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ABSTRACT 
Fast processing graph algorithms for large-scale graphs becomes increasingly important as graphs 

become popular in a wide range of applications and the sizes of graphs are growing rapidly. Due to 

the relatively low cost and high computational power of GPUs, there have been many attempts to 

process graph applications by exploiting the massive amount of parallelism of GPUs. However, most 

of the existing methods fail to process large-scale graphs that do not fit in GPU device memory, 

mainly due to the irregular structure and the complex graph processing algorithms. Although the 

state-of-the-art method TOTEM can process large-scale graphs by partitioning a graph into two 

parts: the main memory part processed by CPUs and the device memory part processed by GPUs, it 

still has several fundamental problems such as a large amount of synchronization overhead and lack 

of scalability. We propose a fast and scalable parallel processing method GStream that processes 

large-scale graphs (e.g., billion vertices) beyond the capacity of GPU device memory very efficiently 

by exploiting the concept of so-called nested-loop join operation and the asynchronous GPU streams. 

It exploits multiple GPUs by uniformly distributing the workload among GPUs and also exploits 

available GPU device memory by caching streaming graph data. GStream is the first scalable 

method in terms of both the data size and the number of GPUs, to the best of our knowledge. Exten-

sive experimental results show that GStream consistently and significantly outperforms TOTEM 

in terms of absolute performance, scalability, and graph size to process, for both synthetic graphs 

and real graphs. 

 

Keywords: Graph processing, Large-scale, GPU, Stream 
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Ⅰ. INTRODUCTION 

 
Graphs are widely used to model real-world objects in many disciplines such as social networks, web, 

business intelligence, biology, and neuroscience, due to their generality of modeling. As the sizes of 

real graphs are growing rapidly, fast and scalable parallel methods for processing graph algorithms 

on them have become more important than ever before. Meanwhile, the continuous advancement of 

GPU technology make the computing power of modern computers ever-increasing. Due to the rela-

tively low cost and the massive amount of parallelism to potentially largely outperform CPUs, GPUs 

have recently become popular as general computing device. It becomes more and more important to 

exploit GPUs for better performance per price and energy.  

Though exploiting the computing power of GPUs is a promising direction for fast processing 

large-scale graphs, there are three major challenges to make it difficult. First, the irregularity of graphs 

causes the workload imbalance among threads [12]. In most real-world graphs, the distribution of 

degrees is highly skewed. The workload imbalance from that skewness may lead to a severe perfor-

mance penalty due to the underutilization of GPU following the massive parallel architecture. Second, 

many graph algorithms entail non-coalesced memory access patterns [16]. Due to the irregular struc-

ture of graphs, accessing the neighbors of a vertex leads to a large amount of data-dependent memory 

references. This poor locality limits the performance of graph processing on GPUs. Third, many real 

world graphs do not fit in the GPU device memory with this tendency becoming more marked as the 

sizes of graphs are growing[6-7]. Lack of support for large-scale graphs beyond the capacity of device 

memory is one of the most critical problems of the existing graph processing methods using GPUs 

[6-7, 12]. 

There have been a number of efforts to solve the first two major problems [6-7, 10, 12, 16, 20, 

24]. The virtual warp-centric technique (VWC) [12] focuses on solving workload imbalance by par-

titioning a warp into multiple virtual warps and letting the threads within a virtual warp process the 
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neighbors of a vertex in parallel. CuSha [16] focuses on overcoming the problem of non-coalesced 

memory access patterns. The prior works including the VWC method primarily rely on the Com-

presses Sparse Row (CSR) format for representing graphs in memory. However, CSR could suffer 

from the irregular memory accesses since it just stores vertices and edges in arrays without regard to 

access patterns on graphs. Instead, CuSha adopts the format known as shards [18] and maps GPU 

hardware resource on to shards so as to achieve coalesced memory access. 

However, there is almost no study on solving the last problem yet, in spite of its importance. To 

the best of our knowledge, TOTEM [6-7] is the only work to systematically process a graph that does 

not fit in the GPU device memory. To solve the problem, it partitions a graph into two parts, one part 

in main memory and the other part in GPU device memory, where GPUs process the part in GPU 

device memory, while CPUs process the part in main memory. It follows the Bulk Synchronous Par-

allel (BSP) model [23] for synchronization between main memory and device memory.  

Even though TOTEM handles much large-scale graphs than the other methods, we observe that 

is still has three serious drawbacks. First, it has a large amount of synchronization overhead between 

main memory and device memory. Due to the partitioning scheme to cut edges across between main 

memory and device memory and the BSP model to synchronize per each step, a large amount of status 

data is frequently copied to device memory and again copied back to main memory. Second, it is not 

very scalable in terms of the number of GPUs used. TOTEM demonstrates the graph processing power 

of GPU is higher than that of CPUs, and so it concludes that using more GPUs instead of more CPUs 

are required for faster graph processing. However, under the partitioning scheme like edge-cut, the 

number of cut edges among main memory and multiple GPUs increases rapidly as the number of 

GPUs increases, which means the amount of status data to be synchronized among main memory and 

GPUs also increases rapidly [8]. As a result, the speedup tends to decrease rapidly as well. Third, it 

has a fundamental limit on the size of graphs to process. TOTEM is based on the CSR format, which 

is an in memory data structure and does not seriously consider large-scale graphs. Since CSR basically 

uses an index number of 4-byte for each edge, TOTEM cannot even load a graph having a larger 

number of edges than 2^32=4 billions, though there is enough memory to accommodate it. The CSR 
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format of 8-byte might solve that issue, but it is still non-trivial to allocate and handle a large-scale 

contiguous edge array in main memory. 

We propose a fast and scalable GPU-based graph processing method called GStream that can 

process even billion-vertex graphs very efficiently. GStream does graph processing only using GPUs 

and does not rely on the graph partitioning scheme, which incurs much less synchronization overhead. 

