
i

Master’s Thesis

석사 학위논문

Timing Testing in Model-Based Development of Safety-Assured

Software for Medical Devices

Hyeon I Hwang (황 현 이 黃 鉉 伊)

Department of Information and Communication Engineering

정보통신융합전공

DGIST

2014

ii

Timing Testing in Model-Based Development of Safety-Assured

Software for Medical Devices

Advisor: Professor Sang Hyuk Son

Advisor: Professor Taejoon Park

Co-Advisor: Professor Soon Ju Kang

by

Hyeon I Hwang

Department of Information and Communication Engineering

DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Information and Communication Engineering. The study was conducted

in accordance with Code of Research Ethics
1)

.

. . 2014.

Approved by

Professor Sang Hyuk Son (Signature)

(Advisor)

Professor Taejoon Park (Signature)

(Advisor)

Professor Soon Ju Kang (Signature)

(Co-Advisor)

1) Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I

have not committed any acts that may damage the credibility of my research. These include, but are

not limited to: falsification, thesis written by someone else, distortion of research findings or

plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research

under the guidance of my thesis advisor.

iii

Timing Testing in Model-Based Development of Safety-Assured

Software for Medical Devices

Hyeon I Hwang

Accepted in partial fulfillment of the requirements for the degree of Master of Science

. . 2014.

Head of Committee _________________ (Signature)

Prof. Sang Hyuk Son

Committee Member _________________ (Signature)

Prof. Taejoon Park

Committee Member _________________ (Signature)

Prof. Soon Ju Kang

iv

MS/IC
201222018

 황 현 이, Hyeon I Hwang, Timing Testing in Model-Based Development of Safety-

Assured Software for Medical Devices. Department of Information and Communication

Engineering, 2013, 42 p.

Advisors: Professor Son, Sang Hyuk and Professor Park, Taejoon

Co-Advisor: Professor Kang, Soon Ju

ABSTRACT

Medical devices are safety-critical systems that have been gradually becoming more complicated and

software issues are increasingly on the rise. To solve this problem, the quality of the software for the medical

devices should be thoroughly guaranteed through verification. Every possible state and path should be verified.

To enhance the quality of the software-related safety issues model-based development can be useful. In

model-based development the purpose of formal modeling is to permit precise understanding, specification, and

analysis of the system. Model-based development is a software development approach to design the system

model and verify if the designed model meets every system requirement [1]. After verifying all of the safety

requirements are satisfied, a C source code can be generated through the code generation tool.

However, there is a challenge for meeting the timing requirements in model-based development due to

timing semantics mismatch between the model and the implemented system. Even though the model conforms

to the timing requirement through the verification process, the implemented system from the model may not

conform to the requirement. A layered approach for timing testing in the model-based development is proposed

in this thesis. A four-variables model is used to test and measure the timing gap between the model and the

implemented system. The R-testing is performed in order to detect the timing requirement violation and M-

testing is performed in order to measure the timing gap between the abstract model and the implemented system.

An infusion pump is used for the case study.

Keywords: model-based development, safety-assured software, medical devices, infusion pump, timing

semantics mismatch.

v

Contents

Abstract .. iv

List of contents ... v

List of figures .. vi

List of tables .. vi

Ⅰ. INTRODUCTION .. 1

Ⅱ. BACKGROUND ……………………………………………………….. 3

1. Model-Based Development ... 3

2. Patient Controlled Analgesic (PCA) Infusion Pump ... 4

III. TIMING SEMANTICS MISMATCHES

 IN THE MODEL-BASED DEVELOPMENT ... 5

IV. THE LAYERED APPROACH FOR THE TIMING TESTING .. 12

1. Mapping the four-variables to the implemented system .. 12

2. Testing Objectives and Testing Ports ... 13

3. R-testing and M-testing .. 15

V. CASE STUDY: TIMING TESTING FOR INFUSION PUMP SYSTEMS .. 25

1. Scenario1 .. 32

2. Scenario2 .. 33

VI. RELATED WORK ... 37

VII. CONCLUSIONS AND FUTURE WORK .. 38

REFERENCES .. 40

요약문 ………………………………………………………………………………….…...….......…..... 42

vi

List of Figures

Figure 1: Process of model-based development .. 4

Figure 2: The goal of the layered approach ... 5

Figure 3: Abstract model of the infusion pump ... 6

Figure 4: Real-Time Workshop …………... 8

Figure 5: Integrated system for the infusion pump case study... 9

Figure 6: Time scope of the timing requirement in the model and the implementation 10

Figure 7: Assurance gap between the model and the implementation .. 14

Figure 8: Experiment framework .. 16

Figure 9: R-tester assumption and SUT (System Under Test) .. 17

Figure 10: Examples of the result for the timing requirement .. 18

Figure 11: M-tester assumption and SUT (System Under Test) ... 20

Figure 12: Four categories of M-testing .. 22

Figure 13: Measurement of M-testing ... 24

Figure 14: Simulink block diagram for the infusion pump system ... 26

Figure 15: The experimental platform .. 27

Figure 16: Structure of the implemented systems ... 28

Figure 17: Graphical function in Stateflow ... 31

Figure 18: Time scope for the timing requirement in the model ... 34

Figure 19: Timing gap between the model and the implementation ... 36

List of Tables

Table 1: R-M testing results in the timing requirement ………..…….……….........…………..….…….. 31

Table 2: Transition delay of M-testing in the timing requirement ……….………….……...…………… 33

Table 3: R-M testing results in the timing requirement …………………………....……………………. 36

Table 4: Accumulated amount of injection ……………………………………………………………… 37

7

Ⅰ. INTRODUCTION

With embedded systems getting smarter and more complicated, the amount of software for

the systems is also increasing. This leads to more frequent system faults due to software

errors and the importance of the software-related safety issues is on the rise. The issue is the

lack of a systematic development process. Informal system design, typically relies on

documentations and engineering practices. It is difficult to verify and validate the correctness

of the early development stages in this case. In addition, the code is typically written from the

informal system design in a manual fashion. This is error-prone, and requires extensive

testing. This development process leads to lack of safety and inefficiency.

To enhance the quality of the software, model-based development is widely used in the

industry and research institutions because the system is designed in a way that formal

verification can be performed in the early stage of the development process. This approach

enhances the safety and efficiency of the software development process.

However, there is a challenge of the timing testing in the model-based development.

