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Abstract: This paper presents a case study of continuous productivity improvement of an automotive
parts production line using Internet of Everything (IoE) data for fault monitoring. Continuous
productivity improvement denotes an iterative process of analyzing and updating the production
line configuration for productivity improvement based on measured data. Analysis for continuous
improvement of a production system requires a set of data (machine uptime, downtime, cycle-time)
that are not typically monitored by a conventional fault monitoring system. Although productivity
improvement is a critical aspect for a manufacturing site, not many production systems are equipped
with a dedicated data recording system towards continuous improvement. In this paper, we study the
problem of how to derive the dataset required for continuous improvement from the measurement
by a conventional fault monitoring system. In particular, we provide a case study of an automotive
parts production line. Based on the data measured by the existing fault monitoring system, we model
the production system and derive the dataset required for continuous improvement. Our approach
provides the expected amount of improvement to operation managers in a numerical manner to help

them make a decision on whether they should modify the line configuration or not.

Keywords: internet of everything; production systems engineering; continuous productivity im-
provement; smart factory; fault monitoring data

1. Introduction

Collecting operation data from production systems in the factory floor has been
a critical task to maintain the system operation and productivity. Most existing data
collection systems are intended to monitor faults that are occurring from various machines
in the system. Some are automated to raise alarms in ab-normalcy [1], and others rely on
manual data collection and feed them to tools such as statistical process control [2]. Recently,
thanks to the rapid advances of the Internet of Everything (IoE) technology, automated data
collections are receiving a great deal of attention in the era of smart factory and Industry
4.0 with visions of using them beyond the fault detection and isolation: for preventive
maintenance, job scheduling, productivity improvement, and various optimization [3,4].
Indeed, ref. [5] proposes to use an IoT-based architecture that collects information regarding
key performance indicators to improve productivity, refs. [6-8] propose to build a digital
twin for the production systems for multi-purpose optimization, ref. [9] suggests a smart
factory framework, which has a cloud-assisted and self-organized structure to produce
customized products in a real-time manner, and [10] suggests an IoT-based supply chain
management system that tracks locations of goods to help managers check the status of a
supply chain and its dependencies.

An important issue that can be addressed using the infrastructure of IoE enabled smart
factory is the continuous improvement of a production line [11]. The continuous improve-
ment is a major tool for production systems management, where projects are designed to
improve productivity of the production systems. Specifically, continuous improvement
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projects involve bottleneck identification and elimination by allocating additional resources
in order to achieve higher productivity in an efficient manner. In addition, analysis for
the continuous improvement requires the capability of quantifying the improvement if
characteristics of the bottleneck are changed. Existing studies [12] for methods of bottleneck
identification and analysis for continuous improvement projects are based on measurement
data, such as cycle-time (average time for a machine to finish a task), uptime (average
time for a machine to be up, i.e., operational), downtime (average time for a machine to be
down, i.e., not operational), and buffer capacity.

We point out that hardly any manufacturing facilities has dedicated IoE devices for
direct measurement of cycle-time, uptime, and downtime for the continuous improvement
while many facilities have basic fault monitoring systems. Unfortunately, cycle-time,
uptime, and downtime are not directly available from fault monitoring systems. For
example, the fault monitoring system in [13] represents machine states as ‘processing’,
‘inspection’, and ‘manual operation” and that of a microfluidic device manufacturing
line [14] categorizes machine states as ‘no operation’, ‘idling’, and ‘operating’. A monitoring
system in an automotive part production line that is used for a case study in this work
categorizes machine states as ‘working’, “idling’, ‘complete’, and ‘alarm’. Clearly, extracting
cycle-time, uptime, and downtime of each machine from the mentioned fault monitoring
data are not at all straightforward. Although many manufacturing facilities are installing
IoE devices for data collection under the initiative of smart factory and Industry 4.0, the new
devices are still installed with the main purpose of monitoring faults [15].