Instead, it deals with large-scale graphs by exploiting the concept of so-called nested-loop join oper-

ation and asynchronous data transfer (i.e., copy) of graph data between main memory and device 

memory. In GPUs, asynchronous data transfer can be achieved by using the asynchronous GPU 

streams (e.g., CUDA Streams), which could hide memory access latency from GPUs to main memory 

and so utilize GPU’s computing power more. For efficient streaming, GStream adopts the slotted 

page format that divides a graph into fixed-size units. As a result, GStream with only a single GPU 

outperforms TOTEM equipped with two CPUs and two GPUs in most cases. Furthermore, GStream 

is fairly scalable in terms of the number of GPUs since it performs almost independent graph pro-

cessing for each GPU. There is no cut edge among main memory and the GPU device memory. In 

addition, the units of graph data are almost uniformly distributed to each GPU for processing. As a 

result, GStream could achieve more stable speedup ratios than TOTEM. 

The main contributions of this paper are as follows: 

 We propose a novel parallel graph processing method on GPUs that can perform graph 

algorithms very efficiently for large-scale graphs (e.g., billion vertices) much larger than the 

size of GPU device memory by fully exploiting the asynchronous GPU streams. 

 We present two techniques that can improve the performance further: (1) uniformly distrib-

uting the workload among multiple GPUs by hashing fixed-size workload units and (2) caching 

graph data by utilizing available GPU device memory. 

 We present a detailed pseudo code of the GStream framework and also its cost model that 

analyses the trend of the performance and explains the characteristics of GStream. 

 Through extensive experiments, we demonstrate that GStream significantly outperforms 

the state-of-the-art method TOTEM across wide range of benchmarks for both synthetic graphs 
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and real graphs. GStream could process many graphs that TOTEM couldn’t, and also improve 

the performance up to 7.64 times and 4.28 times compared with TOTEM for BFS and PageRank, 

respectively. 

The rest of this paper is organized as follows. Section II reviews the types of graph algorithms 

to consider. In Section III, we propose the GStream method. In Section IV, we discuss other tech-

niques to extend GStream. Section V presents the results of experimental evaluation, and Section VI 

discusses related work. Finally, Section VII summarizes and concludes this paper.  
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II. PRELIMINARIES 

 

In this section, we present the types of graph algorithms that GStream considers for processing. 

There are various kinds of graph algorithms, most of which can be categorized into two types: (1) 

accessing a part of a graph usually via graph traversal and (2) accessing a whole graph usually by 

scanning vertices and edges [9, 13]. 

The former algorithms are usually less computationally intensive, but causes non-coalesced 

memory accesses due to the irregular structure of graphs. The algorithms of this type include Breadth-

First Search (BFS), neighbourhood, induced subgraph, egonet, K-core, and cross-edges. BFS is one 

of the most key algorithms among them, and the other algorithms can be processed in a similar way 

BFS is processed [9, 13]. Hereafter, we call this type as BFS-like algorithms, which are also called as 

target quires in the previous studies [9, 13]. 

The latter algorithms are usually computationally intensive, and the scan order of vertices and 

edges is not important in many cases. The algorithm of this type include PageRank, degree distribu-

tion, Random Walk with Restart (RWR), radius estimations, and discovery of connected components. 

PageRank is one of the most typical algorithms among them, and the other algorithms can be pro-

cessed in a similar way PageRank is processed [9, 13]. Hereafter, we call this type as PageRank-like 

algorithms, which are also called global queries in the previous studies [9, 13]. 

This paper mainly focuses on the BFS and PageRank algorithms as the previous studies do [6-

7, 12, 20]. However, our discussion in the paper also can be applied to many other graph algorithms 

mentioned above.  
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III. GSTREAM METHOD 

 

In this section, we present to proposed method GStream. Section 3.1 presents the basic concept of 

GStream, and Section 3.2 presents the streaming scheme of GStream. In Section 3.3 and 3.4, we 

explain how to exploit multiple GPUs and how to cache graph data, respectively. Finally, Section 3.5 

presents the overall framework of the GStream method, and Section 3.6 presents its cost model. 

3.1 Basic concept of GStream 

In general, graph algorithms require both graph topology data (shortly, topology data) and attribute 

vectors for vertices and /or edges. For example, in addition to topology data, PageRank requires two 

attribute vectors for vertices: a vector of the previous PageRank values (shortly, prevPR) and a vector 

of the next PageRank values (shortly, nextPR). The attribute vectors again can be divided into read-

only attribute vector. For example, for PageRank, prevPR is a read-only attribute vector, while nextPR 

is a read/write attribute vector, in a specific iteration. 

Dividing graph data into topology data and attribute vectors and further dividing attribute vectors 

into read-only ones and read/write ones is the first step that can make it possible to process large-scale 

graphs beyond the capacity of GPU device memory. In a situation where all of topology data and 

attribute vectors cannot be accommodated in the device memory, which part of them is kept in the 

device memory and in which order they are processed can significantly affect the performance. They 

determine the parallel processing framework as well. We categorize the relationship between the size 

of graph data and the capacity of GPU device memory into the following three cases. 

 Case1. Both topology data and attribute vectors can be kept in the device memory of GPUs. 

 Case2. Only either topology data or attribute vectors can be kept in the device memory of 

GPUs. 

 Case3. Neither topology data nor attribute vectors can be entirely kept in the device memory 

of GPUs. 
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Among the above cases, we mainly focus on Case2 and Case3 since they are not properly han-

dled by the existing methods. For doing that, GStream adopts the concept of “join” operation from 

the database area, especially, so-called nested-loop join [11]. For two sets X = {x1, …, xp} and Y = 

{y1, …, yq}, nested-loop join processes all elements {y1, …, yq} for each element xi with computing 

a user-defined function on each pair 〈xi, yj〉, if X is the outer join operand, and Y is the inner join 

operand. Conceptually, we can set topology data as the outer join operand and attribute vectors as the 

inner join operand, which we call it as the topology-major strategy, or can set attribute vectors as the 

outer join operand and topology data as the inner join operand, which we call it as the attribute-major 

strategy. Intuitively, the attribute-major strategy processes graph algorithms by copying the topology 

data (i.e., inner data) in a streaming fashion to GPU device memory for each chunk of the attribute 

vectors (i.e., outer data) resident in GPU device memory. Here, the number of chunks of the attribute 

vectors would be only one in Case2, but more than one in Case3. In contrast, the topology-major 

strategy processes graph algorithms by copying the attribute vectors (i.e., inner data) in a streaming 

fashion to GPU device memory for each chunk of the topology data (i.e., outer data) resident in GPU 

device memory. Between two strategies, GStream chooses the attribute-major strategy since it has 

more potential benefits in terms of performance such as smaller outer data and lower synchronization 

overhead, compared with the topology-major strategy. The amount of the attribute vectors is typically 

smaller than that of the topology data, which indicates a smaller number of chunks (i.e., a smaller 

number of iterations in outer loop) and a smaller number of streaming copies of topology data to 

device memory. We present the detailed performance analysis in Section 3.6. 