Testing methodologies have been studied in the model-based development [2], but the timing

testing approach has not been studied well. In addition, model-based development is strong in

the functional aspects, but weak in the timing aspects when verification is performed at the

abstract model level because timing behavior is abstracted to avoid the verification

complexity [3]. Furthermore, another reason why model-based development is weak in the

timing aspects is that timing semantics mismatches between the abstract model and the

implemented system. For example, UPPAAL [4] and Stateflow/Simulink [5, 6], which are the

modeling tools, have instantaneous transition semantics. That is, the input and output

transition occurs simultaneously taking zero time. The implemented system requires non-zero

8

computation time to implement such semantics because some computation phases such as

reading time, reading input, input-transition, writing output, and output-transition are taken.

Even though the timing requirements are satisfied at the model level, they might not be

satisfied at the implemented system level.

Hence, timing testing is essential to verify and validate that the timing requirements are

satisfied not only in the model, but also in the implemented system. A layered approach is

proposed in this thesis. Our approach has two levels testing which are R-testing and M-

testing. R-testing checks if the implemented system meets the timing requirements. In this

testing, only input (sensor) and output (actuator) information from the target platform is used.

If the result of R-testing shows that the implemented system does not conform to the timing

requirements, M-testing is followed. M-testing is performed in order to measure how much

timing deviation occurs due to the semantics mismatches. In this testing, not only input

(sensor) and output (actuator) information from the target platform, but also abstracted input

and output of the automatically generated code from the abstract model are used. To perform

the tests, testing points are necessary in terms of both physical environment and the

automatically generated code from the model. In order to express the abstraction boundary of

the implemented system Parnas’ four-variables model is used [7]. Monitored (m), input (i),

output (o), and controlled (c) variables are used in the four-variables model. Only monitored

(m) and controlled (c) two variables are used for the R-testing. All four variables, monitored

(m), input (i), output (o), and controlled (c), are used for the M-testing. The results of the

testing provide a tester with a way to optimize the implemented system.

The proposed approach is applied to an infusion pump for the case study. The infusion

pump is developed based on the model-based development. R-M testing is performed to

check the conformance between the timing requirements and the implemented system.

The main contributions of this thesis are as follows:

9

 We present the test design using the four-variables model that expresses the abstraction

boundary of the implemented system.

 We propose the layered approach for the timing requirements testing in the

implemented system developed by the model-based development.

 We apply the layered approach to an infusion pump system for a case study in order to

show the applicability.

II. BACKGROUND

1. Model-Based Development

First of all, safety requirements from the system experts should be documented. Formal

modeling can be started from the understanding of the safety requirements. There are some

modeling tools such as UPPAAL [4], Stateflow [5], Simulink [6], TIMES TOOL [8] or

SCADE, but each of them has different modeling properties. Among them Simulink /

Stateflow is chosen for our study. After finishing the modeling, verification should be

performed thoroughly. Verification can be performed through the query language or

simulation. If any safety requirement is not sufficient in the model, the model should be

modified until all safety requirements are adequate. Once this step is finished, a C source

code can be obtained by using the code generation tool. We first need to understand how the

code works and then attach some interfacing code to interact with the hardware. In our case, a

Patient Controlled Analgesic (PCA) infusion pump is used for the case study. Figure 1 shows

the brief process of model-based development.

10

Figure 1. Process of model-based development

2. Patient Controlled Analgesic (PCA) Infusion Pump

There are many types of medical devices such as a pulse oximeter, pacemaker, and infusion

pump. Among them, we have chosen an infusion pump. Infusion pumps are medical devices

that deliver fluids, including nutrients and medications, into a patient’s body in a controlled

manner. Infusion pumps are used worldwide in hospitals as well as in home care.

Nevertheless, more than 56,000 reports of adverse events associated with the use of infusion

pumps, including serious injuries and deaths were reported from 2005 through 2009 [9].

Medical devices are safety-critical systems because they are related to the patient’s life. The

Food and Drug Administration (FDA) has recognized that this is a serious problem and

launched the Infusion Pump Improvement Initiative [9]. Through this initiative, the FDA will

take broad steps such as establishing additional requirements for infusion pump

manufacturers, proactively facilitating device improvements, and increasing user awareness

to prevent infusion pump problems. These are the reasons why infusion pumps have been

chosen for our research. A PCA (Patient Controlled Analgesic) infusion pump has been

selected specifically because it is one of the most common infusion pumps. The purpose of

the PCA infusion pump is pain-relief treatment (e.g., morphine). The patient may request

additional doses (called bolus) by pressing the “request” button attached to the pump. Then a

small amount of drugs will be injected into the patient. The infusion pump mentioned in this

thesis is the PCA infusion pump.

11

III. TIMING SEMANTICS MISMATCHES IN THE MODEL-

BASED DEVELOPMENT

In this section, each step of the model-based development is handled through the infusion

pump case study.

Figure 2. The goal of the layered approach in the model-based development

Figure 2 illustrates the goal of the proposed approach in the model-based development. In

the step Figure 2-(1), modeling is performed with regard to the system requirements using the

modeling tool such as UPPAAL or Simulink/Stateflow (Like mentioned in the

BACKGROUND section, Simulink/Stateflow is chosen for our research). System

requirements are provided as a document and some requirements of the infusion pump are

written below.

 (REQ1) A bolus dose shall be started within 100ms when requested by the patient.

 (REQ2) If the syringe becomes empty during infusion, an empty reservoir alert shall be

issued and the current infusion should stop within 50ms.

12

 For example, Figure 3 shows the way to model the REQ1.

Figure 3. Abstract model of the infusion pump developed by Simulink/Stateflow

Figure 3 is a part of the abstract model of the infusion pump with regard to the system

requirements using Simulink/Stateflow. When an event, E_BolusReq, is triggered from the

environment (i.e., patients), state transition from Init state to BolusRequested state occurs.

After this state transition from BolusRequested state to Infusion state occurs subsequently. At

this transition the value of an output variable, InfuProgress, is changed from 0 to 1. E_CLK

event implies the digital clock and before(100, E_CLK) is one of the syntax in the

Simulnk/Stateflow to model the temporal logic. Once modeling is finished, the model can be

verified through Simulink Design Verifier or model simulation. The model should be

modified until the model verifies that it satisfies all the requirements. In our case-study 5

input events are fed into the Stateflow model from the external Simulink block and 4 outputs

are produced from the external Simulink block. The variables of the 5 input events and the 4

outputs are defined here.

 E_CLK event: This input event indicates the digital clock. It is used for the temporal

13

logic such as before, after, or at in the Stateflow [10].

 E_BolusReq event: This input event indicates that the bolus request button is pressed

from the environment (i.e., patients). When this event happens, the expected output is to

operate the infusion pump motor so that the bolus is injected into the patient’s body

through the syringe.

 E_ClearAlarm event: This input event indicates that clear alarm button is pressed from

the environment (i.e., patients). When this event happens, the expected output is to

clear the buzzer alarm.