A method of using the data from the existing fault monitoring IoE systems for the
purpose of the continuous improvement would save time and resource for the manufactur-
ing facilities: new installation is not necessary which may avoid stopping the production
for the installation. Thus, in this paper, we present a case study where the continuous
improvement of an automotive parts production system is addressed using the data from a
fault monitoring system. As mentioned earlier, the dataset necessary for the continuous
improvement (i.e., uptime, downtime, and cycle-time) are not directly available from the
fault monitoring systems. Therefore, we study the problem of how to derive the dataset of
uptime, downtime, and cycle-time for the continuous improvement from the existing fault
monitoring data.

In order to model and analyze production systems, many approaches and frameworks
are available as reviewed in [16]. In this work, as a main tool for productivity analysis,
we use the theory of production systems engineering (PSE) [11] due to three distinct
advantages: evaluation of various performance metrics is possible for production systems;
convergence of the numerical algorithm in PSE is analytically proven; and it has been
applied to various actual manufacturing systems.

The theory of PSE models a production line with machines and buffers, where ma-
chines are characterized by uptime, downtime, and cycle-time. The aggregation algorithm
approximates the model of the serial production line as one virtual machine by aggregating
the consecutive two machines and one buffer, recursively. Using this aggregation algorithm,
the theory of PSE provides the foundation of modeling production systems and predicting
performance characteristics, such as throughput, transient [17,18], lean buffering [19], lead
time [20], bottleneck machine, and bottleneck buffer [12].

The aggregation algorithm is analytically proven to converge [11]. This is a significant
advantage compared to other methods. For instance, the convergence of the ADDX
algorithm used in the decomposition approach [21] is not analytically guaranteed.

Various productivity analysis cases based on the theory of PSE have been reported (an
automotive paint shop line [22], a lighting equipment assembly line [23], a ham shaving and
packaging line [24], and a gear assembly line in a motorcycle powertrain manufacturing
plant [25]).

Finally, several major manufacturing companies appear to have in-house tools and
methods, but these are not publicly available. Discrete event simulations could be an
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alternative approach, but are computationally much heavier than the methods PSE provide,
especially, when number of machines and capacity of buffers are large.

Our case study pertains to an automotive part production line. The line has a fault
monitoring system that observes the status of all the machines in the production sys-
tem. We present a method of extracting uptime, downtime, cycle-time from the fault
monitoring data. Then, based on PSE, we model the production line with appropriate
parameters. In turn, we use this model to address continuous improvement projects under
various scenarios.

The main contributions of this paper are as follows:

e  We propose a concept of using existing fault monitoring data for the purpose of
continuous improvement of production systems;

*  We present a case study using an automotive parts production line;

*  We develop a mathematical model of the line that predicts key performance character-
istics, such as throughput, lead time, bottleneck machine, and bottleneck buffer;

*  Based on the model, we develop a continuous improvement scenario that leads to up
to 10% of productivity improvement.

The outline of the rest of the paper is as follows. Section 2 describes the production
line we consider. Additionally, description of the fault monitoring data are given. In
Section 3, we discuss the challenges why fault monitoring data are not directly transferable
to uptime, downtime, and cycle-time. Then, we introduce a method of conversion for this
particular production line considered. Based on the estimated parameters, we create a
model and analyze the production line with the theory of PSE in Section 4. Section 5 shows
the continuous improvement results in a few scenarios. Finally, conclusions are presented
in Section 6.

2. Automotive Parts Production Line and Fault Monitoring Data
2.1. Production Line

The plant covered in this paper is an automotive parts assembly line from a tier-1
vendor for a world top-5 motor company. We consider an automotive parts production
line whose simplified illustration is shown in Figure 1. The line comprises 20 assembly
machines connected serially. We refer to each machine by m;, i = 1,2, --,20 in the order
of the part flow in the production system. The machines m; and g are semi-automatic,
i.e., operated by human workers and the rest are automatic. Machines assemble sub parts
and inspect defectiveness of products. Sub parts and assembled parts are moving on pallets
in the production line. Each pallet is identified by an RFID, the reader of which is installed
on all machines in the line. There are various assisting devices to some machines that
provide necessary materials (screw, lubricants, etc.). Semi-assembled products are placed
on a pallet and moved to the next machine.