Figure 1 shows the basic data flow of GStream following the attribute-major strategy. In Figure 

1, WA represents read/write attribute vectors, and RA represents read-only attribute vectors. Here, we 

suppose WA is divided into W units, and similarly RA is divided into R units. Between WA and RA, 

GStream considers only WA as outer data in order to further reduce the size of outer data. Since WA 

is frequently updated during graph algorithm, it is important to keep WA in device memory for per-

formance. However, RA is not updated during processing, and so can be fed into device memory 

together with the corresponding topology data. For each chunk of outer data, i.e., WAi, GStream 
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performs the following three steps: (1) copying WAi to GPU device memory; (2) processing graph 

algorithms while asynchronously copying the topology data together with the corresponding parts of 

read-only attribute vectors to GPU device memory in a streaming fashion; and (3) copying WAi, which 

has been updated during graph processing, back to main memory for (data) synchronization.   

 

3.2 Streaming topology data 

GStream copies the topology data from main memory to GPU device memory via the PCI-E bus 

asynchronously in a streaming way. For representing a sparse graph in memory, where most of real 

graphs are sparse, there have been proposed many formats such as Coordinate list (COO), Yale for-

mat, Compressed Sparse Row (CSR), and Compressed Sparse Column (CSC). However, they all are 

inadequate for streaming the topology data since it is hard to divide topology into smaller independent 

pieces that can be properly transferred and processed, especially into fixed-size ones for efficiency. 

The existence of hub vertices having a large number of outgoing edges makes this problem harder. 

For this reason, GStream adopts the slotted page format that have been developed in the database 

area [9, 11], which divides topology data into fixed-size pages, typically of 1MB. Here, it is no nec-

essary for GStream to use a specific format like the slotted page format. GStream can adopt any 

format that can divide topology data into fixed-size units. Figure 2 shows an example graph G and 

Main memory Device memory

WABuf

SP1 SPS
…

LP1 LPL
…

topology data

WA1 WAW
…

RA1
…

attribute data

RAR

SPBuf

PCI-E

outer data

inner data

1. chunk copy

2. streaming 
copy

LPBuf

RABuf

3. synchronization

Figure 1. Basic data flow of GStream. 
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the slotted pages of G. In Figure 2(a), the vertices v0, v1, and v2 have a relatively small number of 

neighbour vertices, and so are stored in a single page called Small Page (SP) as in Figure 2(b). An SP 

consists of two parts, records and their slots, where records grow forward from the start of the page, 

but slots grow backward from the end of the page. A slot consists of a vertex ID and the start offset 

of the corresponding record. A record consists of the size of the adjacency list and the adjacency list 

itself. The vertex v3 has a relatively large number of neighbour vertices, and so it stored in multiple 

pages called Large Pages (LPs), which structure is almost the same with that of SP as in Figure 2(c). 

The vertex IDs are sorted in the pages. More details are explained in [9]. As shown in Figure 1, we 

assume the number of small pages and large pages are S and L, respectively. The number of units of 

RA, i.e., R is usually equal to S since most of the topology pages is SP, which will be shown in Section 

5.1.  

 

For streaming inner data RA, SP, and LP to device memory, GStream allocates three kinds of 

streaming buffers in device memory called RABuf, SPBuf, and LPBuf, respectively, as in Figure 1. In 

addition, for outer data WA, GStream also allocates a chunk buffer called WABuf. 

 

Figure 2. Example graph G and the slotted pages of G. 
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GStream exploits multiple GPU streams for streaming inner data. Figure 3 shows the timeline 

of copy operations of inner data and outer data to device memory. Since GPU threads cannot execute 

a kernel function before outer data becomes available in GPU, a CPU thread first transfers WAi to 

WABuf. After that, it starts multiple GPU streams, each of which performs a series of operations, (1) 

copying SPi to SPBuf, (2) copying RAi to RABuf, and (3) executing the kernel function, repeatedly. 

Here, RAi represents the attribute sub-vectors corresponding to SPi, which can be easily identified 

since vertex IDs are sorted in the pages. In general, transfer operations for WAi, RAi, and SPi to device 

memory cannot overlap with each other, at least the current GPU architecture [1]. Instead, they can 

overlap with kernel execution with multiple streams [1, 21]. Theoretically, the suitable number of 

stream k can be determined by using the ratio of the transfer time of SPi and RAi to the kernel execution 

time. For example, in Figure 3, if the kernel execution time is k times longer than transfer time for SPi 

and RAi, then the transfer operation for SPk+1 would start right after the transfer operation for RAk at 

time t. Table 1 shows the ratios of the transfer time to the kernel execution time for BFS and PageRank 

on three real data sets used in experimental evaluation. BFS has relatively high ratios since it is not 

computationally intensive, while PageRank has relatively low ratios since it is computationally inten-

sive. Thus, the optimal k seems to be dependent on graph algorithm. 
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Figure 3. Timeline of copy operations in multiple streams. 
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However, in practice, the performance continuously increases until using 32 streams, which will 

be shown in Section 5.3. This is because the kernel execution becomes faster when SPi and RAi are 

prepared in the queues of GPU in advance, and also the maximum number of streams that can execute 

a kernel function concurrently is 32 in the current CUDA technology [1]. After streaming and pro-

cessing all the SPs for WAi, GStream performs streaming and processing all the LPs for WAi. The 

reason separating processing SPs from processing LPs is reducing the kernel switching overhead 

among SPs and LPs. After processing all the inner data required for the first outer data WA1 is done, 

the updated outer data WA1 is copied back to main memory for bulk synchronization, which is omitted 

in Figure 3 for lack of space. Then, the second inner loop using WA2 starts. 

