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ABSTRACT The efficiency and accuracy of the image semantic segmentation algorithm represent a
trade-off relationship, and the loss of accuracy tends to increase as the model structure simplifies to improve
efficiency. Developing more efficient and accurate algorithms requires methods to complement them. In this
study, we applied the logarithmic-exponential mixture (LEM) function for gamma correction of images to
improve the accuracy of image semantic segmentation. The basic model used in this work was produced
by constructing a full convolution neural network based on MobileNetV2. To avoid the noise of input
compression, we corrected training and validation images with gamma from 1/8 to 8 (7 different levels)
before doing convolution. We evaluated models using Tensorflow deep-learning library based on Python.
We compared models using LEM function to models using conventional gamma function. The prediction
masks of the proposed model using the LEM function had relatively small fluctuations of accuracy upon
gamma change. For images that have shadows overlapped on the object, the object was better distinguished
in small gamma values. For dark images, the increase in accuracy was more effective. The results indicated
that the proposed gamma correction could improve image segmentation accuracy in images with unclear
edges. We believe that the presented results will guide further studies for accuracy improvement of image
recognition algorithms applicable to future devices, such as autonomous vehicles and mobile robots.

INDEX TERMS Convolutional neural networks, image semantic segmentation, gamma correction, logarith-
mic function, exponential function.

I. INTRODUCTION
In neural network of machine learning algorithms, taking in
convolution which applied to small and specific areas made
the accuracy of image classification and recognition highly
improved [1]–[7]. LeCun et al. introduced multilayered con-
volutional neural networks (CNNs) for handwritten digits
and zip codes image classification. Simard et al. used data
augmentation to improve quality and quantity of datasets [8].
Also, back-propagation and using GPU made complex algo-
rithms possible to run and decreased performing time [9]–
[13]. Based on these successes in image recognition fields,
CNN algorithms have shown excellence in other machine
learning areas, such as natural language and signal process-
ing [14]–[16].
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In recent years, mobile infrastructure is rapidly expanding
and developing. In addition, the needs of deep learning in
mobile environments increase. However, CNN-based algo-
rithms require repetitive processing of high-density image
data, so they are not suitable for mobile devices with low
computing power. To solve this problem, many models,
including MobileNets, have been proposed [17]–[20]. These
models simplify the structure and decrease repeats and cal-
culations, resulting in high performance on mobile devices.
Although, efficiency and accuracy represent a trade-off, and
the loss of accuracy increases as the model structure is sim-
plified. For practical application of models, it is required
to improve the accuracy that is degraded by structural
simplification.

In this study, we tested the performance of the models
designed for working in low computing power and con-
sidered their improvement by applying gamma correction.
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We evaluated models with images that have clear edges
between object and background. Datasets that applied
gamma correction were inserted to models as training
datasets and we observed the difference in a variety of
gamma values. Conventional gamma correction controls
image brightness based on a human perception structure,
we considered that this is not fitted in computing image
segmentation [21].

The main contributions of this study are as follows:
(1) we applied an enhanced gamma correction function,
logarithmic-exponential mixture (LEM) function, preferable
to image segmentation model based on the encoder-the
decoder framework. (2) We show how this function can
be applied to backbone models. (3) We observed results
from datasets in the LEM function. Then, we compared and
explained them with the results from the datasets in the
conventional gamma function. Models trained by datasets
corrected with LEM function showed improved accuracy in
areas where brightness was saturated. Images with unclear
edges and with edges overlaid on shadows have improved
accuracy at specific gamma values.

II. RELATED WORK
Segmentation is labeling image pixels one by one to discrim-
inate objects. In order to do this, we need features of the
input image, coarse maps. Conventional CNN-based image
segmentation models are constructed with two parts. One
part is an encoder that performs convolution and pooling
repeatedly to extract feature maps, while the other part is a
decoder that restores the size of feature maps to the input
image size. Thus, it provides pixelwise prediction. Fully con-
volutional neural network (FCN) is a representative method.
The encoder part is constructed based on classification mod-
els such as VGG and ResNet, and the fully connected layer
is removed [22]–[24]. In the decoding part, information near
feature is recovered by bilinear interpolation, backward con-
volution, and skip-connection. Another representative seg-
mentation model is U-net, which constructs skip architecture
that uses information from down-sampling to recover infor-
mation in up-sampling which improves spatial details [25].
The decoder-encoder networks have been applied to many
recent semantic segmentation tasks, including DeepLabV3+,
and have provided successful results [26]–[32].

