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Abstract: We reveal that non-Hermitian lossy couplings in an inter-cavity light transfer process
are crucial for an optimum light transfer, unlike the prevailed belief. Our results turn out the fact
that the light transfer can have multiple maxima following the increased inter-cavity distance. To
validate this finding both in the weak and strong coupling regimes, we demonstrate our claim in
the vicinity of the so-called exceptional point. We believe our results can contribute to realizing
coupled-optical-cavity-based devices which is functional with an ultra-efficient light transfer,
especially when the device scale is as small as the operation wavelength.
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1. Introduction

Coupled optical cavities (COCs) have been of special importance for several decades because of
their highly prospective applicability in broad photonic-integrated systems [1—4]. In particular,
it has been demonstrated that coupled-resonator-optical-waveguides (CROWS) structure can
provide controllable functionalities on photonic dispersions by means of a nearest-neighbor
inter-resonator interaction [5]. Recent leading-edge technologies have shown that this coupled
optical cavity system can also be utilized to realize even a slow light propagation [6] which is
the key ingredient in many fascinating applications, such as optical delay lines [7,8], switches
[9-11], memory [12,13], and quantum information process [14—17].

To accomplish these cavity-array-optical devices as desired, it is crucial first to account for an
in-depth operating mechanism of an inter-cavity power transfer of light. Unfortunately, the clear
condition for an efficient light transfer in inter-cavity interactions has not been well understood
yet, even though its importance is as pivotal as the mode interaction itself. There have been a
great number of works in a comprehensive range of physics focusing on resonant modes and
their interactions in COCs, e.g., photonic-molecular states [18-21]. However, in those studies,
still, the light transfer mechanism was not fully addressed and explained enough.

For the past several decades, the coupled-mode theory (CMT) has been intensively developed
to study a light transfer in coupled systems, such as coupled waveguides [22-24], waveguides-
coupled-ring resonators (bent waveguides) [25,26], and waveguide-coupled-cavities [27-30].
Since this CMT is based on the Maxwell’s equation in lossless systems, the involved couplings
naturally satisfy the conservative condition, i.e., two coupling coefficients are mutually complex-
conjugates. Following this principal background, most of modeling studies dealing with various
coupled systems use this conservative CMT. In most typical cases, the coupling coefficients
are determined by a numerical fitting that forces real-numbered coupling coefficients or just by
assuming complex-conjugate couplings for simplicity [31-35]. As a consequence, the effect
of realistic lossy-couplings [36,37] has been often overlooked. These conventional lossless

#430778 https://doi.org/10.1364/OE.430778
Journal © 2021 Received 5 May 2021; revised 30 May 2021; accepted 31 May 2021; published 10 Jun 2021


https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.430778&amp;domain=pdf&amp;date_stamp=2021-06-10

Research Article Vol. 29, No. 13/21 June 2021/ Optics Express 19999 |
Optics EXPRESS A N \

couplings bring about a monotonic behavior of inter-cavity light transfer efficiency with respect
to a coupling strength and shows no special properties noteworthy. We demonstrate, however,
that an optimum condition for an inter-cavity light transfer can be obtained if we consider a
non-conservative inter-cavity coupling process, which can be realized by implementing complex-
numbered-coupling coefficients. As such coupling coefficients turn our effective Hamiltonian to
be a fully non-Hermitian operator [36], we will refer to these coupling as non-Hermitian coupling
throughout this work.

The effect of non-Hermitian coupling has attracted increasing attention in recent years. So
far, a number of outstanding systems utilizing an inter-site non-Hermitian coupling have been
proposed to realize fruitful features for applications, like an unidirectional light transport or
a light trapping in a photonic lattice [38,39], photonic refrigeration [40]. In most of those
newly suggested systems, artificially designed non-Hermitian couplings, for example, using the
auxiliary resonators, mainly function to produce asymmetric coupling between two adjacent
coupling sites. On top of the traditional formalism, recently, there have been notable trials to
improve the coupled-mode theory implementing these non-conservative situations [41-43]. For
instance, non-Hermitian coupling-induced abnormal dispersion relations, as well as nontrivial
group velocities, in CROWs and in photonic lattice have been demonstrated successfully [37,44].
While some of the importance of complex-valued coupling coefficients were addressed in those
works too, yet the associated impact on light transfer efficiency was not explored clearly up to
date. In this motivation, we will reveal the explicit effect of non-Hermitian coupling on the
inter-cavity light transfer in relation to the full non-Hermitian resonance dynamics of COC.