Table 1. The ratios of transfer time to kernel execution time for BFS and PageRank on three real 

data sets. 
 Twitter [17] UK2007 [3] YahooWeb [4] 

BFS 1:3 1:1 2:1 
PageRank 1:20 1:6 1:4 

Figure 4 shows the actual timeline of copy operations for BFS and PageRank when using 16 

streams and a synthetic data, which is obtained by profiling. In the figure, very short red colored bars 

indicate copying SPi and RAi to device memory, while long green colored bars indicate executing a 

kernel function. The timeline for PageRank in Figure 4(b) is more dense than that for BFS in Figure 

4(a) since PageRank is computationally intensive, whereas BFS is not. 

(a) Streaming for BFS (b) Streaming for PageRank

Figure 4. Actual timeline of copy operations for BFS and PageRank when using 16 streams. 

- 11 - 



3.3 Exploiting Multiple GPUs 

Section 3.1 and 3.2 describe the basic principle of GStream with assuming a single GPU. However 

GStream is easy to be extended to a more powerful method exploiting multiple GPUs. We let the 

number of GPUs be N. The strategy of GStream for multiple GPUs is copying the same outer data 

to all GPUs and copying a different inner data to each GPU, which we call it as the outer replication 

strategy. Figure 5 shows the data flow of GStream following that strategy, which consists four steps. 

In Step1, GStream copies the same WAi to all {GPU1, …, GPUN}. In Step2, it copies a different 

〈SPi+j, RAi+j〉 to each GPUi+j for 0 ≤ j ≤ N-1. LPs are processed in the same way. Then, each GPU can 

execute kernel function independently for a different part of topology data. Thus, GStream poten-

tially can achieve fairly linear parallel speedup with respect to the number of GPUs for graph pro-

cessing.  

 

Moreover, since the different inner data distributed over GPUs have almost equal sizes, i.e., 

almost the same amount of workload under this strategy, the speedup ratio can be fairly stable regard-

less of the characteristics of a graph such as its size and its density. In contrast, the state-of-the-art 

method is not stable in terms of the speedup ratio, which will be shown in Section 5.2. In general, for 

load balancing, GStream calculates a hash value h(x) for a page ID i for SPi and then copies the page 

SPi to GPUh(i). Typically, GStream uses the mod function for the default hash function. 

Figure 5. Data flow of GStream using multiple GPUs. 
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When using multiple GPUs, a naïve synchronization method is performing N times synchroni-

zation from GPUs to main memory directly, one time per each GPU. This approach might suffer from 

synchronization overhead as N increases. GStream largely reduces such synchronization overhead 

by exploiting so-called peer-to-peer memory copying among GPUs, which speed is much faster than 

the copy speed of between GPU and main memory. The Step 3 and 4 in Figure 5 show the data 

synchronization of GStream. The outer data of each GPU is copied to the device memory of a master 

GPU (e.g., GPU1) in Step 3, and then the updated outer data in GPU1 is copied to main memory in 

Step 4. 

Different from the outer replication strategy, it is also possible to exploit multiple GPUs by cop-

ying a different outer data to each GPU and copying the same inner data to all GPUs, which we call 

it as the inner replication strategy. However, GStream does not adopt that strategy since it could not 

exploit peer-to-peer memory copying for outer data synchronization, and so slower than the outer 

replication strategy. 

3.4 Caching topology data 

After GStream allocates four buffers WABuf, RABuf, SPBuf, and LPBuf in the GPU device memory, 

there might be free memory available in GPU device memory. Especially, if GStream allocates a 

small amount of WABuf due to small outer data as in BFS, where WA is just a visit attribute vector for 

vertices, there is a lot of free memory left in GPU device memory. In that case, GStream tries to 

maximize the performance of graph processing by caching streaming inner data, especially SPs and 

LPs. The BFS-like algorithms could access the same topology page repeatedly during traversal, and 

thus caching could avoid unnecessary copying from main memory to device memory. 

In general, the cache hit rate increases as the size of cache memory increases. When the total 

number of topology pages of a graph is S+L, a naïve approximation of the cache hit rate using B pages 

would be B/(S+L) for random graphs, though it also depends on a cache algorithm used. As a cache 

algorithm, GStream basically adopts the LRU algorithm, but other cache algorithms can be used as 

well.  
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3.5 Framework of GStream 

The processing scheme described in Sections 3.1-3.4 can process some graph algorithms consisting 

of only a single nested-loop join between topology data and attribute vectors, like PageRank, but not 

all kinds of graph algorithms. For example, BFS requires level-by-level traversal, where a single level 

traversal requires a single nested-loop join between the set of topology pages containing the vertices 

to be visited next (i.e., inner data) and the visit attribute vector (i.e., outer data). Thus, in general, 

GStream should perform multiple nested-loop join operations for processing graph algorithms. Here, 

we note that the previous work such as [6, 9] usually processes a single level traversal of BFS by 

scanning almost the entire topology data even though only a very small portion of topology data is 

necessary for each traversal level, which may largely degrade the performance of  BFS. In contrast, 

GStream improves the performance by minimizing the amount of inner data, i.e., by copying only 

the topology pages containing the vertices to be visited next. 

In terms of page access patterns, PageRank and BFS stand at the two extremes: the former just 

needs a single nested-loop join accessing the entire topology as inner data, while the latter needs 

multiple nested-loop joins, each join of which accesses a very small portion of topology as inner data. 

GStream integrates two extremes into a single framework. Figure 6 presents the framework of the 

GStream method. It performs a user-defined kernel function KQ for a graph algorithm such as Pag-

eRank and BFS on a graph G. As an initialization step, it loads G into main memory (MM), creates 

the streams for small pages and large pages for each GPU, and allocate the buffers WABuf, RABuf, 

SPBuf, and LPBuf in the device memory (DM) of each GPU. Then, it sets nextPIDSet, a set of page 

IDs to process next, depending on the type of the graph algorithm. If KQ is a function for BFS-like 

algorithm, the page ID containing the start vertex is assigned to nextPIDSet. Otherwise, the constant 

ALL_PAGES is assigned to it. The map for cached page IDs cachedPIDMapi for each GPUi is initial-

ized, which is used for caching old topology pages in GPUi (Line 9). The do-while loop (Lines 10-

33) takes charge of level-by-level traversal. If KQ is a PageRank-like algorithm, this loop is performed 

only once. The three for loops (Lines 11, 13, and 21) takes charge of a single nested-loop join. In 

Figure 5, Steps 1, 2, 3, and 4 correspond to Line 12, Lines 13-27, Line 28, and Line 29, respectively. 
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Lines 13-20 are performed for processing small pages, and Lines 21-27 are performed for processing 

large pages. We note that the inner loop (Lines 13 and 21) asynchronously transfers a topology page 

SPj (or LPj) in nextPIDSet to a specific GPUh(j) after hashing the page ID j, as discussed in Section 

3.3.   

