tester should be able to timestamp on the events associated with m and c

variables.

SUT (System Under Test) R-Tester

M_Stimulus(M1)

(Assumption)
C_Response(C1)

)

Figure 9. R-tester assumption and SUT (System Under Test)

Figure 9 illustrates the R-testing framework. The R-tester has a m variable and c variable
information as the stimulus and the response respectively. For example, the event

E_BolusReq is defined as the m variable and the operation of the infusion pump motor is
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defined as the c variable in the REQL. According to the timing requirement of the REQ1, the
time difference between the timestamp of m-stimulus (tm1) and c-response (tc1) has to be less

than 100ms. That is, tc1 - tm1 < 100ms should be satisfied. One result among two cases can

be generated according to the value of tc1 - tma.

® (Resultl) The result of the R-testing is a yes.

® (Result2) The result of the R-testing is a no.

For example, if the time difference (i.e., tc1 - tm1) is less than 100ms, it means that the
timing requirement is satisfied (i.e., Resultl) and the M-testing does not need to be followed.
On the other hand, if the time difference is more than 100ms, it means that the conformance
of the implemented system with regard to the timing requirement is not satisfied (i.e.,
Result2). Therefore, M-testing needs to be followed to measure the computation sections (e.g.,
input / output delay, Code(M) delay, transition delay) and analyze the main source of the

deviation.
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24



Tek i @ Stop M Pos: 202.0ms TRIGGER
Type

Source

eeae o) 192ms _‘]&
4+

Slope

Mode

Coupling

CH2 5.00Y M 50.0ms CH2 & 200rmY
Use multipurpose knob to set trigger source

(b)

Figure 10. (a) Example of Resultl of REQ1, (b) Example of Result2 of REQ1

Figure 10 shows the two different results of the R-testing of REQ1L. The orange and blue
lines indicate the bolus request button (i.e., event E_BolusReq) and operation of infusion
pump motor respectively. When the orange line shows a falling trigger, it is the time that the
bolus request button is pressed (i.e., tm1). When the blue line shows a rising trigger, it is the
time that the infusion pump motor operates (i.e., tc1). Figure 10-(a) shows the Resultl of
REQ1 because tc1 - tm1= 77ms is less than 100ms. On the other hand, Figure 10-(b) shows
the Result2 of REQ1 because tc1 - tm1 = 192ms is more than 100ms and M-testing is followed.

M-testing: M-testing is performed if the result of R-testing is a Result2. M-testing is
performed to measure the computation sections and analyze the main source of the deviation.
Figure 8-(a) illustrates that abstract model information is provided to the tester for the M-
testing. In terms of four variables, Figure 8-(b) illustrates that not only monitored and
controlled variables but also input and output variables information is provided to the tester
for the M-testing. That is, M-testing utilizes the input / output of Code(M) and Platform(P) to

test the timing requirements. To perform the M-testing some assumptions are needed. The
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assumptions are:

® The M-tester should be able to change m variables.

® The M-tester should be able to observe the changes in ¢ variables.

® The M-tester should be able to timestamp on the events associated with m and ¢
variables.

® The M-tester should be able to observe the changes in i variables.

® The M-tester should be able to observe the changes in o variables.

® The M-tester should be able to timestamp on the events associated with i and o
variables.

The first to the third assumptions are the same with R-testing assumptions and the fourth to

the sixth assumptions are the additional M-testing assumptions.

SUT (System Under Test) M-Tester

M_Stimulus(M1)

|_Response(I1)
O_Response(0O1)

(Assumption)

C_Response(C1)

Figure 11. M-tester assumption and SUT (System Under Test)

Figure 11 illustrates the M-testing framework. The M-tester has a m variable and i, o, and ¢
variables information as the stimulus and the response respectively. For example, event
E BolusReq is defined as the m variable and the operation of the infusion pump motor is
defined as the ¢ variable in the REQ1. And also, input variable U.E_BolusReq in Code(M) is
defined as the i variable and output variable Y.InfuProgress in Code(M) is defined as the o

variable in the REQL. These four variables information is provided to the M-tester. The
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timestamp of m-stimulus, c-response, i-response, and o-response is denoted as tma, tci, tis,
and to1 respectively. M-testing has four categories which are input delay, output delay,
Code(M) delay, and transition delay.