All machines are connected by the pallet conveyor system. The pallet conveyor
system transfers pallets from m; to m9. After passing mjg, pallets return to the first
machine. The total number of pallets is 40. The pallet conveyor system has stoppers to
block the pallet from getting into the machine. The stopper is in front of the entrance of
the machine as shown in Figure 1. All pallets stop at the stopper once. If the machine is
full, a pallet waits at the stopper until the machine is empty. If not, then the pallet goes into
the machine.

Among 20 machines, mys, my4 are identical, and my7, m1g are also identical to each
other. This is because the task by 115 and m,7 are taking about twice as much time as the
other tasks. Hence, two identical machines are allocated for the job in order to speed up
the process. Their operations are as follows. If m5 operate only on the parts delivered by
even numbered (pallet RFID) pallets. It passes the odd numbered pallets to 1¢. The other
pair mqy and myg are operated in a similar manner.
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Figure 1.

Automotive parts production line with fault monitoring and logging system.

The machines my, mg, mg operate with block before service (BBS) and the other ma-
chines operate with block after service (BAS), where BAS and BBS are rules for interacting
between machines and buffers. When the downstream buffer of a machine is full, the ma-
chine should stop producing. In this situation, the machine with the BAS rule produces
one product and keeps it inside the machine. On the other hand, the machine with the BBS
rule does not produce and leaves its inside space empty [11].

The line produces a total of 52 types of products. The machines need to change
their settings whenever the types of products change. It takes time to change the settings,
therefore the company operates the line with a batch production rule to reduce the process
change time where the batch refers to a group of products of the same type. As the
machines are differently operated by the product type, the throughput of the line may also
be different product types.

Figure 1 also shows a fault monitoring system. Every machine transfers its operation
data to the fault monitoring system at every second. The monitoring system represents
all machine’s states right after receiving the operation data from each machine. The fault
monitoring system in this manufacturing facility does not record data perhaps because it is
designed only for raising alarm at faults. We develop the logging system which takes all
data from the monitoring system and write the data to a file by the hour.

The machines rarely produce defective products. Nevertheless, the line has the
capability built in to deal with the defective parts. The defective products are not removed
from the production line immediately. If a machine generates a defective product, then the
machine informs to the monitoring system. After that, the monitoring system transmits the
serial number of the defective product to the downstream machines so that the downstream
machines just pass the defective product until 11 or m19, which are inspection machines.
The inspection machines eliminate defective parts into their basket.

The production line operates for 24 h with several break times.

2.2. Fault Monitoring Data

Using the logging system described in the previous subsection, we obtained fault
monitoring data for five months in 2019. The fault monitoring data contain machine state,
product state, processing time, serial number, and logging time. An example of the data is
shown in Table 1, where ‘Time’, “Type’, ‘M State’, ‘P State’, ‘'SN’, and ‘PT’ refer to ‘Logging
Time’, ‘Product Type’, ‘Machine State’, ‘Product State’, ‘Serial Number’, and ‘Processing
Time’, respectively.