 E_EmptyRsv event: This input event indicates that there is no more of the drug in the

syringe and that it is empty. When this event happens, the expected output is to raise

the empty reservoir alarm and stop the infusion pump motor.

 E_LowRsv event: This input event indicates that the amount of the drug in the syringe

is low. When this event happens, the expected output is to raise the low reservoir alarm

and stop the infusion pump motor.

 Y.InfuProgress: This output variable interacts with the infusion pump motor. When the

value of the Y.InfuProgress is 0, it implies that the motor does not operate. When the

value of the Y.InfuProgress is 1, it implies that the motor operates.

 Y.empty_alarm, Y.low_alarm: These output variables interact with the buzzer alarm.

When the value of the Y.empty_alarm or Y.low_alarm is 0, it implies that the empty

reservoir alarm or low reservoir alarm is not raised. When the value of the

Y.empty_alarm or Y.low_alarm is 1, it implies that the empty reservoir alarm or low

reservoir alarm is raised. Y.empty_alram == 1 or Y.low_alarm == 1 is the expected

output of the input event E_EmptyRsv or E_LowRsv respectively.

 Y.timeout_alarm: This output variable interacts with the buzzer alarm. The timeout

alarm is raised when the violation of the timing requirements occurs.

14

The empty reservoir alarm, low reservoir alarm, and timeout alarm are distinguished by the

pulse width modulation associated with the alarming speed.

As shown in Figure 2-(2), automatic code generation is performed to generate source code

(denoted as Code(M)) that preserves the model structure from the verified model by using

Real-Time Workshop. The number and contents of the generated source and header files

depend on which syntax is used in the model.

Figure 4. (a) Real-Time Workshop, (b) generated header and source files from the model through Real-Time

Workshop

Figure 4-(a) shows Real-Time Workshop window. There are some platform-dependent

options to apply the generated code to the target platform (denoted as Platform(P)) properly.

Figure 4-(b) shows the generated files from the model through automatic code generation. In

our study 5 header and 4 source files are generated from the model.

Code(M) cannot execute alone on the Platform(P) without adding interfacing code to

Code(M). As shown in Figure 2-(3), adding the interfacing code to Code(M) is performed.

Contents of the interfacing code are dependent on the target platform, operating system,

15

implementation method such as the dependency between tasks and the way to trigger the

input event (e.g., sampling or interrupting method) and so forth. For example, the

input/output interfacing code connects the input/output of the physical environment with the

input/output variables of Code(M). To amplify the input/output interfacing code, when the

patient presses the bolus request button, input interfacing code converts the electrical signal

change into updating the input variable of Code(M) (i.e., E_BolusReq) from false to true.

Likewise, when the output variable of Code(M) (e.g., Y.InfuProgress) is updated from false

to true, the output interfacing code converts the update into generating the electrical signal

change to operate the physical actuator of the infusion pump. In our case study the model

consists of 4 inputs and 4 outputs. Therefore, 4 input interfacing codes and 4 output

interfacing codes are added to Code(M).

Figure 5. Integrated system for the infusion pump case study

Figure 5 illustrates the integrated system for the infusion pump case study. Sensors (e.g.,

bolus request button, low reservoir detecting sensor, empty reservoir detecting sensor, alarm

clear button) and actuators (e.g., pump motor, buzzer) of the infusion pump hardware are

interfaced with the micro-controller(ARM7) that operates FreeRTOS [11].

In the model-based development process, timing requirements might not be satisfied in the

16

implemented system level even though the conformance of the timing requirements is

verified in the model level. Figure 6 shows one example case.

 (a)

 (b)

 (c)

Figure 6. (a) Time scope when event E_BolusReq is triggered in the model, (b) Time scope when bolus infusion

starts in the model, (c) Time scope of event E_BolusReq and output infusion pump motor in the implemented

system

Figure 6-(a) and (b) illustrate the system behavior in the model with regard to the timing

17

requirement that is a bolus dose shall be started within 100ms when requested by the patient.

When event E_BolusReq is triggered, the related output value (i.e., Y.InfuProgress) should be

changed from false to true within 100ms. Figure 6-(a) and (b) show that it takes 17.5ms

(125ms – 107.5ms = 17.5ms) from the event occurrence to the output value change, which

means the timing requirement is satisfied in the model. However, Figure 6-(c) shows the

violation of the timing requirement in the implemented system by using an oscilloscope. The

orange and blue lines indicate the bolus request button and infusion pump motor respectively.

In Figure 6-(c), section (1) (i.e., 100ms) indicates the constraint of the timing requirement.

Section (2) (i.e., 192ms) indicates measured time from the bolus request to the infusion start

and section (3) (i.e., 92ms) indicates the timing deviation between the timing requirement

constraint and the implemented system. This timing assurance gap is made due to the

abstraction of the timing aspects using a modeling language. It takes zero time to transit the

states and produce the related output in the model, but it is hard to realize this timing

semantics because some computation phases are necessary such as read input, input-transition,

write output, and output-transition in the implemented system.

Due to the timing semantics mismatch between the model and the implemented system it is

necessary to perform timing testing in order to assure if the timing requirements are also

satisfied in the implemented system. It is not efficient if all testing with regard to the system

requirements is performed because the conformance of the generated with regard to the

functional requirement aspect is assured by automatic code generation. That is, we have

confidence on Code(M) with regard to the functional requirement, so testing for the

functional requirement aspect does not need to be performed. On the other hand, there is less

confidence on the timing requirement aspect in the implemented system. Our goal is to check

conformance of the implemented system with regard to the timing requirements and measure

the timing deviation precisely so that the results of the test give some clue to the tester in

18

order to optimize the final implemented system.

IV. THE LAYERED APPROACH FOR THE TIMING

TESTING

In this section the four-variables model and two different levels of timing testing, R-testing

and M-testing, are explained.

1. Mapping the four-variables to the implemented system

The uniform separation at the boundary between the hardware platform and the real

environment is necessary to perform the timing testing precisely. The four-variables model is

a famous technique in order to map the system requirements [7]. The four-variables model

consists of monitored (m), input (i), output(o), and controlled (c) variables. The four variables

are interfaced with the sensor device, actuator device, and the software of the system. The

four-variables model is used for our layered approach for the timing testing.