To investigate an inter-cavity light transfer, we model two coupled optical microdisks by means
of the temporal coupled-mode theory (TCMT) [23]. The coupling coefficients, which are the core
variables in TCMT, are calculated in terms of passive mode overlaps obtained by the boundary
element method (BEM) [45,46]. The inter-cavity light transfer prediction established upon this
BEM-TCMT hybrid method is confirmed by numerical results of the time-dependent experiments
carried out through the finite-difference-time-domain (FDTD) solver. In demonstrations, a
transmittance (= T) is obtained as a function of an input frequency (= w) and an inter-cavity
distance (= D). Our results show that T can have multiple maxima implying the fact that the
optimal-coupling modes can alternate between the two interacting modes as a function of D.
More surprisingly, it is revealed that a strongly oscillating coupling strength can result in a
non-trivial excessive light transfer even for a long distant coupling. By analyzing these results,
it turns out that an optimum light transfer location in (w, D)-space is deeply associated with
a non-Hermitian coupling effect which becomes particularly prominent when the system size
decreases (or equivalently, the frequency is decreased). We believe our findings will perform a
crucial role in realizing ultra-efficient coupled-optical-cavity systems, especially when the device
size is as small as sub-wavelength-scale in future optoelectronic devices.

2. Strong and weak coupling of super-modes in a coupled non-identical cavity

Our coupled optical microcavity system consists of two non-identical dielectric microdisks that
have different radii of {r, >} and an inter-cavity distance dj, as shown in the inset of Fig. 1(b).
The refractive index of the inside and the outside of the cavity is set to be n = 2.0 and n = 1.0,
respectively. In the present paper, our analyses are focused on, so-called, whispering gallery modes
(WGMs) having a transverse magnetic (TM) polarization (0, 0, E,), where E, is the electric field
polarized along z-direction (perpendicular to the microdisk plane). In this configuration, optical
modes are computed by solving the Helmholtz equation, —V2y(r) = n*(r)k>y(r) accompanied
by a time-harmonic field assumption, ¥ ~ e~ where k is a complex-numbered-wavenumber in
a vacuum and i = —1.

In Figs. 1(a) and (b), real and imaginary parts of these solutions, k., obtained by BEM
are given as a dimensionless value, kr;, in the parameter space (R, D) = (r1/r2,dy/r2). The
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figures demonstrate a characteristic structure of the Riemann surface around the branch point,
the so-called exceptional point of super-mode in COC [47]. The occurrence of the exceptional
point is a special feature of the non-Hermitian system, at which both the eigenvalues and the
corresponding eigenstates coalesce simultaneously [48,49]. Tracing eigenvalues on the obtained
Riemann surface, we can identify two distinct coupling regimes: in the strong (weak) coupling
regime, the avoided resonance crossings occur in real (imaginary) parts of solutions, while
the imaginary (real) parts do cross [47,49]. Note that this branching behavior does not occur
in coupled identical disks: degenearacies of the real and imaginary parts of eigenvalues are
immediately lifted as the inter-disk coupling is introduced and never cross each other as D
decreases [47]. In the present manuscript, we will cover the more general case of coupled
nonidentical disk systems.
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Fig. 1. (a) and (b) are the Riemann surfaces of the real and imaginary parts of k..r, obtained
by BEM in the parameter space (R, D) = (ry/rp,dy/r»). The EP at the branch point of the
surface is marked in yellow dot, and k.7, values of our interest are represented in thick
brown curves. The system configuration is shown in the inset of (b), and the representative
mode patterns of a bonding and an anti-bonding mode are shown in the inset of (a).

The evolution of complex-eigenvalues on the Riemann surfaces in 2-dimensional parameter
space (R, D) implies that the coupling strength can vary depending on either R or D. That
is, while the overall coupling strength between two interacting modes (localized on separate
cavities) grows as D gets smaller, the most maximized coupling takes place at a specific R-value,
R = 0.891, where a detuning between k.. and k_ is minimized so that the resonant frequencies
of two isolated modes are matched to one another [50]. We will focus on the inter-cavity light
transfer depending on D at this specific R = 0.891 throughout this work.