(1) Input delay: In the abstract model, it takes zero time to read input and take the input-
transition. However, in the implemented system, computation phase is necessary to read
the input and this computation phase is denoted as input delay in this thesis. Input delay
can be expressed by ti1 - tm1. Figure 12-(a) illustrates the input delay in REQ1 testing.
Input delay is a time gap between the m-port and the i-port.

(2) Output delay: In the abstract model, it takes zero time to write output and take the
output-transition. However, computation phase is necessary to write the output in the
implemented system and this computation phase is denoted as output delay in this thesis.
Output delay can be expressed by tci - to1. Figure 12-(b) illustrates the output delay in
REQL testing. Output delay is a time gap between the o-port and the c-port.

(3) Code(M) delay: In the abstract model, it takes zero time to process data such as reading
time and input, writing output and taking input / output transition. However,
computation phase is necessary to process data in the implemented system and this
computation phase is denoted as Code(M) delay in this thesis. Code(M) delay can be
expressed by toi - ti1. Figure 12-(c) illustrates the Code(M) delay in REQL testing.
Code(M) delay is a time gap between the i-port and the o-port.

(4) Transition delay: In the abstract model, it takes zero time to take state transition.
Furthermore, the model does not consider the computation phase of the function like an
initialization function executed during the state transition process (denoted as transition
function). So it also takes zero time to compute the function. However, computation
phase is necessary to take state transition and perform the transition function and this

computation phase is denoted as transition delay in this thesis. Figure 12-(d) illustrates
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the transition delay. Transition delay is a time gap between the previous state and the

current state.

(E.g.) Variable changes by executing statement U.E_BolusReq = 1;
(i-port, ti1)
Read (ij)
Code(M) T

Time

Platform(P) Y Input delay
I

(E.g.) Electrical change in bolus request button
(m-port, tm1)

(@)

(E.g.) Variable changes by executing statement Y.InfuProgress = 1;
(o-port, to1)
Write(ok)
Code(M)

Time

Platform(P) Output delay o,

(E.g.) Electrical change in pump-motor
(c-port, tc1)

(b)

(E.g.) Variable changes by executing (E.g.) Variable changes by executing
statement U.E_BolusReq = 1; statement Y.InfuProgress = 1;
(i-port, ti1) (o-port, to1)

Read (ij) Write (ok)
Code(M) T T

»

Time

Platform(P) Code(M) delay

(©)

28



Tran1 Tran1 Tran2 Tran2

m i Start  End Start  End 0 c
Code(M) * * T l T l &
| -
Time
o €
PIatform(P) Tran1 Tran2
delay delay
(d)

Figure 12. Four categories of M-testing: (a) input delay (b) output delay (c) Code(M) delay

(d) transition delay

Figure 13 shows the measurement example of input delay, output delay, and Code(M) delay
in the M-testing for REQ1. In Figure 13-(a) the orange line and blue line indicate the bolus
request button (i.e., m-port) and an input variable (i.e., i-port) respectively. When the orange
line shows a falling trigger, it is the time that the bolus request button is pressed. When the
blue line shows a rising trigger, it is the time that the value of the input variable (i.e.,
U.E_BolusReq) is changed from false to true. In Figure 13-(b) the orange line and blue line
indicate an output variable (i.e., o-port) and operation of the infusion pump motor (i.e., c-port)
respectively. When the orange line shows a rising trigger, it is the time that the value of the
output variable (i.e., Y.InfuProgress) is changed from false to true. When the blue line shows
a rising trigger, it is the time that the infusion pump motor operates. In Figure 13-(c) the
orange line and blue line indicate an input variable (i.e., i-port) and an output variable (i.e., o-
port) respectively. The meaning of the orange line and blue line’s trigger is the same with the

explanation for input delay and output delay.
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Figure 13. Measurement of M-testing for REQL: (a) measurement of input delay (b) measurement of output
delay (c) measurement of Code(M) delay
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V. CASE STUDY: TIMING TESTING FOR INFUSION PUMP
SYSTEMS

In this section, a proposed layered approach for the timing testing is performed for an
infusion pump systems in order to show the applicability. We show how to detect the timing
requirement violation through R-testing, and how to measure the timing deviation compared
with the abstract model through M-testing.