Monitored (m) and Controlled (c) variables: monitored (m) and controlled (c) variables

interact with the physical environment and the hardware platform. Monitored (m) variable is

interfaced with the sensor or input devices such as bolus request button, clear alarm button,

empty reservoir detecting sensor, or low reservoir detecting sensor in the infusion pump

system. For example, once the bolus request button is pressed as an input event, the value of

the relevant monitored (m) variable is changed from false to true. Another example is that

when the event E_EmptyRsv is triggered, which means the syringe reservoir is empty, the

value of the relevant monitored (m) variable is changed from false to true. Likewise, the

controlled (c) variable is interfaced with the actuator or output devices such as the infusion

pump motor or buzzer in the infusion pump system. For example, once the infusion pump

19

motor as an output of an event E_BolusReq operates, the value of the relevant controlled (c)

variable is changed from false to true. Contrariwise, once the infusion pump motor operation

stops, the value of the controlled (c) variable is changed from true to false. Another example

is that when the alarm as an output of an event E_EmptyRsv goes off, the value of the

relevant controlled (c) variable is changed from false to true.

Input (i) and Output (o) variables: input (i) and output (o) variables interact with the

software Code(M) that is automatically generated from the Real-Time Workshop. Code(M)

includes each input variable related with the input events. That is, every input event, E_CLK,

E_BolusReq, E_ClearAlarm, E_EmptyRsv, E_LowRsv, has their own variable in Code(M).

Code(M) also includes the output variables. In our case-study the infusion pump system

model produces 4 outputs for three types of alarms and the pump motor actuator. The value

of the input and output variables in Code(M) is changed from false to true when the relative

input event is triggered. For example, when event E_BolusReq is triggered, the input variable

U.E_BolsReq and output variable Y.InfuProgress is changed from false to true. The value of

the output variable Y.InfuProgress is true means that the infusion pump motor should operate

for the bolus infusion. It is possible for the abstract model level to operate the pump motor

once the event E_BolusReq is triggered. However, this is not possible for the implemented

system because several computation phases such as reading input / output, writing input /

output, state transition are necessary in the implemented system.

 Four variables are useful to distinguish the part between the physical environment (e.g.,

infusion pump hardware platform) and the software (e.g., Code(M)).

2. Testing Objectives and Testing Ports

Even though the model conforms to the timing requirements through the verification

process, the implemented system from the model may not conform to the requirement due to

20

the assurance gap between the model and the implemented system.

Figure 7. Assurance gap between the model and the implemented system

Figure 7 illustrates one brief example of the assurance gap between the model and the

implemented system. If occlusion event is triggered during infusion, the pump motor

operation should stop and raise the alarm immediately (i.e., Figure 7-(A), illustration of the

model behavior). However, computation phase is necessary for reading time / input, input /

output transition, writing output in the implemented system. So, the alarm cannot be raised

immediately from the occlusion event. (i.e., Figure 7-(B), illustration of the implemented

system behavior).

Therefore, even if the timing requirements are verified in the model, testing for the timing

requirements should be performed also in the implemented system. A layered approach for

the timing testing is proposed and explained in detail in section C. Our proposed timing

testing has two main objectives. Objective1 is to check whether the timing requirements are

satisfied in the implemented system or not (i.e., R-testing) and objective2 is to measure how

much deviation exists in the implemented system and analyze the source of the deviation (i.e.,

M-testing). The result of the objective1 is a yes or no according to the timing requirements

constraints. On the other hand, the result of the objective2 is three types of quantitative

21

measurement (i.e., input delay, output delay, Code(M) delay, transition delay).

 To perform this testing approach, four variables need to be defined as the port. Monitored,

controlled, input, and output variables are defined as m-port, c-port, i-port, and o-port

respectively. These four ports are used for the precise timestamp for the timing testing.

m-port: m-port is interfaced with the hardware platform to detect the input events. For

example, once event E_BolusReq is triggered (i.e., bolus request button is pressed by the

patient), m-port generates the electrical signal changes.

c-port: c-port is interfaced with the hardware platform to detect the operation of the output

actuators. For example, once the infusion pump motor operates or stops, c-port generates the

electrical signal changes.

i-port: i-port is interfaced with Code(M) to detect the input variable changes. For example,

once the value of the input variable U.E_BolusReq is changed, i-port generates the electrical

signal changes.

o-port: o-port is interfaced with Code(M) to detect the output variable changes. For

example, once the value of the output variable Y.InfuProgress is changed, o-port generates

the electrical signal changes.

Timestamps from all ports are measured by using an oscilloscope.

3. R-testing and M-testing

A layered approach for the timing testing performs two different levels testing to achieve

the objective1 and objective2.

22

(a)

(b)

Figure 8. Experiment framework: (a) the overall testing framework (b) the R-M testing framework

23

R-testing: R-testing is performed before the M-testing. R-testing is performed to check

whether the conformance of the implemented system with regard to the timing requirements

is satisfied or not. If the result of the R-testing is a yes, M-testing does not need to be

performed. On the other hand, if the result of the R-testing is a no, M-testing needs to be

followed. Figure 8-(a) illustrates that only timing requirements information is provided to the

tester for the R-testing. In terms of four variables, Figure 8-(b) illustrates that only monitored

and controlled variables information is provided to the tester for the R-testing. That is, R-

testing only utilizes the input / output of Platform(P) to test the timing requirements. To

perform the R-testing some assumptions are needed. The assumptions are:

 The R-tester should be able to change m variables.

 The R-tester should be able to observe the changes in c variables.

 The R-tester should be able to timestamp on the events associated with m and c

variables.

Figure 9. R-tester assumption and SUT (System Under Test)

Figure 9 illustrates the R-testing framework. The R-tester has a m variable and c variable

information as the stimulus and the response respectively. For example, the event

E_BolusReq is defined as the m variable and the operation of the infusion pump motor is

24

defined as the c variable in the REQ1. According to the timing requirement of the REQ1, the

time difference between the timestamp of m-stimulus (tm1) and c-response (tc1) has to be less

than 100ms. That is, tc1 - tm1 ≤ 100ms should be satisfied. One result among two cases can

be generated according to the value of tc1 - tm1.

 (Result1) The result of the R-testing is a yes.

 (Result2) The result of the R-testing is a no.

For example, if the time difference (i.e., tc1 - tm1) is less than 100ms, it means that the

timing requirement is satisfied (i.e., Result1) and the M-testing does not need to be followed.

On the other hand, if the time difference is more than 100ms, it means that the conformance

of the implemented system with regard to the timing requirement is not satisfied (i.e.,

Result2). Therefore, M-testing needs to be followed to measure the computation sections (e.g.,

input / output delay, Code(M) delay, transition delay) and analyze the main source of the

deviation.

 (a)

25

 (b)

Figure 10. (a) Example of Result1 of REQ1, (b) Example of Result2 of REQ1

Figure 10 shows the two different results of the R-testing of REQ1. The orange and blue

lines indicate the bolus request button (i.e., event E_BolusReq) and operation of infusion

pump motor respectively. When the orange line shows a falling trigger, it is the time that the

bolus request button is pressed (i.e., tm1). When the blue line shows a rising trigger, it is the

time that the infusion pump motor operates (i.e., tc1). Figure 10-(a) shows the Result1 of

REQ1 because tc1 - tm1 = 77ms is less than 100ms. On the other hand, Figure 10-(b) shows

the Result2 of REQ1 because tc1 - tm1 = 192ms is more than 100ms and M-testing is followed.