Meanwhile, depthwise separable convolution is designed
to perform spatial separable convolution and pointwise
convolution tasks in succession and has been applied to
many neural network designs to improve the efficiency
of the model [33]. Recently, MobileNet adapted depth-
wise separable convolution algorithm to reduce calculations
with floating point operations and convolutional parame-
ters [17]. This allowed MobileNet to work well enough
in a low computing power environment. One step further,
MobileNetV2 suggested inverted bottleneck residual blocks,
and made more efficient performance in image classifica-
tion [18]. We expected to further improve accuracy by adding

FIGURE 1. Model architecture to predict mask of the image.

gamma correction features to these functionally efficient
algorithms, and we used MobileNetV2 as a backbone of
our conceptual verification model. We also used ResNet-
50 as a backbone for a comparison model [34]. ResNet is
a classification model that applies residual blocks [24]. This
occurs shortcuts inside the training process, and solves the
vanishing gradient problem. Table 1 compares the features of
this work and the previously proposed works.

III. METHODOLOGY
A. OVERALL ARCHITECTURE
Fig. 1 shows the architecture for the image segmentation
model used in the study. First, the intensity of the input
image is corrected before changing the input image size.
Input images have various sizes with uint8 digits, con-
sequently, images are compressed into 128 × 128 size
format. In this process, 256 intensity levels are normalized
and changed into float numbers from 0 to 1. If we apply
gamma correction after normalization, this correction may
differ in image by image. We tried to reduce the impact on the
intensity of brightness in process of compression. Therefore,
we corrected brightness when the image was in uint8 format
and created a variety of training datasets.

First, the input image is corrected with gamma correction.
After changing the image to 128 × 128 size format with
3 RGB channels, it goes through the MobileNetV2 algorithm
for down-sampling to make 4× 4× 320 feature map. Then,
extracted feature map like Fig. 1 passes 5 up-sampling pro-
cesses and becomes 128× 128× 3 image. 3 channels of the
input image are RGB channels, but 3 channels of the resulting
mask are an object, edges of the object, and others.

Up-sampling process has been constructed with
Convolution2d-Transpose and dropout. If we simply conduct
up-sampling, the loss cannot be recovered properly, therefore
we employed skip-connection to support up-sampling like
U-Net. In up-sampling process, we used the layer of the same
size that was in down-sampling process. In the convolution
process in down-sampling, if the map passes the block of
stride 2, the map shrinks in half, and these maps are used
in skip-connection by concatenating after up-sampling layer
to support recovering features.
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TABLE 1. Comparison of image semantic segmentation models.

FIGURE 2. Intensity correction by gamma function (gray level: 0 ∼ 255)
(a) conventional function (b) LEM function.

B. GAMMA CORRECTION
Gamma correction is one of the methods that can be used
to create augmented images. In general, gamma correction
applies a nonlinear function to change the brightness of an
image to suit the human vision [21]. When the natural image
is taken by a camera, it is visualized in a monitor, applied
gamma correction that is suited for human sight.

Iout = G
(
Iin
IM

)γ
∗ IM + IO (1)

The non-linear function is expressed as equation (1) where
Iout is corrected intensity, G is gain, Iin is the original intensity
of image, IM is maximum intensity, and IO is offset. Normally,
image has uint8 format, which means the image has 256
levels of brightness, from 0 to 255. The corrected intensity
of equation (1) is represented in Fig. 2 (a). In uint8 format,
the maximum intensity level is 255, so IM is equal to 255.
Each pixel intensity is changed according to gamma value.
If gamma is bigger than 1, the intensity decreases. If gamma
is smaller than 1, the intensity increases.

C. PROPOSED LOGARITHMIC-EXPONENTIAL MIXTURE
FUNCTION
Edges of an image are created by discontinuities in surface
color, depth, surface normal, and shadow [37]. Humans can

respond quickly to these discontinuities, but CNN algorithms
are designed to be less sensitive to noise when generating
feature maps, so responsiveness to noise is low. Thus, a small
difference is hard to detect in the CNN process. Gamma cor-
rection is also suited for human vision, which responses sen-
sitively to small changes. As a result, corrected images using
ordinary gamma correctionmay not considerably improve the
performance of CNN algorithm, and need of a new method
that can emphasize the difference at the edges of objects
appeared.