Case-Study Setting: REQL is considered as the timing requirement that needs to be
satisfied not only in the abstract model, bus also in the implemented system. The infusion
pump model is made through Stateflow/Simulink language [5, 6]. The final model consists of
15 states, 31 transitions, 5 inputs, and 4 outputs. The explanation for each input and output is
handled in timing semantics mismatches in the model-based development section. Figure 14
shows a Simulink block diagram for the infusion pump system. It consists of 5 inputs, 4
outputs, and 1 chart (i.e., a block called PCA_Pump). The main functions of the model are
implemented in the chart and the part of the model is shown in Figure 3. Verification of the
model is performed through Simulink Design Verifier [12]. The model is modified until the
conformance of all requirements is verified. Once the verification step is finished, the C
source code can be automatically generated through the Real-Time Workshop. Five header
and 4 source files are generated for our case study. In order to interact with the infusion pump
hardware interfacing code is added into the Code(M) that is the generated code (this step is
called integration step) and then Code(M) is ported into the micro-controller (ARM7Y). Finally,
the sensors and actuators of the infusion pump hardware are interfaced with the micro-
controller that operates FreeRTOS [11]. Baxter PCA Syringe Pump shown in Figure 15 is
used as an infusion pump hardware. This pump provides 18 infusion modes, which fall into

two major categories: continuous and timed infusions [13]. Timed infusion mode is used for
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our experiment.
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Figure 14. Simulink block diagram for infusion pump system
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Figure 15. The experimental platform

Case-Study Scenarios: In the integration step, there are various ways to add the interfacing
code in terms of reading the input event, the number of thread, an operating system, and so
forth. For example, an input event can be read by a periodic thread or an interrupt service
routine. Similarly, software can be executed by a single thread or multiple threads. Therefore,
the system can be implemented in various ways through the integration step. It is challenging
to apply R-M testing to a wide range of different implemented systems. So, we create four
different implemented systems and apply R-M testing to each of them. The ways to achieve
these four different implemented systems are common in the integration step. An explanation

of the four implemented systems follows:
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Figure 16. The structure of the implemented systems: (a) implementationl (b) implementation2 (c)

implementation3
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Implementationl: Figure 16-(a) illustrates the implementationl. This implemented system
is executed by a single thread. That is, the sensing process to read inputs and the actuation
process to write outputs are included in a single thread. The thread is executed every 25ms on
FreeRTOS. Input events are read periodically, not by interrupt service routine.

Implementation2: Figure 16-(b) illustrates the implementation2. This implemented system
is executed by the multiple threads. Sensing and actuation process come away from the
Code(M) and create their own thread. Four sensing threads to detect E_BolusReq,
E_ClearAlarm, E_EmptyRsv, and E_LowRsv events and 2 actuation threads to operate the
infusion pump motor and alarming buzzer are created in the implementation2. So, there are
total 7 threads including the thread executing Code(M) called Code(M) thread. In Figure 16-
(b) the numbers mean the trigger periods of each thread. The threads are scheduled by
FreeRTOS and Code(M) thread is executed every 25ms like implementationl. The
communication between the sensing / actuation threads and the Code(M) thread is achieved
by FIFO queues. Three queues are used. One is used to transmit input events from the sensing
threads to the Code(M) thread, another is used to transmit output data for the infusion pump
motor (i.e., the value of Y.InfuProgress) from the Code(M) thread to the motor actuation
thread, the other is used to transmit output data for the alarming buzzer (i.e., the value of
Y.empty_alarm, Y.low_alarm, and Y.timeout_alarm) from the Code(M) thread to the buzzer
actuation thread. The summation of the period of sensing, the Code(M), and actuation threads
is less than 100ms in order to make sure the value of the c variable is changed within 100ms
after the value of the m variable is changed.