M-testing: M-testing is performed if the result of R-testing is a Result2. M-testing is

performed to measure the computation sections and analyze the main source of the deviation.

Figure 8-(a) illustrates that abstract model information is provided to the tester for the M-

testing. In terms of four variables, Figure 8-(b) illustrates that not only monitored and

controlled variables but also input and output variables information is provided to the tester

for the M-testing. That is, M-testing utilizes the input / output of Code(M) and Platform(P) to

test the timing requirements. To perform the M-testing some assumptions are needed. The

26

assumptions are:

 The M-tester should be able to change m variables.

 The M-tester should be able to observe the changes in c variables.

 The M-tester should be able to timestamp on the events associated with m and c

variables.

 The M-tester should be able to observe the changes in i variables.

 The M-tester should be able to observe the changes in o variables.

 The M-tester should be able to timestamp on the events associated with i and o

variables.

The first to the third assumptions are the same with R-testing assumptions and the fourth to

the sixth assumptions are the additional M-testing assumptions.

Figure 11. M-tester assumption and SUT (System Under Test)

Figure 11 illustrates the M-testing framework. The M-tester has a m variable and i, o, and c

variables information as the stimulus and the response respectively. For example, event

E_BolusReq is defined as the m variable and the operation of the infusion pump motor is

defined as the c variable in the REQ1. And also, input variable U.E_BolusReq in Code(M) is

defined as the i variable and output variable Y.InfuProgress in Code(M) is defined as the o

variable in the REQ1. These four variables information is provided to the M-tester. The

27

timestamp of m-stimulus, c-response, i-response, and o-response is denoted as tm1, tc1, ti1,

and to1 respectively. M-testing has four categories which are input delay, output delay,

Code(M) delay, and transition delay.

(1) Input delay: In the abstract model, it takes zero time to read input and take the input-

transition. However, in the implemented system, computation phase is necessary to read

the input and this computation phase is denoted as input delay in this thesis. Input delay

can be expressed by ti1 - tm1. Figure 12-(a) illustrates the input delay in REQ1 testing.

Input delay is a time gap between the m-port and the i-port.

(2) Output delay: In the abstract model, it takes zero time to write output and take the

output-transition. However, computation phase is necessary to write the output in the

implemented system and this computation phase is denoted as output delay in this thesis.

Output delay can be expressed by tc1 - to1. Figure 12-(b) illustrates the output delay in

REQ1 testing. Output delay is a time gap between the o-port and the c-port.

(3) Code(M) delay: In the abstract model, it takes zero time to process data such as reading

time and input, writing output and taking input / output transition. However,

computation phase is necessary to process data in the implemented system and this

computation phase is denoted as Code(M) delay in this thesis. Code(M) delay can be

expressed by to1 - ti1. Figure 12-(c) illustrates the Code(M) delay in REQ1 testing.

Code(M) delay is a time gap between the i-port and the o-port.

(4) Transition delay: In the abstract model, it takes zero time to take state transition.

Furthermore, the model does not consider the computation phase of the function like an

initialization function executed during the state transition process (denoted as transition

function). So it also takes zero time to compute the function. However, computation

phase is necessary to take state transition and perform the transition function and this

computation phase is denoted as transition delay in this thesis. Figure 12-(d) illustrates

28

the transition delay. Transition delay is a time gap between the previous state and the

current state.

(a)

(b)

(c)

29

(d)

Figure 12. Four categories of M-testing: (a) input delay (b) output delay (c) Code(M) delay

(d) transition delay

Figure 13 shows the measurement example of input delay, output delay, and Code(M) delay

in the M-testing for REQ1. In Figure 13-(a) the orange line and blue line indicate the bolus

request button (i.e., m-port) and an input variable (i.e., i-port) respectively. When the orange

line shows a falling trigger, it is the time that the bolus request button is pressed. When the

blue line shows a rising trigger, it is the time that the value of the input variable (i.e.,

U.E_BolusReq) is changed from false to true. In Figure 13-(b) the orange line and blue line

indicate an output variable (i.e., o-port) and operation of the infusion pump motor (i.e., c-port)

respectively. When the orange line shows a rising trigger, it is the time that the value of the

output variable (i.e., Y.InfuProgress) is changed from false to true. When the blue line shows

a rising trigger, it is the time that the infusion pump motor operates. In Figure 13-(c) the

orange line and blue line indicate an input variable (i.e., i-port) and an output variable (i.e., o-

port) respectively. The meaning of the orange line and blue line’s trigger is the same with the

explanation for input delay and output delay.

30

 (a)

 (b)

 (c)

Figure 13. Measurement of M-testing for REQ1: (a) measurement of input delay (b) measurement of output

delay (c) measurement of Code(M) delay

31

V. CASE STUDY: TIMING TESTING FOR INFUSION PUMP

SYSTEMS

In this section, a proposed layered approach for the timing testing is performed for an

infusion pump systems in order to show the applicability. We show how to detect the timing

requirement violation through R-testing, and how to measure the timing deviation compared

with the abstract model through M-testing.

Case-Study Setting: REQ1 is considered as the timing requirement that needs to be

satisfied not only in the abstract model, bus also in the implemented system. The infusion

pump model is made through Stateflow/Simulink language [5, 6]. The final model consists of

15 states, 31 transitions, 5 inputs, and 4 outputs. The explanation for each input and output is

handled in timing semantics mismatches in the model-based development section. Figure 14

shows a Simulink block diagram for the infusion pump system. It consists of 5 inputs, 4

outputs, and 1 chart (i.e., a block called PCA_Pump). The main functions of the model are

implemented in the chart and the part of the model is shown in Figure 3. Verification of the

model is performed through Simulink Design Verifier [12]. The model is modified until the

conformance of all requirements is verified. Once the verification step is finished, the C

source code can be automatically generated through the Real-Time Workshop. Five header

and 4 source files are generated for our case study. In order to interact with the infusion pump

hardware interfacing code is added into the Code(M) that is the generated code (this step is

called integration step) and then Code(M) is ported into the micro-controller (ARM7). Finally,

the sensors and actuators of the infusion pump hardware are interfaced with the micro-

controller that operates FreeRTOS [11]. Baxter PCA Syringe Pump shown in Figure 15 is

used as an infusion pump hardware. This pump provides 18 infusion modes, which fall into

two major categories: continuous and timed infusions [13]. Timed infusion mode is used for

32

our experiment.