The GStream Framework

Input: Graph G // input graph
KQ // user-defined kernel function

Variables: nextPIDSet // set of page IDs to process
cachedPIDMap1:N // maps of cached page IDs

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Load G into MM;
Create SPstream and LPstream for GPU1:N; 
Allocate {WABuf, RABuf, SPBuf, LPBuf} for GPU1:N;
if KQ is a BFS-like algorithm then

nextPIDSet ← page ID containing start vertex;
else // KQ is a PageRank-like algorithm

nextPIDSet ← ALL_PAGES;
end if
cachedPIDMap1:N ← ∅
do   // perform level-by-level traversal

for i ← 1, W do
Copy WAi to WABuf of GPU1:N;
for j ∈ nextPIDSet do // processing SPs

if j ∉ cachedPIDMaph(j) then
Asyn-copy SPj to SPBuf of GPUh(j);
Asyn-copy RAj to RABuf of GPUh(j);

end if
Call KQ for SPj in GPUh(j);

end for
Thread synchronization in GPU1:N;
for j ∈ nextPIDSet do // processing LPs

if j ∉ cachedPIDMaph(j) then
Asyn-copy LPj to LPBuf of GPUh(j);

end if
Call KQ for LPj in GPUh(j);

end for
Thread synchronization in GPU1:N;
Copy WAi of GPU2:N to GPU1;
Copy WAi of GPU1 of to MM;

end for
Copy nextPIDSet1:N and cachedPIDMap1:N to MM;
nextPIDSet ← ∪1≤i≤N nextPIDSeti;

while nextPIDSet ≠ ALL_PAGES ∧ nextPIDSet ≠ ∅

Figure 6. Pseudo code of the GStream framework. 
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Here, before transferring the page, GStream first checks if the page already exists in the cache 

of GPUh(j) by looking up cachedPIDMaph(j) (Lines 14 and 22). During executing KQ, a new set of page 

IDs to process at the next level is assigned to nextPIDSeti in device memory of each GPUi, which is 

copied back to MM (Line 31), and then merged into the original nextPIDSet (Line 32). The updated 

cachedPIDMap1:N is also copied back to MM and used in the next level traversal. In the case of Pag-

eRank-like algorithms, both nextPIDSet and cachedPIDMap1:N are actually not used. In the case of 

BFS-like algorithms, we can easily improve the performance by maintaining WAi in WABuf without 

copying it repeatedly for each traversal level.  

3.6 Cost model of GStream 

Now, we present the cost models of GStream, which would allow us to understand the performance 

tendency. We only consider major factors that could affect the performance of GStream. Since Pag-

eRank-like algorithms and BFS-like algorithms show a quite different tendency, we present two cost 

models. 

The cost model for PageRank-like algorithms is given by  

 

(1) 

 

where c1 is the communication rate (e.g., in MB/s) between main memory and device memory in a 

chunk copy mode, c2 is the communication rate in a streaming copy mode, tcall(x) is the time overhead 

of calling a kernel function x times, tkernel(y) is the kernel execution time to process y pages, and tsync(z) 

is the time overhead of synchronization among z GPUs. Here, c1 is usually higher than c2 in GPUs. 

For example, in PCI-E 2.0 x16 interface, c1 is about 8GB/s, while c2 is about 6GB/s. In Eq.(1), 

2|WA|/c1 indicates the total amount of time for copying all WAi to device memory and copying the 

updated one back to main memory. That time does not decrease with multiple GPUs due to the outer 

replication strategy discussed in Section 3.3. The term in the braces is the time for a single inner loop, 

which is performed W times. The transfer time of inner data (|RA|+|SP|+|LP|)/c2 is divided by N 
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since transmission can be performed concurrently for N GPUs. The time overhead of calling the kernel 

function tcall(S+L) is also divided by N. The term tkernel(SP|1|+LP|1|) indicates the last kernel execution 

time for the last single SP and the last single LP that are not hidden by data streaming as shown in 

Figure 3. That time is not short since PageRank-like algorithms are usually computationally intensive, 

and cannot be divided by N since every GPU does the same thing. We note that the time overhead 

tsync(N) increases as N increases in order to synchronize WAi among more GPUs. 

The cost model is for BFS-like algorithms is given by 

 

(2) 

 

where depth is the number of traversal levels, SP{l} is a set of small pages visited at an l-th level 

traversal, dskew is the degree of workload skewness (i.e., imbalance) among GPUs, and rhit is the cache 

hit rate B/(S+L) discussed in Section 3.4. As discussed in Section 3.5, WA for BFS-like algorithms is 

usually small enough to fit in device memory and can be maintained in device memory during algo-

rithm execution. Thus, we do not need to copy WA to GPU device memory for each traversal level, 

i.e., a total of depth times. Instead, WA is copied only once, and so there is no term of multiplication 

with W. The operations in the braces at different traversal levels cannot overlap with each other due 

to synchronization barrier, and thus the total amount of time is just a sum of the times from level 0 to 

level depth. The transfer time of inner data (|RA{l}|+|SP{l}|+|LP{l}|)/c2 is divided by N due to using N 

GPUs, and moreover divided by dskew, which is between 1/N (most imbalanced) and 1 (most balanced). 