Implementation3: Figure 16-(c) illustrates the implementation3. This implemented system
is the same as implementation2 except 3 additional threads, called interference threads, that
do not interact with Code(M), are added. The reason why the interference threads are added

to implementation2 is that our infusion pump system is simpler than today’s smart infusion
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pump. Furthermore, model-based development is not concerned with the whole system
structure, such as communication with other devices, due to the model complexity. Therefore,
interference threads are added in order to assume that they make the implemented system
more complicated. The interference threads execute their own tasks, not associated with
Code(M). One of the threads has the same priority with the Code(M) thread, and the other
two threads have a higher and a lower priority than the Code(M) thread respectively. Two
different testing scenarios are made in implementation3. One is the testing in REQ1 that are
the same with the implementationl, 2, and 4 (denoted as scenariol). A time constraint 100ms
is the deadline to meet the timing requirement. On the other hand, a time constraint of another
testing scenario (denoted as scenario2) is the time duration, not the deadline. The scenario2
is explained later in detail.

Implementation4: This implemented system is the same as implementation3 except the
additional functions executed during the state transition process. The reason why the
functions are added during the state transition process is to measure the transition delay.
Graphical functions [14] in Stateflow are added into the state transitions in the abstract model.
Figure 17 illustrates one of the added graphical functions that execute the loop for a certain
time. State transitions occur twice from m variable == 1 to ¢ variable == 1 in REQ1 testing.
So, two graphical functions are added into the abstract model. In the model, execution time of
graphical function is not considered in the verification step. Execution time of graphical
functions that have effects on the transition delay might lead to the violation of the timing

requirement in the implemented system.

36



function fy = exercisel(fx)
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Figure 17. Graphical function in Stateflow

Implementation 1 Implementation 2 Implementation 3
M-Testing M-Testing
Test . . .
Ol RoTesting: o roting olesting Input CODE(M)  Output  R-Testing Input CODE(M)  Output
(m, ) (m, c) delay delay delay (m, c) delay delay delay
(m, ) (i,0) (0,¢) (m, i) (i, 0) (0,¢)
1 44 - 7 38 25 15 228 190 23 15
2 44 - 81 41 25 15 192 156 23 16
3 43 - 61 22 25 15 Max MAX - -
4 49 - MAX MAX - - 105 67 23 15
5 30 - 220 181 25 15 205 170 22 45
6 49 - 123 82 26 15 168 181 23 15
7 45 - 104 64 25 15 219 181 23 16
8 49 - 79 40 25 15 149 108 23 15
9 31 - 89 47 25 15 Max MAX - -
10 27 - MAX MAX - - 119 80 24 15

Table 1. R-M testing results in REQ1
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1. Scenariol

Table 1 is the experimental result of the R-M testing in REQ1. The time is measured by an
oscilloscope that detects the electrical signal change of m, c, i, and o port. The time unit is
millisecond. If the result of the R-testing is more than 100ms, M-testing is followed in order
to measure input delay, Code(M) delay, and output delay. Timing testing is performed for
implementationl, 2, 3, and 4 (testing result of implementation4 is explained separately). Red
numbers in the R-testing columns indicate that the conformance of the implemented system
with regard to REQ1 is not satisfied. In other words, a bolus dose is not started within 200ms
when requested. MAX in the R-testing columns indicates event loss. The infusion pump
motor does not operate even if the bolus request button is pressed. More than 10 tests are
performed, but table 1 includes only 10 selected tests in order to show the proper results.
However, 10 tests samples are selected in order to maintain the probability of the violation of
the timing requirement.

There is no violation of the timing requirement in implementationl. Half of the R-testing
results for implementation2 show the timing requirement violation and then M-testing is
followed in order to measure input delay, Code(M) delay, and output delay. Input delay has a
bigger effect on the requirement violation than Code(M) delay and output delay. Most R-
testing results for implementation3 show the requirement violation and then also M-testing is
followed. The main source of the violation is similar to the one for implementation2. Input
delay also has a bigger effect on the requirement violation than Code(M) delay and output
delay. The results of M-testing can give some clues to optimize the implemented system. For
example, input delay can be reduced by increasing the sampling rate of the sensing thread.
And also, queue size needs to be extended in order to remove the event loss such as 4 and 10
of implementation2 and 3 and 9 of implementation3 cases.