Figure 14. Simulink block diagram for infusion pump system

33

Figure 15. The experimental platform

Case-Study Scenarios: In the integration step, there are various ways to add the interfacing

code in terms of reading the input event, the number of thread, an operating system, and so

forth. For example, an input event can be read by a periodic thread or an interrupt service

routine. Similarly, software can be executed by a single thread or multiple threads. Therefore,

the system can be implemented in various ways through the integration step. It is challenging

to apply R-M testing to a wide range of different implemented systems. So, we create four

different implemented systems and apply R-M testing to each of them. The ways to achieve

these four different implemented systems are common in the integration step. An explanation

of the four implemented systems follows:

34

(a)

(b)

(c)

Figure 16. The structure of the implemented systems: (a) implementation1 (b) implementation2 (c)

implementation3

35

Implementation1: Figure 16-(a) illustrates the implementation1. This implemented system

is executed by a single thread. That is, the sensing process to read inputs and the actuation

process to write outputs are included in a single thread. The thread is executed every 25ms on

FreeRTOS. Input events are read periodically, not by interrupt service routine.

Implementation2: Figure 16-(b) illustrates the implementation2. This implemented system

is executed by the multiple threads. Sensing and actuation process come away from the

Code(M) and create their own thread. Four sensing threads to detect E_BolusReq,

E_ClearAlarm, E_EmptyRsv, and E_LowRsv events and 2 actuation threads to operate the

infusion pump motor and alarming buzzer are created in the implementation2. So, there are

total 7 threads including the thread executing Code(M) called Code(M) thread. In Figure 16-

(b) the numbers mean the trigger periods of each thread. The threads are scheduled by

FreeRTOS and Code(M) thread is executed every 25ms like implementation1. The

communication between the sensing / actuation threads and the Code(M) thread is achieved

by FIFO queues. Three queues are used. One is used to transmit input events from the sensing

threads to the Code(M) thread, another is used to transmit output data for the infusion pump

motor (i.e., the value of Y.InfuProgress) from the Code(M) thread to the motor actuation

thread, the other is used to transmit output data for the alarming buzzer (i.e., the value of

Y.empty_alarm, Y.low_alarm, and Y.timeout_alarm) from the Code(M) thread to the buzzer

actuation thread. The summation of the period of sensing, the Code(M), and actuation threads

is less than 100ms in order to make sure the value of the c variable is changed within 100ms

after the value of the m variable is changed.

Implementation3: Figure 16-(c) illustrates the implementation3. This implemented system

is the same as implementation2 except 3 additional threads, called interference threads, that

do not interact with Code(M), are added. The reason why the interference threads are added

to implementation2 is that our infusion pump system is simpler than today’s smart infusion

36

pump. Furthermore, model-based development is not concerned with the whole system

structure, such as communication with other devices, due to the model complexity. Therefore,

interference threads are added in order to assume that they make the implemented system

more complicated. The interference threads execute their own tasks, not associated with

Code(M). One of the threads has the same priority with the Code(M) thread, and the other

two threads have a higher and a lower priority than the Code(M) thread respectively. Two

different testing scenarios are made in implementation3. One is the testing in REQ1 that are

the same with the implementation1, 2, and 4 (denoted as scenario1). A time constraint 100ms

is the deadline to meet the timing requirement. On the other hand, a time constraint of another

testing scenario (denoted as scenario2) is the time duration, not the deadline. The scenario2

is explained later in detail.

Implementation4: This implemented system is the same as implementation3 except the

additional functions executed during the state transition process. The reason why the

functions are added during the state transition process is to measure the transition delay.

Graphical functions [14] in Stateflow are added into the state transitions in the abstract model.

Figure 17 illustrates one of the added graphical functions that execute the loop for a certain

time. State transitions occur twice from m variable == 1 to c variable == 1 in REQ1 testing.

So, two graphical functions are added into the abstract model. In the model, execution time of

graphical function is not considered in the verification step. Execution time of graphical

functions that have effects on the transition delay might lead to the violation of the timing

requirement in the implemented system.

37

Figure 17. Graphical function in Stateflow

Table 1. R-M testing results in REQ1

38

1. Scenario1

Table 1 is the experimental result of the R-M testing in REQ1. The time is measured by an

oscilloscope that detects the electrical signal change of m, c, i, and o port. The time unit is

millisecond. If the result of the R-testing is more than 100ms, M-testing is followed in order

to measure input delay, Code(M) delay, and output delay. Timing testing is performed for

implementation1, 2, 3, and 4 (testing result of implementation4 is explained separately). Red

numbers in the R-testing columns indicate that the conformance of the implemented system

with regard to REQ1 is not satisfied. In other words, a bolus dose is not started within 100ms

when requested. MAX in the R-testing columns indicates event loss. The infusion pump

motor does not operate even if the bolus request button is pressed. More than 10 tests are

performed, but table 1 includes only 10 selected tests in order to show the proper results.

However, 10 tests samples are selected in order to maintain the probability of the violation of

the timing requirement.

There is no violation of the timing requirement in implementation1. Half of the R-testing

results for implementation2 show the timing requirement violation and then M-testing is

followed in order to measure input delay, Code(M) delay, and output delay. Input delay has a

bigger effect on the requirement violation than Code(M) delay and output delay. Most R-

testing results for implementation3 show the requirement violation and then also M-testing is

followed. The main source of the violation is similar to the one for implementation2. Input

delay also has a bigger effect on the requirement violation than Code(M) delay and output

delay. The results of M-testing can give some clues to optimize the implemented system. For

example, input delay can be reduced by increasing the sampling rate of the sensing thread.

And also, queue size needs to be extended in order to remove the event loss such as 4 and 10

of implementation2 and 3 and 9 of implementation3 cases.

The R-M testing result for implementation4 is explained separately because transition delay

39

needs to be measured only when the transition function is included in the abstract model. The

results of R-testing and M-testing (input delay, Code(M) delay, output delay) for

implementation4 is similar to the results for implementation3. Most R-testing results show the

requirement violation. Table 2 includes only one test sample because the results of the

transition delay are consistent. The time unit is millisecond. In table 2, transition1 indicates

the transition from Init state to BolusRequested state and transition2 indicates the transition

from BolusRequested state to Infusion state in Figure 3. If the transition function executed

during state transition process is more complicated, transition delay would be more increased.

In this case, transition delay might have a bigger effect on the timing requirement violation

than input delay. Therefore, transition delay needs to be measured when the transition

function is included in the model.