We need to consider this factor since page access patterns of BFS-like algorithms might not be quite 

balanced different from PageRank-like algorithms. In the most imbalanced case, the transfer time of 

inner data is the same with that of using only one GPU. The term (1-rhit) represents the caching effect, 

where rhit is between 0 (no cache hit) and 1 (all cache hits). There is no term tkernel(y) in this cost model 

since the kernel execution time of BFS-like algorithms is not a major factor. There is also no term 

tsync(z) since the size of WA to be synchronized is usually so small. In the term tcall((S{l}+L{l}) / (N× 

dskew)), S{l} indicates the number of small pages visited at an l-th level traversal. 
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IV. OTHER TECHNIQUES 

 

4.1 Fine-granular parallel processing in GStream 

GStream mainly focuses on coarse-granular or macro-level parallel graph processing, as presented 

in Section 3. However, since GStream processes topology data page-by-page, we can apply various 

kinds of fine-granular or micro-level parallel graph processing techniques to each page. Even we can 

apply a better/different technique to each page depending on its characteristics such as density, i.e., 

the ratio of the number of vertices to the number of edges within a page. 

One of naïve micro-level technique would be letting each GPU thread process each vertex and 

its outgoing edges, which we call it as vertex-centric. On the contrary, the VWC method [12] that the 

threads in a warp process the outgoing edges of a vertex simultaneously can be considered as edge-

centric. In general, the vertex-centric strategy is suitable for every sparse graphs where each vertex 

as only few outgoing edges, while the edge-centric one is suitable for less-sparse graphs. In order to 

cope with both cases, GStream adopts the hybrid strategy that processes a page with the vertex-

centric technique if its density is lower than a certain threshold, or processes it with the edge-centric 

technique otherwise.  

4.2 Extending to a disk-based method  

GStream can be relatively easily extended so as to process a huge-scale graphs stored in disks (e.g., 

HDD and SDD), since the slotted page format is originally a developed one for disk-based processing. 

However, the gap between I/O performance of disks and computing power of GPUs is quite large at 

least under the current computer architecture, and so there is a clear limit on the performance of a 

disk-based graph processing using GPUs. Even PCI-E type SSD (e.g., Fusion-io’s, Intel’s) has much 

lower practical I/O speed of around 1GB/s compared with the graph processing speed of GStream 

of around several GB/s, which will be shown in Section 5. The communication speed between main 

memory and GPU device memory is also much higher than the I/O speed of PCI SSD. Therefore, the 
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overall performance of disk-based GStream is expected to equal to the I/O speed of disks for the 

time being.  
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V. PERFORMANCE EVALUATION 

 

In this section, we present experimental results in two categories. First, we evaluate the performance 

of GStream compared with the state-of-the-art method TOTEM [6-7] to show the superiority of our 

method. To the best of our knowledge, TOTEM is the only method to process large-scale graphs that 

do not fit in GPU device memory and also exploits multiple GPUs. Second, we evaluate the perfor-

mance of GStream while varying the number of streams, the sizes of buffers, and the densities of 

graphs to show the characteristics of GStream. 

5.1 Experimental setup  

For experiments, we use both synthetic datasets and real datasets. For synthetic datasets, we generate 

scale-free graphs following a power law degree distribution by using RMAT [5], which are summa-

rized in Table 2. For small synthetic graphs that can fit in the device memory of a sing GPU, we 

generate RMAT24, RMAT25, and RMAT26, where the ratio of the number of vertices to the number 

of edges is set to 16 as in TOTEM. For large synthetic graphs that cannot fit in the device memory, 

we generate RMAT27, RMAT28, and RMAT29. For real datasets, we use three well-known graphs 

of Twitter [17], UK2007 [3], and YahooWeb [4], which all have different sizes and characteristics. 

Table 2 shows the basic statistics of those data sets, where most of the topology pages is SP for both 

synthetic graphs and real graphs. 

Table 2. Synthetic and real graph datasets used for experiments. 

data #vertices #edges #pages (in GStream) 
#SP #LP 

RMAT24 16M 256M 1,205 0 
RMAT25 32M 512M 2,415 2 
RMAT26 64M 1,024M 4,880 3 
RMAT27 128M 2,048M 9,724 58 
RMAT28 256M 4,096M 19,533 62 
RMAT29 512M 8,192M 38,747 937 
Twitter 42M 1,468M 5,418 1,029 

UK2007 106M 3,739M 15,484 0 
YahooWeb 1,414M 6,636M 32,807 0 
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We conduct all the experiments on the same workstation with two Intel Xeon E5-2687W 3.1GHz 

CPUs of eight cores, 128 GBytes main memory, and two NVIDIA GTX TITAN GPUs of 2,688 cores 

and 6 GB device memory. The CPUs and GPUs are connected to PCI-E 2.0 x16 interface due to the 

mainboard that not supports PCI-E 3.0 x16 interface. For TOTEM, we download the source code 

from [2]. All experiments are performed on the same OS of SUSE Linux Enterprise 11 SP2 and the 

same GPU Toolkit of CUDA 5.5. Both TOTEM and GStream are compiled with same optimized 

option of –O3 with gcc 4.3.4. In all experiments where a graph does not fit in device memory, 

GStream uses only GPUs, while TOTEM uses both all 16 CPU cores and GPUs. 

5.2 Comparison with TOTEM 

Figure 7 shows the comparison results between TOTEM and GStream. Figures 7(a)-(b) are for small 

synthetic graphs, Figures 7(c)-(d) are for large synthetic graphs, and Figures 7(e)-(f) are for real 

graphs. Each of Figures 7(a)-(f) shows two side-by-side results for BFS(in left) and PageRank(in 

right). For all figures, Y-axis represents an average elapsed time in seconds, and so lower bars indicate 

better performance. In the case of PageRank, we measure an average of the total elapsed time of 10 

iterations. 

Small synthetic graphs. We compare the performance of GStream with the best performance of 

TOTEM by using small synthetic graphs. The performance of TOTEM is maximized when copying 

the entire graph data to device memory and processing graph algorithms only by using GPUs [6-7]. 