3. Coupled mode equation formalism for light tranfer in COC

Even though the passive mode calculations carried out in the previous section can give lots of
important information on fundamental mode structures in parameter space, the light transfer
characteristics cannot be captured in those computations. Hence, in this section, we will bring
this light transfer problem into the coupled-mode theory framework constructed on the basis of
those passive mode calculations.

The coupling of two modes confined in separate non-identical optical cavities (OC;, OC;) can
be described employing the temporal-coupled-mode-theory (TCMT) equations, as follows:

day . .
— - = Tlwia) — g1a) —ida
dt (1)

day . .
o = Tlen@ - g2 — iuna + VgsSin
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where a;, w;, g;, 1 are the mode amplitude, the resonance frequency, the decay rate, and the
coupling coefficient, respectively. The above coupled-mode equations imply that the input power,
Sin = Soe™ ™!, coupled into the OC, with a rate of g, transfers to the OC; through the coupling
rate of u;;. At the steady-state, |a;| and |a»| become the constant in time and can be written as

00\ _ 1l —i112+/8550
aj(w) = lai| = . -
i) — (W — wy +ig1)(w — wy + ig)
S . 2
0f 11 —iV/8sSo(w — w1 +ig1)
ay(w) = |az| = - - )
Hiopo1 — (W — wy + g1 )(w — wy + ig)

for which a}) can be determined when the coupling coeflicients, y;;, are fixed. In common
treatments of these couplings, they are just ones of the varying parameters of modelings that
assume the values of u;; are real and symmetric, i.e., uj2 = p21 € R. In the present work, we
will follow the methods in [46] using the overlap of the modes to calculate u;; explicitly. It is
emphasized that this approach gives more precise results than the traditional spatial coupled
mode theory, for this approach uses the exact “coupled-modes” instead of using only the
“isolated-modes” of which each one is localized on the isolated cavities OC; and OC,.

3.1. Obtaining coupling strengths in an effective Hamiltonian

The key quantities in investigating the light transfer property in the COC systems through TCMT
are the unknown coupling coefficient, y;;, in Eq. (2) since others can be given by the isolated
basis modes. The coupling of two isolated modes can be written as a two-level system with an
effective Hamiltonian, Heg,

: + +

w1 — 181 H12 c c

+ 1 1
Hepe* = NN (3)

M21 w2 =182 ) \C5 5

where ¢ € C are elements of the eigenvector and 1. = w. — ig. are complex-numbered
eigenvalues with w., g. € R. In the vicinity of an interaction point of two modes (i.e., w;+ ~ w-),
the coupled modes can be constructed in terms of c;F in BEq. (3), as E+(r) = [cTE1(r) + ¢; Ex(1)],
where E; are the isolated-basis modes and E are the coupled modes. Under the bi-orthogonal
normalization of modes, f niz(r)E,-(r) - Ej(r) dr = §;; [51], we can obtain cjt by computing the
overlap integrals between the coupled modes and the isolated modes:

i = /n}(r)E,-(r) Ey(r)dr. )

Defining A; = w; — ig; for the diagonal elements in the unperturbed Hamiltonian, all elements
in the effective Hamiltonian can be calculated by solving

At—=A: i\ 0. )
o1 A —A:)\c5

with the known values of A, = k.c (with k. in Fig. 1) and cji [46]. Now, we can obtain aj(.) in

Eq. (2), as a function of an input frequency w, since all other values necessary for computing it
are prepared.

4. Multiple maximizations of inter-cavity light transfer efficiency

Given the values of a°, we can obtain the light transfer efficiency from the source cavity, OC,, to
the receiver cavity, OC|, by defining the transmittance T’ = |a,|. Figure 2(a) shows T'at R = 0.891
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as a function of D and ki, = wry/c, which is a wavenumber of the input frequency scaled by
r>. In the figure, two counter-intuitive important features are discovered: (1) It turns out that
there are multiple local maxima of transmittance along the parametric variation of D, and (2) no
mirror-reflection symmetry is found in the transmittance spectra with respect to a certain value
of kin. These two findings are strongly associated with the non-Hermitian coupling of modes in
COC, as explained in the following. The splitting (= A1) of degenerated resonant frequencies
(= A9 = 41 = A) of two interacting modes are directly proportional to the coupling (= V) of the
two modes as
Ae=Ay £ |V| &= Al = |l —A_| =2|V],