Table 2. Transition delay of M-testing in REQ1

2. Scenario2

The time constraint of the R-M testing in REQ1 (i.e., scenario1) is the deadline, 100ms. On

the other hand, the time constraint of the scenario2 is the time duration. For example, let us

assume that a bolus dose shall be infused for 2 seconds when requested by the patient

(duration of the infusion is set before the treatment according to the patient’s condition, the

type of drug and so forth). As shown in Figure 18, the conformance of the abstract model

with regard to the duration of the infusion (i.e., 2 seconds) is guaranteed. Nevertheless, the

timing requirement might not be satisfied in the implemented system due to the input delay,

Code(M) delay, and output delay. In order to perform the scenario2 experiment, the followed

40

assumptions are needed:

 A bolus dose shall be infused for 2 seconds when requested by the patient.

 The above duration of the infusion is set based on the patient’s condition and the type

of drug.

These assumptions are used as the timing requirement for the R-M testing in the scenario2

experiment.

Figure 18. Time scope for the duration of the infusion in the abstract model

The timing gap between the model and the implemented system, especially in terms of the

time duration, might be small. However, if the small timing gap is accumulated for a long

time, it might cause some problem. For example, it is assumed that a bolus dose shall be

infused for 2 seconds when requested by the patient. A bolus dose might not be infused for 2

seconds due to input delay, Code(M) delay, and output delay in the implemented system. The

more a bolus request button is pressed, the more the difference of amount of injection

between the model and the implemented system is increased. This would lead to the over or

under-infusion. Over-infusion and under-infusion are considered as the common sources of

the infusion pump accidents [15]. Definition of the over / under-infusion is provided for the

accurate understanding [16].

 Over-infusion: A situation in which more fluid or medication than is intended is

41

delivered to the patient.

 Under-infusion: A situation in which less fluid or medication than is intended is

delivered to the patient.

If the drug is critical such as morphine, over or under infusion has great effect on the

patient. Therefore, testing for the time duration needs to be performed. Table 3 is the

experimental result of the R-M testing in scenario2. Time unit is millisecond. If the result of

the R-testing is not 2 seconds, the M-testing is followed in order to measure input delay,

Code(M) delay, and output delay. The M-testing is performed twice for one R-testing in

scenario2. One is performed at the start of the actuation (actuation start section in Table 3)

and another is performed at the end of the actuation (actuation end section in Table 3). Figure

19 illustrates the reason why the M-testing needs to be performed twice for one R-testing in

scenario2. A and B implies the timing gap between the model and the implemented system at

the start of the actuation (e.g., operation of an infusion pump motor starts) and at the end of

the actuation (e.g., operation of an infusion pump motor ends) respectively. As shown Figure

19, the R-testing result for the time duration requirement depends on the value of the | A - B |.

If the value of the | A – B | is 0, it means that the time duration requirement is satisfied in the

implemented system. On the other hand, if the value of the | A – B | is not 0, it means that the

time duration requirement is violated and there is a timing gap between the model and the

implemented system as much as the value of the | A – B |. Therefore, the delay A and B need

to be measured by M-testing.

42

Figure 19. Timing gap between the model and the implemented system in scenario2

As shown in Table 3, R-testing result show the timing requirement violation (i.e., the

value of the | A – B | in Figure 19 is 25ms and this is an under-infusion case) and two M-

testing are followed in order to measure input delay, Code(M) delay, and output delay at the

actuation start and end section. Both of the input delay are almost 0. In order to meet the time

duration requirement the value of the A and B in Figure 19 have to be same. Code(M) delay

in the actuation start / end section are quite different. Therefore, Code(M) delay in the

actuation start section needs to be reduced in order to optimize the implemented system.

Table 3. R-M testing results in scenario2

In order to measure the accumulated difference of amount of injection between the model

and the implemented system a bolus is requested 150 times. As shown in Table 4, total

accumulated difference of amount of injection is 4.6979g for 150 times bolus request. This

43

under-infusion is considered as the common sources of the infusion pump accidents.

Therefore, the R-M testing for the time duration needs to be performed in the implemented

system.

Table 4. Accumulated amount of injection for 150 times bolus request

VI. RELATED WORK

Abstraction is also used for the testing in the model-based development. In [3], abstractions

of the model such as the functional abstraction, data abstraction, communication abstraction,

and temporal abstraction are used for the testing in order to reduce the model complexity.

However, they also point out the limitations of the temporal abstraction.

Test case generation technologies have been developed well in the various ways [17, 18,

19]. And also, some tools to test the systems are developed [20]. However, most of the test

case generation technologies and the testing tools do not consider the non-functional

requirements, especially the timing aspects even if testing real-time requirements is an

important issue, in particular in embedded systems.

The Linux Trace Toolkit (LLT) is a set of tools that is designed to log program execution

details from a patched Linux kernel and then perform various analyses on them, using

console-based and graphical tools. LLT allows the user to see in-depth information about the

processes that were running during the trace period, including when context switches

occurred. Especially, in terms of time analysis, LLT also allows the user to see how long the

44

processes were blocked for, and how much time the processes spent. However, LLT does not

provide the sources of the timing requirement violation.

[21] proposed a tool for online testing using UPPAAL. The system is modeled using

UPPAAL, and the test utilizes the model in order to generate test cases that can be fed into

the implemented system. This work also focuses on testing the timing aspects. However, it

does not consider the segmented delays of the implemented system such as input and output

delay.

In [22], the boundary cases of timing constraints are considered in generating test cases to

detect timing requirement violation. These works can be used and extended in order to

generate the R-M testing cases in our proposed framework.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a layered approach for the timing requirements testing in the implemented

system developed by the model-based development. A four-variables model is used to

express the abstraction boundary of the implemented system and measure the timing gap

between the model and the implemented system. The R-testing is performed in order to check

the timing requirement violation. If the R-testing result shows that the timing requirement is

not satisfied, the M-testing is followed in order to measure the timing deviation of the

implemented system with regard to the abstract model. We apply the R-M testing to the

infusion pump system for the case study. The infusion pump system is implemented in the

four different ways and the R-M testing is applied to the each of them. And also, two different

types of the timing requirements (time deadline and time duration) are used for the scenarios.

Input events are read by the periodic threads in our case study. For the future work, we

consider the different way to read the input events. That is, an interrupt service routine is

45

considered as the input reading way. When the execution of the automatically generated code

from Real-Time Workshop is interrupted, the behavior of the implemented system is different

from the behavior of the abstract model. Furthermore, the behavior of the implemented

system depends on where the execution of the generated code is interrupted at. The

MathWorks also concerns this case and released a document [23]. Overall, through my future

researches, I want to contribute to the development of the timing testing in the model-based

development.

46

References

[1] France, R. and B. Rumpe, Model-driven development of complex software: A

research roadmap. IEEE Computer Society, 2007: p. 37-54.

[2] J. F. Brett Murphy, Amory Wakefield, “Best practices for verification, validation,

and test in model-based design,” 2008.