Like in Fig. 2 (a), ordinary gamma correction forms the
logarithm or exponential function, which means saturated
areas cannot emphasize the gradation difference. In low
gamma value correction, the bright area is saturated and does
not make a large gradation difference. In high gamma value
correction, the dark area is saturated and does not make a
large gradation difference. Convolution extracts feature maps
based on the strong correlations between pixels, so it is
difficult to detect the difference in brightness between objects
and backgrounds in these brightness saturation areas. In a
real dark environment, image brightness is saturated in the
dark area and the segmentation model cannot define edges
between object and background. We thought that the function
that can make a large gradation difference in the brightness
saturated areas could solve this problem.

Iout =



G

(
Iin

1
2 ∗ IM

)γ
∗
1
2
∗ I

M
+ IO

for Iin ≤
1
2
∗ IM

(G(
Iin − 1

2 ∗ IM
1
2 ∗ IM

)
γ

+ 1) ∗
1
2
∗ I

M
+ IO

for Iin >
1
2
∗ IM

(2)

Sigmoid-form function and its symmetry function would be
suitable for this. Suggested function is expressed as equa-

64144 VOLUME 9, 2021



J. Choi, B. Choi: Highly Contrast Image Correction for Dim Boundary Separation of Image Semantic Segmentation

TABLE 2. The gamma value of training datasets for each model.

tion (2). This function is the LEM function. Fig. 2 (b) shows
corrected intensity by equation (2) based on uint8 image.
It can be seen that unlike conventional gamma function, LEM
function can make the gradation difference clearly in the dark
area and bright area.

D. TRAINING
To evaluate the LEM function, we first applied the conven-
tional gamma function on the image dataset and trained mod-
els with it. By changing the gamma value, we got a variety
of datasets. The value was changed in 7 levels from 1/8 to 8,
all of them are powers of 2. We trained one model for one
corrected dataset and made 7 models, which can be defined
by different gamma values. We named them from C_Model
1 to C_Model 7. Also, we made 7 different test images using
gamma correction and used them as input to models. This
process resulted in 49 predicted masks. To observe more
precisely a small change of accuracy, wemade the more small
degree of gamma value difference for test images from 0.7 to
1.3. For the LEM function, we repeated the same process as
the conventional gamma function and made the results. The
models are named from LEM_Model 1 to LEM_Model 7.
Table 2 shows gamma values for each condition.

IV. EXPERIMENTS
A. DATASET
In this work, we used the Oxford-IIIT pet dataset [38].
This dataset is a 37 category pet dataset with roughly
200 images for each class. Training and validation sets con-
sisted of 3680 and 3669 images, respectively. The basic
model trained with the dataset that was not affected by
gamma correction showed training accuracy 0.93 and val-
idation accuracy 0.89, respectively. To observe the perfor-
mance of the LEM function, we used images with clear
edges and images with shadows overlapped on the edges.
We also used dark images to evaluate object segmentation
performance in dark environments. For dataset evaluation,
we used the PASCAL VOC2007 and the PASCAL VOC2012
datasets [39], [40].

B. IMPLEMENTAION DETAILS
We used Tensorflow library using python on Anaconda 3 vir-
tual machine in Window 10 operation system. We used a

FIGURE 3. Accuracy of models trained with dataset corrected by gamma
functions, (a) LEM function (b) conventional function. Image with clear
edges.

FIGURE 4. Loss of models trained with dataset corrected by gamma
functions, (a) LEM function, (b) magnification in a narrow gamma range
(0.7 ∼ 1.3) (c) conventional function (d) magnification in a narrow gamma
range (0.7 ∼ 1.3).

laptop equipped with Nvidia GTX 1660 Ti with CUDA 11.0.
We programmed the encoder part of the basic model based
on MobileNetV2 and ResNet. In order not to deteriorate the
original image characteristics, we configured it to correct
the intensity before convolution. The feature map extracted
from the encoder part was enlarged to the original image size
through an up-sampling process in the decoder part. We first
trained and validated the basic model with the Oxford-IIIT
pet dataset and checked the process works properly. Then,
we corrected datasets with conventional gamma correction
method using gamma values from 1/8 to 8 and trained models
with them. Next, we made 7 test data images with gamma
values from 1/8 to 8 for the selected picture that has clear
edges between object and background. Also, we made 7 test
data images with gamma values from 0.7 to 1.3, each with
0.1 difference, for the selected picture and put them in mod-
els. For further testing, we created 7 test data images with
gamma values from 1/8 to 8 for the pictures that have shadows
overlapped on edges and pictures of dark and put them in
models. The same method was employed for LEM function.
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FIGURE 5. Evaluation of LEM_Models using test image with shadow overlapped on edges. (a) Original and true mask of the test image,
(b) gamma-corrected test image, (c) predicted masks (reference mask: squared mask, gamma value of training dataset and test image is 1).