The R-M testing result for implementation4 is explained separately because transition delay
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needs to be measured only when the transition function is included in the abstract model. The
results of R-testing and M-testing (input delay, Code(M) delay, output delay) for
implementation4 is similar to the results for implementation3. Most R-testing results show the
requirement violation. Table 2 includes only one test sample because the results of the
transition delay are consistent. The time unit is millisecond. In table 2, transitionl indicates
the transition from Init state to BolusRequested state and transition2 indicates the transition
from BolusRequested state to Infusion state in Figure 3. If the transition function executed
during state transition process is more complicated, transition delay would be more increased.
In this case, transition delay might have a bigger effect on the timing requirement violation
than input delay. Therefore, transition delay needs to be measured when the transition

function is included in the model.

Transitionl delay Transition2 delay
it 20

Table 2. Transition delay of M-testing in REQ1

2. Scenario2

The time constraint of the R-M testing in REQL1 (i.e., scenariol) is the deadline, 100ms. On
the other hand, the time constraint of the scenario2 is the time duration. For example, let us
assume that a bolus dose shall be infused for 2 seconds when requested by the patient
(duration of the infusion is set before the treatment according to the patient’s condition, the
type of drug and so forth). As shown in Figure 18, the conformance of the abstract model
with regard to the duration of the infusion (i.e., 2 seconds) is guaranteed. Nevertheless, the
timing requirement might not be satisfied in the implemented system due to the input delay,

Code(M) delay, and output delay. In order to perform the scenario2 experiment, the followed
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assumptions are needed:
® A bolus dose shall be infused for 2 seconds when requested by the patient.
® The above duration of the infusion is set based on the patient’s condition and the type
of drug.
These assumptions are used as the timing requirement for the R-M testing in the scenario2

experiment.

Figure 18. Time scope for the duration of the infusion in the abstract model

The timing gap between the model and the implemented system, especially in terms of the
time duration, might be small. However, if the small timing gap is accumulated for a long
time, it might cause some problem. For example, it is assumed that a bolus dose shall be
infused for 2 seconds when requested by the patient. A bolus dose might not be infused for 2
seconds due to input delay, Code(M) delay, and output delay in the implemented system. The
more a bolus request button is pressed, the more the difference of amount of injection
between the model and the implemented system is increased. This would lead to the over or
under-infusion. Over-infusion and under-infusion are considered as the common sources of
the infusion pump accidents [15]. Definition of the over / under-infusion is provided for the
accurate understanding [16].

® OQver-infusion: A situation in which more fluid or medication than is intended is
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delivered to the patient.

® Under-infusion: A situation in which less fluid or medication than is intended is

delivered to the patient.

If the drug is critical such as morphine, over or under infusion has great effect on the
patient. Therefore, testing for the time duration needs to be performed. Table 3 is the
experimental result of the R-M testing in scenario2. Time unit is millisecond. If the result of
the R-testing is not 2 seconds, the M-testing is followed in order to measure input delay,
Code(M) delay, and output delay. The M-testing is performed twice for one R-testing in
scenario2. One is performed at the start of the actuation (actuation start section in Table 3)
and another is performed at the end of the actuation (actuation end section in Table 3). Figure
19 illustrates the reason why the M-testing needs to be performed twice for one R-testing in
scenario2. A and B implies the timing gap between the model and the implemented system at
the start of the actuation (e.g., operation of an infusion pump motor starts) and at the end of
the actuation (e.g., operation of an infusion pump motor ends) respectively. As shown Figure
19, the R-testing result for the time duration requirement depends on the value of the | A- B |.
If the value of the | A — B | is O, it means that the time duration requirement is satisfied in the
implemented system. On the other hand, if the value of the | A — B | is not 0, it means that the
time duration requirement is violated and there is a timing gap between the model and the
implemented system as much as the value of the | A — B |. Therefore, the delay A and B need

to be measured by M-testing.
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implementation