In Figure 7(a)-(b), GStream improves the performance for all cases compared with TOTEM. It im-

proves the performance up to 7.12 times for BFS (on RMAT26 using a single GPU), and up to 2.62 

times for PageRank (on RMAT24 using two GPUs). The reason why the improvement of BFS is 

higher than that of PageRank is due to the way of accessing topology data for traversal. TOTEM as 

well as other major methods [6-7, 12] process BFS by scanning almost the entire topology data at 

each level traversal, while GStream processes BFS by streaming only the necessary topology pages 

to device memory at each level of traversal. We note that GStream with a single GPU outperforms 

TOTEM with two GPUs for all RMAT24-26 and for both BFS and PageRank. For RMAT25, TOTEM 
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fails to process PageRank with the error message “unspecified launch failure”, which seems to be a 

bug of TOTEM, and so there is no corresponding elapsed time.  

Large synthetic graphs. We compare the performance of GStream with the best performance of 

TOTEM for large synthetic graphs by fitting as much graph data as possible in device memory and 

letting GPU(s) process that data. The remaining graph data that cannot fit in device memory is in 

main memory and processed by CPUs. Table 3 shows the ratio of graph data processed by GPUs to 

that by CPUs in TOTEM (GPU%:CPU%). There is no information about RMAT29 since TOTEM 

cannot load it. For RMAT27-28, the portion of the GPU side for PageRank is smaller than that for 

BFS, since PageRank requires bigger status information than BFS. 

Table 3. Ratios of partition sizes in TOTEM (GPU%:CPU%). 

  RMAT27 RMAT28 RMAT29 
one 

GPU 
BFS 60:40 30:70 N/A 

PageRank 50:50 20:80 N/A 
two 

GPUs 
BFS 100:0 50:50 N/A 

PageRank 100:0 50:50 N/A 

Figure 7. Comparison with TOTEM: BFS (in the left side) and PageRank (in the right side) in each of 

(a)-(f). 
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For RMAT29, the number of edges is larger than 2^32=4 billions, i.e., beyond the range of 4-

byte integer. Since the CSR format of TOTEM uses an index number for each edge, TOTEM cannot 

even lad RMAT29 into main memory. In contrast, the slotted page format of GStream uses only 

vertex IDs and does not use any kinds of edge IDs, and thus GStream can load and process RMAT29 

without a problem. In Figures 7(c)-(d), GStream still outperforms TOTME in all cases.It improves 

the performance up to 7.16 times for BFS (on RMAT28 using two GPUs), and up to 4.28 times for 

PageRank (on RMAT28 using two GPUs). We note that the performance gap between both methods 

becomes wider for large synthetic graphs. We also note that GStream succeeds in processing 

RMAT29, which is larger than the largest available real graph YahooWeb, in about 100 seconds by 

using two GPUs. Here, the graph processing speed is about 4GB/s since the size of RMAT is about 

40GB, and we perform PageRank iteration 10 times for all experiments. 

Real graphs. We compare the performance of GStream with the best performance of TOTEM for 

real graphs, where the ratio of the GPU portion to the CPU portion in TOTEM is summarized in Table 

4. For YahooWeb, TOTEM cannot load data into main memory due to the same reason with 

RMAT29. In Figure 7(e)-(f), GStream outperforms TOTEM in all cases, except one (PageRank on 

Twitter using a single GPU). GStream improves the performance up to 7.64 times for BFS (on 

UK2007 using two GPUs), and up to 3.47 times for PageRank (on UK2007 using one GPU). 

Table 4. Ratios of partition sizes in TOTEM (GPU%:CPU%). 

  Twitter UK2007 YahooWeb 
one 

GPU 
BFS 80:20 30:70 N/A 

PageRank 80:20 30:70 N/A 
two 

GPUs 
BFS 100:0 60:40 N/A 

PageRank 100:0 60:40 N/A 
 

Scalability. We evaluate the speedup ratios of GStream when using two GPUs compared with that 

of TOTEM. Figures 8(a)-(b) show the speedup for BFS and for PageRank, respectively. In most cases, 

GStream shows higher speedup, and furthermore more stable speedup than TOTEM, as discussed in 

Section 3.3. For BFS, GStream shows the speedup ratios between 1.07 and 1.89, while TOTEM 

shows those of between 0.92 and 1.46, i.e., the performance is rather degraded in some cases. For 
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PageRank, GStream shows the fairly stable speedup ratios of between 1.63 and 1.77, while TOTEM 

shows the unpredictable speedup ratios of between 1.02 and 3.02. GStream shows more stable 

speedup ratios for PageRank than for BFS since there is almost no workload imbalance among GPUs 

in PageRank as discussed in Section 3.6. 

One exceptionally high speedup of TOTEM for PageRank on RMAT27 is due to a relatively 

bad performance of TOTEM when using one GPU. TOTEM can maintain the entire RMAT27 with 

two GPUs, but cannot do it with one GPU, as shown in Table 3. In terms of absolute performance, 

GStream still is faster than TOTEM in that case (for PageRank on RMAT27 using either one GPU 

or two GPUs), as we can see in Figure 7(c)-(d).  

5.3 Characteristics of GStream 

Figure 9 shows the performance of GStream while varying the number of streams for from RMAT26 

to RMAT29. The performance increases steadily as the number of streams increases for all data sets. 

Even for BFS where the ratio of transfer time to kernel execution time is much smaller than 32, it 

does due to the reason explained in Section 3.3. 

Figure 8. Speedup ratios when using two GPUs. 
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Figure 10(a) shows the performance of GStream for BFS while varying the cache size from 

32MB to 5,120MB, and Figure 10(b) shows the corresponding cache hit rates. For RMAT29, there is 

no result at the cache size 5,120MB due to a large size of WABuf. In Figure 10(b), the cache hit rate 

increases linearly according to the cache size and decreases linearly according to the size of topology 

data, as discussed in Section 3.4. 