V. RESULTS AND DISCUSSION
A. PERFORMANCE COMPARISON OF LEM FUNCTION
AND CONVENTIONAL FUNCTION
Fig. 3 compares the performance between models trained
with datasets corrected by the LEM function and the con-
ventional gamma function, respectively. Each line of graphs
(Fig. 3 (a) and 3 (b)) represents each model, trained with
datasets corrected by gamma 1/8, 1/4, 1/2, 1.0, 2.0, 4.0, 8.0,
which was evaluated through test image with clear edges
corrected by gamma 1/8, 1/4, 1/2, 1.0, 2.0, 4.0, 8.0.

In Fig. 3 (a), the accuracies in area of large gamma values
of test image, such as LEM gamma 4.0 and 8.0 decreased
about 0.9, but overall accuracy was placed between 0.95 and
0.9. For the accuracy of models using datasets corrected
by conventional function (Fig. 3 (b)), C_Model 7 that was
trained with datasets corrected by gamma 8.0, showed a high
variance in accuracy rather than other models. Also, when the
test image was corrected on gamma on 4.0 and 8.0, all models
revealed bad accuracy. Comparing the results of conventional
function and LEM function, models employed data corrected
by LEM function showed fairly uniform results over the
evaluated gamma range.

The loss of models showed the same trend as displayed
in fig. 4. In the LEM gamma range from 1/4 to 2.0, the losses
were under 0.2 and the others were over 0.2. (See Fig. 4
(a)) Losses by LEM function were in low variance in
a wide gamma range compared to conventional function.
(See Fig. 4 (c))

FIGURE 6. Image segmentation accuracy of models using test image with
shadow overlapped on edges. Data images corrected by (a) LEM function,
(b) conventional function (reference: squared points, gamma value of
training dataset and test image is 1).

However, around gamma value of 1, the accuracy (Fig. 3)
and loss (Fig. 4 (a) and 4 (c)) of models were too dense
to directly clarify. Therefore, to investigate detailed varia-
tion around the gamma value of 1, we evaluated the loss in
the correction gamma range of the test image from 0.7 to
1.3. The results from the LEM function and conventional
function were shown in Fig. 4 (b) and 4 (d), respectively.
In models using images corrected by the LEM function,
LEM_Model 1, 2, and 7 had higher loss than other mod-
els, and the maximum loss variation between models was
about 10.5%. Fig. 4 (d) shows the loss of models using the
conventional function in the small gamma range from 0.7 to
1.3, the models revealed the maximum loss variation between
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FIGURE 7. Evaluation of LEM_Models using dark test image that has unclear edges. (a) Original and true mask of the test image, (b) gamma-corrected
test image, (c) predicted masks (reference: squared mask, gamma value of training dataset and test image is 1).

models of about 31.3%, which was higher than that using
the LEM function. This result came from the difference in
structure between LEM function and conventional function.
Conventional gamma function was hard to make large grada-
tion difference in the brightness saturated areas at the same
time. In contrast, the LEM function was designed to make
large gradation difference in dark and light areas. Therefore,
when the brightness was in the saturated areas, models using
images corrected by LEM function revealed higher accuracy
and lower loss than that using the conventional function.

B. IMAGES WITH SHADOW OVERLAPPED ON EDGES
Observing and checking the features of the LEM function
in detail will be helpful for using it in the real environment.
In order to do this, we tried to test on an image that has a
shadow overlapped on the object.

We added LEM gamma correction on the test image and
evaluate the performance of LEM_Models. Fig. 5 shows the
results. First, the original test image (Fig. 5 (a)) was corrected
by LEM function for gamma from 1/8 to 8.0, and the resulting
images (Fig. 5 (b)) input to each model. The predicted masks
derived by each model were shown in Fig. 5 (c). Compar-
ing to the reference mask, blue-squared mask in Fig. 5 (c),
the predicted masks derived using test images corrected with
gamma values of 1/4 and 1/2 showed much closer shapes to
the true mask. As the LEM gamma values became smaller,
the test images became more blur and gray. For this reason,

FIGURE 8. Image segmentation accuracy of models using dark test image
that has unclear edges. Data images corrected by (a) LEM function,
(b) conventional function (reference: squared points, gamma value of
training dataset and test image is 1).

on test images with LEM gamma 1/2 and 1/4, we could
define the edge more precisely which was hidden in the
shadow.