As shown in Table 3, R-testing result show the timing requirement violation (i.e., the
value of the | A — B | in Figure 19 is 25ms and this is an under-infusion case) and two M-
testing are followed in order to measure input delay, Code(M) delay, and output delay at the
actuation start and end section. Both of the input delay are almost 0. In order to meet the time
duration requirement the value of the A and B in Figure 19 have to be same. Code(M) delay

in the actuation start / end section are quite different. Therefore, Code(M) delay in the

model

actuation

Start

|

actuation

End

|

actuation actuation
Start End
l /]\ | 1 \l/
| | |
<> <——>
A(ms) B(ms)

Figure 19. Timing gap between the model and the implemented system in scenario2

actuation start section needs to be reduced in order to optimize the implemented system.

Actuation start section Actuation end section

M-Testing M-Testing
Input delay C%ZE(M) Output delay  Input delay C%EE(M) Output delay
(m, i) 0o 0 (m, i) (o © 0
1975 0 25 17 0 3 14

In order to measure the accumulated difference of amount of injection between the model
and the implemented system a bolus is requested 150 times. As shown in Table 4, total

accumulated difference of amount of injection is 4.6979g for 150 times bolus request. This
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Table 3. R-M testing results in scenario2




under-infusion is considered as the common sources of the infusion pump accidents.

Therefore, the R-M testing for the time duration needs to be performed in the implemented

system.
Model 18.7272
Implemented system 14.0293
The difference between the model and the Implemented system 4.6979

Table 4. Accumulated amount of injection for 150 times bolus request

VI. RELATED WORK

Abstraction is also used for the testing in the model-based development. In [3], abstractions
of the model such as the functional abstraction, data abstraction, communication abstraction,
and temporal abstraction are used for the testing in order to reduce the model complexity.
However, they also point out the limitations of the temporal abstraction.

Test case generation technologies have been developed well in the various ways [17, 18,
19]. And also, some tools to test the systems are developed [20]. However, most of the test
case generation technologies and the testing tools do not consider the non-functional
requirements, especially the timing aspects even if testing real-time requirements is an
important issue, in particular in embedded systems.

The Linux Trace Toolkit (LLT) is a set of tools that is designed to log program execution
details from a patched Linux kernel and then perform various analyses on them, using
console-based and graphical tools. LLT allows the user to see in-depth information about the
processes that were running during the trace period, including when context switches
occurred. Especially, in terms of time analysis, LLT also allows the user to see how long the
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processes were blocked for, and how much time the processes spent. However, LLT does not
provide the sources of the timing requirement violation.

[21] proposed a tool for online testing using UPPAAL. The system is modeled using
UPPAAL, and the test utilizes the model in order to generate test cases that can be fed into
the implemented system. This work also focuses on testing the timing aspects. However, it
does not consider the segmented delays of the implemented system such as input and output
delay.

In [22], the boundary cases of timing constraints are considered in generating test cases to
detect timing requirement violation. These works can be used and extended in order to

generate the R-M testing cases in our proposed framework.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a layered approach for the timing requirements testing in the implemented
system developed by the model-based development. A four-variables model is used to
express the abstraction boundary of the implemented system and measure the timing gap
between the model and the implemented system. The R-testing is performed in order to check
the timing requirement violation. If the R-testing result shows that the timing requirement is
not satisfied, the M-testing is followed in order to measure the timing deviation of the
implemented system with regard to the abstract model. We apply the R-M testing to the
infusion pump system for the case study. The infusion pump system is implemented in the
four different ways and the R-M testing is applied to the each of them. And also, two different
types of the timing requirements (time deadline and time duration) are used for the scenarios.

Input events are read by the periodic threads in our case study. For the future work, we

consider the different way to read the input events. That is, an interrupt service routine is
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considered as the input reading way. When the execution of the automatically generated code
from Real-Time Workshop is interrupted, the behavior of the implemented system is different
from the behavior of the abstract model. Furthermore, the behavior of the implemented
system depends on where the execution of the generated code is interrupted at. The
MathWorks also concerns this case and released a document [23]. Overall, through my future
researches, | want to contribute to the development of the timing testing in the model-based

development.
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