 

 

Figure 11 shows the performance of GStream for BFS and PageRank while changing the den-

sity (i.e., #vertices: #edges) of RMAT28 from 1:4 to 1:32 and changing a micro-level parallel pro-

cessing technique to process each slotted page. The three strategies discussed in Section 4.1 show 

similar performance for very sparse graph of 1:4. However, the edge-centric strategy outperforms the 

Figure 10. Effectiveness of caching for BFS. 
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vertex-centric strategy largely for more dense graphs. The hybrid strategy improves the performance 

slightly (up to 6% for BFS and up to 24% for PageRank) compared with the edge-centric one. 
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Figure 11. Performance when changing micro-level parallel processing techniques and graph density. 
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VI. RELATED WORK 

 

There are a number of graph processing methods using GPUs on a single computer [6-7, 10, 12, 16, 

20, 24]. The WVC method [12] proposes the virtual warp scheme that enables trading off between 

workload imbalance and ALU underutilization with a single parameter, the number of threads per 

virtual warp. It usually partitions a physical warp of 32 threads into multiple virtual warps of 4, 8, or 

16 threads. Too large virtual warp could cause unused ALUs within a warp, which could limit the 

parallel performance of kernel executions. CuSha [16] adopts the shards format [18] for solving the 

non-coalesced memory access problem and presents two graph representations: G-Shards and Con-

catenated Windows (CW). It focuses on fully utilizing the GPU computing power by processing mul-

tiple shards in parallel on GPU’s streaming multiprocessors. Medusa [24] proposes a programming 

framework that can simplify implementation of GPU programs for graph processing [20] presents a 

BFS parallelization method that focuses on fine-grained task management constructed from efficient 

prefix sum, which achieves an asymptotically optimal O(|V|+|E|) complexity. All the work mentioned 

above are lack of support for large-scale graphs that do not fit in the GPU’s limited device memory. 

However, many technique addressed in the above work belong to micro-level parallel processing 

techniques and are orthogonal to our method GStream, and so they can be applied to processing each 

topology page. TOTEM [6-7] is only work to process large-scale graphs and exploit multiple GPUs, 

to the best of our knowledge. It partitions a graph into two parts: (1) the main memory part processed 

by CPUs and (2) the device memory part processed by GPUs. Though it can handle large-scale graphs, 

it still has many fundamental problems such as a large amount of synchronization overhead, lack of 

scalability in terms of the number of GPUs, and a limit on the size of graphs to process.  

There are also a number of graph processing methods on a distributed systems of multiple com-

puters [8, 13-15, 19, 22]. The representative methods include Pregel [19], GraphLab [15], Power-

Graph[8], Trinity [22], PEGASUS [14] and GBase [13]. Pregel [19] follows the BSP message passing 
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model in which all vertex kernels run simultaneously in a sequence of so-called super-steps. Graph-

Lab [15] allows a vertex kernel to be executed in asynchronous parallel on each vertex. PowerGraph 

[8] is basically similar to GraphLab, but it partitions graphs by exploiting the properties of power-law 

degree distributions of real graphs. However, there is no method yet that exploits GPUs for graph 

processing on a distributed systems, which would be an interesting topic for fast processing huge-

scale graphs larger than the capacity of main memory of a single computer. 
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VI. CONCLUSIONS 

 

Parallel graph processing on GPUs has been suffered from severe limitation on the graph size to 

process even though GPUs have massive computing power. In this paper, we have proposed a novel 

parallel graph processing method GStream that processes large-scale graphs larger than the size of 

GPU device memory very efficiently and is scalable in terms of both data size and the number of 

GPUs. It adopts the concept of nested-loop join combined with asynchronous GPU streams, where it 

keeps writable data in device memory and streams read-only data to GPUs. We have presented the 

detailed pseudo code of the GStream and its cost models. We have also presented the caching strat-

egy for GStream and how to apply the fine-granular parallel processing strategies to our framework. 

Extensive experimental results with various synthetic and real data sets show that GStream consist-

ently and significantly outperforms the state-of-the-art method TOTEM in terms of the absolute per-

formance and the scalability. We believe that the concepts and techniques of GStream will be able 

to apply to the similar problems other than graph processing. 
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요 약 문 

GStream: GPU에서 대규모 그래프 처리를 위한 스트리밍 방법 

큰 규모 그래프를 위한 빠른 그래프 알고리즘 처리는 다양한 분야의 어플리케이션에 

있어서 그래프가 인기를 얻게 되고 그래프의 규모가 급속히 증가함에 따라 점점 

중요해지고 있다. 상대적으로 낮은 가격 대비 높은 계산 능력을 가지고 있는 GPU의 

대규모 병렬성을 이용하여 그래프 어플리케이션을 처리하기 위한 많은 시도가 

이루어져 왔다. 그러나 현존하는 대부분의 방법들은 대개 불규칙적은 그래프 구조와 

복잡한 그래프 처리 알고리즘 때문에 장치 메모리에 저장할 수 없는 큰 규모의 

그래프를 처리하지 못했다. 가장 최신의 방법인 TOTEM은 큰 규모의 그래프를 메인 

메모리와 장치 메모리 부분적으로 나누어 저장하여 메인 메모리에 저장된 부분은 

CPU 에 의해 계산되고, 장치 메모리에 저장된 부분은 GPU 에 계산되는 방법으로 

처리한다. TOTEM은 장치메모리 보다 큰 규모의 그래프 데이터를 처리하기는 하지만 

아직 메인 메모리와 장치 메모리간의 동기화 오버헤드와 GPU의 개수 및 데이터 규모에 

따른 확장성의 부족과 같은 근본적인 문제를 가지고 있다. 우리는 빠르고 GPU의 개수 

및 데이터 규모에 대해 확장성을 가진 병렬 처리 방법인 GStream 을 제안한다. 

GStream은 GPU의 장치메모리보다 큰 규모의 그래프(예, 10억개의 정점)를 중첩 루프 

조인과 비동기적인 GPU 스트림을 이용함으로써 매우 효율적으로 처리한다. GStream은 

GPU 간에 균일한 작업 부하를 분산하는 방법으로 다수의 GPU 를 활용한다. 또한 

스트리밍으로 복사되는 그래프 데이터를 캐시하는 방법으로 GPU 장치 메모리의 

가용공간을 활용한다. 우리가 아는 범위에서 GStream은 첫 번째 데이터 규모 및 

GPU의 개수에 있어서 확장성을 가지는 방법이다. 대규모의 실험 결과는 GStream이 

TOTEM보다 합성 데이터와 실제 데이터에 대해서 절대적인 성능, 확장성 그리고 그래프 

규모에 있어서 일관적이며 상당히 더 나은 결과를 내는 것을 보여준다.  

 

핵심어: 그래프 처리, 대규모, GPU, 스트림 
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