[3] Wolfgang, P. and P. Alexander, Abstractions for Model-Based Testing. Electronic

Notes in Theoretical Computer Science, 2005. 116.

[4] G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” in Formal

Methods for the Design of Real-Time Systems (revised lectures), ser. LNCS, vol. 3185,

2004, pp. 200–237.

[5] Mathworks Stateflow. http://www.mathworks.com/products/stateflow.

[6] Mathworks Simulink. http://www.mathworks.com/products/simulink.

[7] Parnas, D.L. and J. Madey, Functional documents for computer systems. Science of

Computer programming, 1995. 25(1): p. 41-61.

[8] Amnell, T., et al., TIMES: a tool for schedulability analysis and code generation of

real-time systems. Springer, 2004: p. 60-72.

[9] U.S. Food and Drug Administration, Center for Devices and Radiological Health.

White Paper: Infusion Pump Improvement Initiative, April 2010.

[10] Mathworks Temporal logic.

http://www.mathworks.co.kr/kr/help/stateflow/ug/using-temporal-logic-in-state-

actions-and-transitions.html#brh91yy-9_2

[11] http://www.freertos.org, “Using the freertos real-time kernel.”

[12] Mathworks Simulink Design Verifier.

http://www.mathworks.com/products/datasheets/pdf/simulink-design-verifier.pdf

[13] Operator’s Manual Auto Syringe AS50.

http://www.lhsc.on.ca/Health_Professionals/CCTC/eduquiz/as50.pdf

[14] Mathworks Graphical function.

http://www.mathworks.co.kr/products/stateflow/examples.html?file=/products/demos/s

hipping/stateflow/sf_gfdemo.html

[15] Keay, S., The safe use of infusion devices. Continuing Education in Anaesthesia,

Critical Care & Pain, 2004. 4.

http://www.mathworks.com/products/stateflow
http://www.mathworks.com/products/simulink

47

[16] U.S. Food and Drug Administration, definition of the over / under-infusion.

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalD

evicesandSupplies/InfusionPumps/ucm202502.htm

[17] Mark, U., P. Alexander, and L. Bruno, A taxonomy of model-based testing

approaches. Software Testing, Verification and Reliability, 2012. 22.

[18] Dalal, S.R., et al., Model-based testing in practice. ACM, 1999: p. 285-294.

[19] Pretschner, A., et al., One evaluation of model-based testing and its automation.

ACM, 2005: p. 392-401.

[20] De Resyste, C., TorX: Automated Model Based Testing. Citeseer.

[21] K. Larsen, M. Mikucionis, and B. Nielsen, “Online testing of real-time

systems using uppaal,” in Formal Approaches to Software Testing, 2005,

pp. 79–94.

[22] D. Clarke and I. Lee, “Testing real-time constraints in a process

algebraic setting,” in Proceedings of the 17th international conference

on Software engineering, ser. ICSE ’95. ACM, 1995, pp. 51–60.

[23] Mathworks Dealing with Task Overruns.

http://www.mathworks.com/tagteam/22845_temporary_overruns_scheduler.pdf

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202502.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202502.htm

48

요 약 문

모델 기반 개발에서의 시간 요구사항 만족 여부 검증 테스트

의료 장비는 높은 안전성이 요구되는 시스템임에도

불구하고 소프트웨어의 결함으로 인해 사고가 일어난다.

안전성이 보장되는 소프트웨어의 개발을 위해서 모델

기반 개발법을 이용하는 추세이다. 모델링 툴을 이용해

시스템 모델을 요구사항에 맞게 모델링을 한 뒤, 모델

단계에서 요구사항 만족 여부에 대한 검증을 한다. 검증을

마친 후에는 툴의 기능을 이용해 모델로부터 자동적으로

소스 코드를 생성할 수 있다. 그러나 모델과 구현된

시스템 간의 timing semantics mismatch 가 존재하기

때문에 최종적으로 구현된 시스템에서도 시간 요구사항을

역시 만족시키는지에 대한 검증이 필요하다. 왜냐하면

비록 시간 요구사항이 모델에서는 만족되었을지라도

구현된 시스템에서는 만족되지 않을 수 있기 때문이다.

시스템의 시간 요구사항 검증을 위해 이 논문에서는 R-

testing 과 M-testing 이라는 이중 레이어로 된 테스트를

제안하였다. 모델과 구현된 시스템 간의 시간 차이를

측정하기 위해서 four-variables 모델이 이용되었다. R-

testing 은 구현된 시스템에서 시간 요구사항의 만족

여부에 대한 확인을 위해서 수행된다. 만약에 R-testing 의

결과가 시간 요구사항이 위반되었다고 나온다면 M-

testing 을 추가적으로 수행한다. M-testing 을 통해 모델과

구현된 시스템 간의 시간 차이와 그 원인들을 세부적으로

측정하게 되고, 측정값들을 통해 시스템을 더욱

최적화시킬 수 있다. 사례 연구로 약물 주입 펌프

의료기기에 제안한 R-M testing 을 직접 적용함으로써 그

적용가능성과 중요성을 확인할 수 있었다.

황현이

	Ⅰ. INTRODUCTION
	Ⅱ. BACKGROUND
	1. Model-Based Development
	2. Patient Controlled Analgesic (PCA) Infusion Pump

	III. TIMING SEMANTICS MISMATCHES IN THE MODEL-BASED DEVELOPMENT
	IV. THE LAYERED APPROACH FOR THE TIMING TESTING
	1. Mapping the four-variables to the implemented system
	2. Testing Objectives and Testing Ports
	3. R-testing and M-testing

	V. CASE STUDY: TIMING TESTING FOR INFUSION PUMP SYSTEMS
	1. Scenario1
	2. Scenario2

	VI. RELATED WORK
	VII. CONCLUSIONS AND FUTURE WORK
	REFERENCES
	요약문

<startpage>7
Ⅰ. INTRODUCTION 1
Ⅱ. BACKGROUND 3
 1. Model-Based Development 3
 2. Patient Controlled Analgesic (PCA) Infusion Pump 4
III. TIMING SEMANTICS MISMATCHES IN THE MODEL-BASED DEVELOPMENT 5
IV. THE LAYERED APPROACH FOR THE TIMING TESTING 12
 1. Mapping the four-variables to the implemented system 12
 2. Testing Objectives and Testing Ports 13
 3. R-testing and M-testing 15
V. CASE STUDY: TIMING TESTING FOR INFUSION PUMP SYSTEMS 25
 1. Scenario1 32
 2. Scenario2 33
VI. RELATED WORK 37
VII. CONCLUSIONS AND FUTURE WORK 38
REFERENCES 40
요약문 42
</body>