based on the typical Hermitian coupling assumption, i.e., V12 = V;_,. The two resulting
coupled modes are a symmetric or an anti-symmetric superposition of two isolated basis modes.
Thus, there must be no preference between the two modes in the inter-cavity light transfer process.
In addition, it seems reasonable for us to expect that the strength of this coupling might decrease
exponentially and monotonically, when the distance between the two cavities increases, i.e.,
increasing D. Hence, it is natural to look forward to a monotonic-descending and mode-symmetric
light-transfer rate, as well. Indeed, if we set the coupling coefficient to be real-symmetric, i.e.,
ui2 = (o1 € Rin Eq. (2), which decreases exponentially with increasing D, we can obtain a
quickly diminishing (i.e., exponential decreasing) A-shaped (i.e., mode-symmetric) transmittance
when D increases, as shown in the inset of Fig. 2(a).

TCMT (a)
P # 11, €C)
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N

Fig. 2. (a) and (b) are T at R = 0.891 obtained in (kj,, D)-space by TCMT and FDTD
respectively. The locations of local maxima of T are marked as point-A, B, and C. The inset
of (a) is T obtained by real-numbered exponentially decaying coupling coefficients, and the
inset of (b) shows the system configuration we used in FDTD simulation. The arrows of the
latter inset represent the location and the propagation directions of the input source.

However, as we can see in Fig. 2(a), this expectation is totally not the case at all: our TCMT
results of T obtained without the Hermitian-like coupling assumption have multiple peaks and no
mode-symmetric features as D varies. The underlying factors causing these unexpected features
of the light transfer behavior in COC will be discussed step-by-step in the following.

4.1. Time-dependent numerical experiments of light transfer in COC

To verify our results obtained in the previous sections, we perform the time-dependent numerical
simulations using the finite difference time domain (FDTD) method. In Fig. 2(b), we can clearly
see that the FDTD results more likely to resemble our TCMT results instead of the exponentially
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decaying and symmetric-balanced transmittance. In fact, from the regularity viewpoint, the
FDTD results show even more substantial fluctuations in the transmittance spectra than the
one of our TCMT results. Therefore, the FDTD results strongly support our TCMT-based
prediction of the non-regular light transfer, clarifying that the inter-cavity light transfer in the
COC systems should be described by the non-Hermitian couplings achieved automatically in
our TCMT calculations. Note that for our FDTD simulations, we locate the input mode source
inside the OC; as depicted in the inset of Fig. 2(b) so that g; = 1 in Eq. (2), and obtain the energy
density inside the OC; at the steady-state,

172
(k)] = {ZLA, [ P@IE@R + 50P) dr} ,

which is the same quantity as |a;| in Eq. (2). Note further that the results of our TCMT modeling
and simulations shown in Figs. 2(a) and (b) have comparable intensities even when D/ Aaye>1,
where the average wavelength of ki, is Adavg /12 ~ 1.16.

5. Coupling strength vs lifetimes of modes in multiple maxima of light transfer

From now on, we will demonstrate that the asymmetric multiple maximizations of the light
transmittance in COC are a consequence of the non-Hermitian coupling effects. More precisely,
we will show that the maxima of T in Figs. 2 and 3 cannot be explained if we take into account
the coupling strength || or the lifetime, 7. = 1/g., of the coupled modes individually, but it is
only possible when the multiplication of them is considered. By assuming that each resonant
peak of the coupled modes is a single Lorentzian peak,

He

TN—’
(w_a)i)2+g-2_+—

W, Wi, g:€R (6)

we can easily see that T o ,uc'ri(z n.) at the resonance, i.e., w = ws, where w; and g.. are the
resonant frequency and the decay-rate of the coupled modes. Here, we defined u. = |u12]4/8550,
where +/g; and Sy are constants. To begin with, we project the obtained transmittance in Fig. 2
onto D-axis by integrating them as To((D) = max (7o)~ /km T(k, D)dk, so that we can investigate
the overall D-dependent light transmittance in the considered range of k;,. We can confirm once
again in Fig. 3(a) that the CMT results using p;; obtained by the wave overlap reproduce the FDTD
results successfully, while the CMT result using the real-numbered-exponentially-decaying p;
fails. Note that the indiscernible local maximum of A in Fig. 3(a) is an artificial effect caused by
integrating two peak contributions in the strong coupling regime D<0.6. The obtained Ti(D) is
analyzed by a D-dependent coupling strength || shown in Fig. 3(c). In the figure, two distinct
regions of different D-dependent slopes that are connected across the transition valley region
(marked by the vertical shading band) are revealed. In the region (I) (D<0.55), |u;| decreases
exponentially as if it follows a common evanescent coupling [52]. Afterward, in (II) (D>0.75),
|| revives again and starts to exhibit a mild oscillation. Meanwhile, there is a sudden slope
change around D ~ 0.565 in the transition region which is found to coincide with the exceptional
point Dgp dividing the strong and the weak coupling regimes. From Dgp, |u;;| decreases with
a sub-exponential decaying rate until it reaches the minimum value. Note that while explicit
analyses to understand the role of the exceptional point on this abrupt change of the coupling
strength are necessary, this agenda is beyond the scope of the present works; we leave this topic
and postpone it to the more elaborated next proceeding works elsewhere.