The accuracy figures of LEM_Models shown in Fig. 6 (a)
demonstrates these results quantitatively. The accuracy of the
model was improved by over 6% through the optimization
of data images. This is also superior to the results from the
conventional function of Fig. 6 (b).

C. EVALUATION OF DARK IMAGES
As mentioned above, the LEM function can provide a large
gradation difference in the brightness saturated areas. It can
be more effective in distinguishing objects from dark images
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FIGURE 9. Evaluation of LEM_Models using dark test image that has perceptible edges. (a) Original and true mask of the test image, (b) gamma-corrected
test image, (c) predicted masks (reference: squared mask, gamma value of training dataset and test image is 1).

FIGURE 10. Image segmentation accuracy of models using dark test
image that has perceptible edges. Data images corrected by (a) LEM
function, (b) conventional function (reference: squared points, gamma
value of training dataset and test image is 1).

critical for the practical use of the model. To test this idea,
we selected two kinds of dark images; one image has no clear
edges between the object and the background, and the other
has perceptible edges.

Fig. 7 shows image segmentation result from dark images
with unclear edges between the object and the background.
Dark original image (Fig. 7 (a)) was corrected with the LEM
function, and corrected images were shown in Fig. 7 (b).
We evaluated 7 models from LEM_Model 1 to LEM_Model
7 with images of Fig. 7 (b), and Fig. 7 (c) are the predicted
masks. The result indicated that if the LEM gamma value
of the test image was smaller than 1.0, the predicted mask

FIGURE 11. Image segmentation accuracy of ResNet-50-based models
using dark test image that has perceptible edges. Data images corrected
by (a) LEM function, (b) conventional function (reference: squared points,
gamma value of training dataset and test image is 1).

became closer to the true mask than the reference. However,
when the LEM gamma value of the test image was higher
than 1, from LEM_Model 2 to Model 6, predicted masks
could not define the object. LEM_Model 7 caught the object,
but the background noise was much higher than other masks.
This was because, in gamma 8, LEM function increased the
difference in gradation only in medium gray.

In contrast, LEM_Model 1 shown a better-predicted mask
than other models in the LEM gamma range over 1.
LEM_Model 1 and 7 roughly caught the outline of the object,
but LEM_Model 1 showed much less background noise. This
was due to LEM gamma correction by very low values, such
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FIGURE 12. Evaluation of LEM_Models using a flying bird test image with clear edges. (a) Original and true mask of the test image,
(b) gamma-corrected test image, (c) predicted masks (reference: squared mask, gamma value of training dataset and test image is 1).

as 1/8, which finely differentiates even the smallest difference
in brightness in dark areas. Since the LEM_Model 1 was
trained with a dataset corrected by gamma 1/8, it was good
to distinguish very small brightness differences compared to
other models when very dark images were input.

Fig. 8 compares the accuracy of models using dark test
images with unclear edges corrected by LEM function and
conventional function. For the models using the LEM func-
tion (Fig. 8 (a)), if the test image had lower gamma than 1,
the models revealed higher accuracy than that with gamma
1. All of the test images corrected with a gamma of less
than 1 had an accuracy of over 90%. Comparing to models
using the conventional function, as shown in Fig. 8 (b),
the accuracy of LEM_Models using image data corrected on a
lower gamma value than 1 superior to that using conventional
functions.

In addition, the accuracy of models for dark images with
perceptible edges between object and background was uni-
form over the evaluated gamma range as presented in Fig. 9.
Comparing the reference in Fig. 9 (c) with the other predicted
masks, if the LEM gamma value of test image correction was
lower than 1, the predicted mask was closer to the true mask.
This trend increased with the LEM gamma value of training
dataset correction; models trained with dataset corrected by
LEM function on high gamma value showed higher accuracy
than that by low gamma value. This resulted from the feature
of the LEM function. Dark image corrected with a high LEM

FIGURE 13. Image segmentation accuracy of models using a flying bird
test image with clear edges. Data images corrected by (a) LEM function,
(b) conventional function (reference: squared points, gamma value of
training dataset and test image is 1).

gamma value got more clear edges after correction as shown
in Fig. 9 (b).