5.1. Light transfer in a strong coupling regime

We first focus our attention on the transmittance in the strong coupling regime (I). As we already
clarified, the overall trend of T features a broken mirror symmetry [see Figs. 2(a) and (b)]. This
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Fig. 3. Tio:(D) obtained by FDTD and TCMT are shown in (a). The black, red, blue-dashed
curves are the results of FDTD, TCMT with p;; obtained by wave overlap, and the result
of TCMT with exponentially decaying p;; = po € R. The peak values of T in Fig. 2(a) are
shown in (b). (c) shows the absolute values of y;; obtained by wave overlap at R = 0.891 as
a function of D, and y( which is obtained by exponential curve fitting of the |u,| in the
region of D<0.5. (d) and (e) show r4 and 7, which are obtained by BEM, respectively. The
multiple local maxima of T in Fig. 2(a) occur at D = 0.33, 0.965, 1.425, and these locations
are marked by vertical dashed lines.

characteristic is particularly prominent in the region (I) due to the highly selective preferences
of modes in the light transfer process [see Fig. 3(b)]: the bonding mode (peakl) dominates T
at D<0.2 and the anti-bonding mode (peak2) at D>0.2. Moreover, since the latter one reduces
again when we further increase D in the region (), it exhibits a peak structure at A, as is shown in
Fig. 2. This D-dependent shift of the dominant light transfer channel is brought by a sequential
switching of the longer-lived resonant mode.

If this highly irregular T is compared to the coupling strength | ;| in the region (I), the coupling
can be seen as regular along the D variation, as shown in Fig. 3(c). In the figure, |u;| decreases
exponentially and monotonically for increasing D. This exponential decay is well-fitted by an
exponent (~ —4.53) (see blue-dotted curve). At the same time, since the coupling strength has no
mode-dependence, the coupling effect should be reflected equally in both the bonding and the
anti-bonding modes. Thus, if we suppose | ;| alone operates in the light transfer process, we can
hardly expect a mode-dependent transmittance difference. In other words, there are more factors
giving rise to the observed irregular transmittance, which we have to uncover.

Through our investigations, it turns out that the crucial factor that brings an asymmetricity of
T in the region (I) is the lifetime of a coupled mode, which is shown in Fig. 3(e). As we can
see in Fig. 3(d), a factor . which is a multiplication of the coupling strength and the square
of mode lifetime (= p.72), explicitly reveals all peak structures of A in the region (I), as well
as B and C in the region (II). In the figure, the black curve corresponding to T of the bonding
mode decreases monotonically as D increases, while the red curve of the anti-bonding mode
makes a local maximum around the point A. Here, slight mismatches in the peak positions come
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from the difference between a(l) in Eq. (2) and the simplified Lorentzian expression in Eq. (6).
Nevertheless, our claim that a dominant factor that makes the peak structure of 7" along the D
variation is 7. is valid consistently. Based on those observations, we can argue that the most
important quantity that makes the asymmetricity of T in the region (I) is the lifetime of the modes
which varies drastically with D. The essential mechanism that makes this drastic variation of the
lifetimes is the non-Hermitian coupling between two basis modes, which will be explained later
in the proceeding sections.

5.2. Light transfer in a weak coupling regime

One of the interesting observations in Figs. 2(a) and (b) is that the significant amount of the
transmittance 7 (i.e., light transfer) can take place even far beyond the evanescent regime, more
strictly speaking, in the weak coupling regime of (II). In addition, this revived transmittance
T oscillates along the D variation and exhibits multiple numbers of local maxima. Even more
surprisingly, the transmittance at C in the region (II) exceeds the one at A in the region (I).

First, the significant amounts of T in the region (II) are induced by the coupling strength
revival which happens after the transition region. This fact is proven by giving the counter
exemplification of the exponentially decaying transmittance [blue-solid curve in Fig. 3(a)] which
is obtained by using the artificial coupling coeflicients u;; < uo [blue-dotted fitting curve in
Fig. 3(c)]. In short, if the exponential decaying of the coupling strength in the region (I) continues
even in the region (II), rather than the reviving, the transmittance in the region (II) will practically
disappear.

Second, the multiple local maxima of T in the region (II) originate from the oscillating feature
of the revived coupling strength, as we can confirm it by the perfectly matching local maxima
of B and C with |u;| [see Figs. 3(a) and (c)]. Nonetheless, this oscillating u;; is not sufficient
when it comes to the largest maximum of 7 at C, since || in the region (II) cannot exceed any
values in the region (I). In fact, this largest value of T is induced by the largest lifetimes of modes.
Especially, 7_ around the point C shows an extremum value which is about 2 times larger than the
7. in the region (I). Moreover, since each of the coupled mode contributions in 7" is summed up
in the region (I) due to the negligible frequency splitting between the two modes in this region,
we can obtain the highest value of the transmittance at C, not A. Here, we have to emphasize
that studies for inter-cavity mode interactions beyond the evanescent regime have appeared in a
very limited number of previous works, e.g., in [53,54], to the best of our knowledge. However,
even in these studies, elaborated and explicit findings on the interplaying effects of the coupling
strength variations and the inter-cavity light transfer were absent; those studies are more focused
on obtaining efficient long distant couplings using directional-emitting deformed cavities and
analyzing eigenmodes.

5.3. Effect of the non-Hermitian couplings in light transfer

So far, we have demonstrated that the coupling strength between the basis modes and the lifetime
of the coupled modes have a decisive effect on the inter-cavity light transfer process. Particularly,
the large variations of 7. have turned out to be a key factor that can bring the multiple local
maxima and asymmetricity in the light transfer. In fact, these large variations of 7. are a direct
consequence of the “non-Hermitian” coupling between two isolated basis modes, as we can see
below.

By definition, the lifetime 7. = 1/g. can be determined by obtaining the eigenvalues of the
effective Hamiltonian in Eq. (3), as follows:

A+ A

Im @)

T+=

{ 1
z PRY
+ 2\/(/11 A2) +4M12#21] .
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Now, since the term J_r\/(/ll — )% + 4uiou21/2 in Eq. (7) determines the splitting of the real
and imaginary parts of eigenvalues, only the full-complex-valued p;; in Fig. 4(c) can reproduce
the correct 7. and, in turn, the correct 7. Note that the non-Hermitian coupling, pj> # ,u;], in
Fig. 4(c) makes Hcg to be fully non-Hermitian and enables the external coupling through an
environment [36]. Note that the observed balanced couplings, w2 =~ u1, might be ascribed
to the evenly distributed two eigenmodes on both disks, at R = 0.891, since the similar mode
overlap coefficients, ¢i ~ ¢3, in Eq. (4) can lead to balanced mode couplings.

@ |1,k ) | o.008f

[

osl 0.004 |

T, 0.0f '
Re(1221)
n 0.4 20.004ff T Im(u;)
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Fig. 4. n} and 7} obtained by "Hermitian-like" coupling, y;; < |u;| are shown in pink
and green-colored curves in (a) and (b) respectively. The 7. and 7. with exact y;; in
Figs. 3(d) and (e) are redrawn in (a) and (b) for comparison. In (c), the imaginary parts
of full-complex-numbered coupling coefficients are shown, and the real parts of them are

shown in the inset.

Lt}

On the other hand, if those couplings in the Hamiltonian are assumed to be “Hermitian-like
corresponding to the lossless coupling (i.e., there is no loss in the coupling process), p12 = 15,
must be satisfied [50]. Then, since the square root term on the right-hand side in Eq. (7) becomes
+4/(A] — A2)? + 4| 122 /2 for this coupling condition, it can only give rise to the real-numbered
shift. That is, 7. deduced under the lossless coupling never can result in the correct 7 it cannot
reproduce the exact eigenvalues, especially the lifetime of eigenmodes. This fact can be clearly
verified through 77} and 7 in Figs. 4(a) and (b), which are obtained with p;; < |p;|. Therefore, we
can conclude that the most essential ingredient giving rise to those all complicated but interesting
features in the inter-cavity light transfer characteristics are raised from the non-Hermitian coupling
effects.