In Fig. 10 (a), the model accuracy was more than 85%
over the evaluated gamma range. Some results, which were
a combination of low-test image gamma and high-training
dataset gamma, were above 95%. Unlike that using con-
ventional function displayed in Fig. 10 (b), dark images
with perceptible edges showed good accuracy at all gamma
values.

On the other hand, testing reproducibility is very impor-
tant for understanding the scalability of the proposed con-
cept and finding potential applications of the model. To do
this, we constructed an image segmentation model using
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FIGURE 14. Evaluation of LEM_Models using a bird in bush test image with unclear edges. (a) Original and true mask of the test image,
(b) gamma-corrected test image, (c) predicted masks (reference: squared mask, gamma value of training dataset and test image is 1).

ResNet-50 as the backbone. We trained and evaluated the
model the same as we did in MobileNetV2-based models.
Fig. 11 shows themodel accuracy on a dark test image that has
perceptible edges. The accuracy variation of the model using
the LEM function (Fig. 11 (a)) was much smaller than that
of the model (Fig. 11 (b)) using the conventional function.
These results are similar to those of the MobileNetV2-based
model described in Fig. 10. Furthermore, tests on dark images
with unclear edge showed similar results on ResNet-50-based
models as on MobileNetV2-based models.

D. DATASET EVALUATION
Dataset is a collection of different images. Model param-
eters can be changed when training with various datasets.
To investigate the variability for datasets, we trained
our models with the PASCAL VOC2007 dataset. Also,
we picked some pictures with clear and unclear edges
in the PASCAL VOC2012 dataset to validate the trained
models.

Fig. 12 shows the set of predicted masks of a flying bird
with clear edges. Fig. 12 (a) shows the original image and true
mask. In the original image, part of the left wing is shadowed,
and the main object is distinguished from the background.
Corrected images by the LEM function and predicted masks
are represented in Fig 12 (b) and 12 (c), respectively. The
results indicated that the test image with a large gradation
difference, where the LEM gamma value of the test image

FIGURE 15. Image segmentation accuracy of models using a bird in bush
test image with unclear edges. Data images corrected by (a) LEM function,
(b) conventional function (reference: squared points, gamma value of
training dataset and test image is 1).

was high, made the predicted mask more precisely to the true
mask than reference marked by blue rectangular.

The accuracy of the LEM models shown in Fig 13 (a) also
increased as the gamma value of the test image increased.
This was caused by a clearer separation of the boundaries
between objects and backgrounds by LEM correction at high
gamma values. In contrast, the accuracy of models using
conventional function decreased as gamma values increased.
(Fig. 13 (b)) Furthermore, the models trained with the gamma
values of 4.0 and 8.0 have shown low accuracy. These were
because increasing gamma values by conventional function
darkened the image and made it difficult to distinguish
boundaries.
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We could find slightly different results from the test image
of a bird surrounded by grasses with unclear edges. Fig. 14(a)
shows the original image and true mask. Because the wings
are buried in the background, it is hard to identify the precise
edge. In Fig. 14 (b), LEM corrected images are represented
and these images tried to make unclear edges to clear edges,
but still hard to clarify to the human vision. However, the pre-
dicted masks in Fig. 14 (c) showed that results from the LEM
models trained low or high gamma values were more accurate
than the reference mask marked by blue rectangular.

Further, the accuracy shown in Fig. 15 (a) revealed a large
value in the test image corrected with a low gamma value
of less than 1.0. However, in some conditions, the predicted
masks showed poor results. This was because the similarity
between the object and the background of the image was
so large that they could not be distinguished under those
conditions. On the other hand, compared to the conventional
function shown in Fig. 15 (b), the LEM models had higher
accuracy in the high gamma values and showed lower vari-
ation among models than the conventional function models.
This trend is similar to the results using the Oxford-IIIT pet
dataset described earlier.

VI. CONCLUSION
In this work, we suggested a gamma correction algorithm
using the LEM function to improve the image segmenta-
tion performance of CNN-based models. Before convolution,
we added functions for gamma correction of input images.
In themodels trainedwith dataset corrected by LEM function,
the image with clear edges showed insensitive on gamma dif-
ference than conventional function. Image with shadow over-
lapped edges corrected by LEM function on small gamma
value was defined edges precisely. A dark image with percep-
tible edges of the object was defined well, regardless of LEM
gamma value. The optimized accuracy of the model using
the LEM function was superior to that of the conventional
function. This was because the LEM function made gradation
difference large at the boundaries of the image.
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