5.4. Larger cavity system case

As a final remark, we examine the validity of our claim for the higher input frequencies case of
kin ~ 8.784 in a slightly different (R=0.93685) system from the ones studied so far. This frequency
and the parameter are chosen in order to investigate the light transfer around the exceptional point.
The transmittance obtained by BEM-TCMT hybrid approach is given in Fig. 5(a), and as in the
previous case of the lower frequency, the divisions of the evanescent coupling regime [region
(D], the transition regime, and the long distant coupling regime [region (II)] are obviously visible
in Fig. 5(b). Also, the peak structures of T in Fig. 5(a) are well-explained by n.. in Fig. 5(c)
in both the strong (I) and the weak coupling (II) regimes. In region (I), T’ of the anti-bonding
mode in Fig. 5(a) is higher than the one of the bonding mode when 7. of the anti-bonding mode
(red-solid) is higher than that of the bonding mode (black-solid), and vice versa. Again, in
region (II), the blue and gray curve in Fig. 5(c) also shows well-matched results with T at a weak
coupling regime.

Despite the evident similarity in the overall trend of the inter-cavity light transfer behaviors,
some notable differences are observed: (1) the higher frequency results in Figs. 5(a)-(c) seem more
likely to follow the exponential decaying of the transmittance (i.e., the transmittance quenched
relatively quickly). (2) There is no considerable oscillation of T or 5. in Fig. 5(c), unlike
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the previous case in Fig. 4(a). These deviating behaviors (especially the significantly reduced
oscillation of T') in this higher frequency example, in comparison with the lower frequency case, is
also associated with the non-Hermitian coupling effect: As the mode-confinement inside a cavity
at the higher frequency is enhanced, the openness of a mode to the environment is decreased
[55,56] so that the effect of the non-Hermitian coupling, which originates from the openness of
modes, decreases, as well. Therefore, we can expect that the T behaviors will resemble the results
of the Hermitian coupling assumption as the frequency is getting more and more increased, i.e.,
Mij = |u| as kry > 1. This fact also can be seen by comparing Fig. 4(a) and Fig. 5(c).
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Fig. 5. T obtained in larger cavity system with ki, ~ 8.784 at R = 0.93685 are shown in (a).
T in D<0.6 are shown as enlarged figure in the inset. (b) shows the absolute values of y;;
obtained by wave overlap as a function of D, and yq which is obtained by exponential curve
fitting of the |u1,| in the region of D<0.5. (c) and (d) show 5. and 74, calculated by BEM,

respectively. The 77} obtained by "Hermitian-like" coupling, u;; < |u;| are also shown in
(c) with pink and green-dashed curves.

6. Conclusion

To conclude, we have shown that an inter-cavity light transfer should be described in terms of a
non-conservative mode interaction instead of a common conservative coupling approximation.
As a consequence of these non-Hermitian coupling effects, the light transfer can have multiple
optimum values of external parameters in a coupled optical microcavity system. These multiple
maxima of the light transfer have not been discovered under the common Hermitian coupling
approximation.

The effects of the non-Hermitian coupling are valid in both the weak and the strong coupling
regime separated by the so-called exceptional points on the Riemann surface. In the strong
coupling regime, when an inter-cavity distance is relatively small, the mode showing maximum
light transfer switches between a bonding and an anti-bonding mode depending on the distance
between the cavities. As the inter-cavity distance increases, the coupling regime changes to the
weak coupling one, and the light transfer reveals several numbers of maximum peaks.

We have demonstrated that all these observed inter-cavity light transfer characteristics are
brought by the oscillating coupling strength as well as the oscillating lifetime of the resulting
coupled modes. Both of these two factors are the consequences of the non-Hermitian coupling
which implies a non-conservative coupling process operating through the environment. Our
findings and claims are benchmarked in a higher frequency regime as well, and reasonable results
are obtained, which is consistent with the results of the lower frequency regime.

This work provides the explicit and exact way of analyzing the inter-cavity light transfer of the
coupled cavity systems, especially for the devices in sub-wavelength scale. Thus, we believe
that our findings can contribute to a wide range of applications implementing sub-wavelength
optoelectronic coupling devices.
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