Sensors 2021, 21, 7366

50f16

Table 1. Example of the operation data recorded by the logging system.

my my m3
Time Type M State P State SN PT M State P State SN PT M State
08:37:29 Py Working  Stand by 123 5.7 Complete OK 120 13.5 Idling
08:37:30 P Working  Stand by 123 6.7 Idling OK 120 135 Idling
08:37:31 Py Working OK 123 77 Idling OK 120 13.5 Working
08:37:32 P Working OK 123 8.7 Idling OK 120 13.5 Working
08:37:33 Py Working OK 123 9.7 Working Stand by 121 0.2 Working
08:37:34 P Complete OK 123 9.7 Working  Stand by 121 1.2 Working
08:37:35 Py Idling OK 123 9.7 Working Stand by 121 2.2 Working
08:37:36 P Idling OK 123 9.7 Working  Stand by 121 3.2 Alarm
08:37:37 Py Idling OK 123 9.7 Working Stand by 121 4.2 Alarm
08:37:38 P Idling OK 123 9.7 Working OK 121 52 Alarm
08:37:39 Py Working Stand by 124 0.2 Working OK 121 6.2 Alarm
08:37:40 P Working  Stand by 124 1.2 Working OK 121 7.2 Alarm
08:37:41 Py Working Stand by 124 2.2 Working OK 121 8.2 Alarm
08:37:42 P Working  Stand by 124 3.2 Working OK 121 9.2 Alarm
08:37:43 Py Working Stand by 124 4.2 Complete OK 121 9.2 Alarm
08:37:44 P Working No 124 52 Complete OK 121 9.2 Alarm
08:37:45 Py Working No 124 6.2 Complete OK 121 9.2 Alarm

The item “Machine State’ in the operation data indicates the operate state of the

machine at a specific time. The machine reports its state by ‘Idling’, “‘Working’, ‘Complete’,
or ‘Alarm’. The detailed description of ‘Machine State” are as follows:

A machine reports ‘Idling” when the inside of the machine is empty;

A machine reports ‘Working” when the machine does assembling, inspecting, or other
actions for producing products;

A machine reports ‘Complete” after finishing production processes, and sustains
‘Complete’ until its inside becomes empty;

A machine reports ‘Alarm’ if the machine is in a breakdown.

The item ‘Product State’ represents the inspection results of the defectiveness of the

assembled product. The machine informs the state of the product as ‘Stand by’, ‘OK’,
and ‘NO’.

A machine represents ‘Product State” as ‘Stand by’ after the machine takes a product;
After finishing the inspection, the machine reports ‘Product State” as ‘OK’ if there is
no problem with the product;

If the machine identifies defective parts, then the machine reports ‘Product State
as ‘NO".

The rest of the data include ‘Serial Number’, ‘Processing Time’, “Time’, and ‘Type’.

’

The item ‘Serial Number’ refers to the sequence of products during a day. The monitoring
system initiates ‘Serial Number’ to 1 at midnight. The monitoring system sequentially
assigns ‘Serial Number’ to pallets by reading RFID at the first machine, and removes it at
my9. The item "Processing Time’ indicates how long the pallet stays inside the machine for
producing. The item ‘Time’ indicates when the log is recorded, and “Type’ represents a
product type in the first machine.
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3. Obtaining Uptime, Downtime, Cycle-Time from the Fault Monitoring Data

Obviously, the data shown in Table 1 are not in a form from which the uptime,
downtime, and cycle-time of each machine are obtained in a straightforward manner.
As we pointed out in the introduction, this is due to that the fault monitoring data collection
are not intended for continuous productivity improvement. This difficulty of mismatch is
dealt with in detail in Section 3.2.

Additionally, as alluded to in Section 2.2, uptime, downtime, and cycle-time may be
different by the types of the product. Hence, the first step is to isolate the time segment
where a given product type is produced. Therefore, we propose a parameter estimation
method consisting of two stages, a preprocessing stage and an estimating stage. The prepro-
cessing stage is trimming the fault monitoring data: removing the break time from the log,
classifying the product types, and removing the logs that corresponds to initial transient
state. The parameters, uptime, downtime, and cycle-time, are estimated by the second
stage based on the trimmed data. The entire procedure for estimating the parameters are
simplified in Figure 2.

Monitoring System

Operation Data ‘ Daily File Trimmed data
* Removing # * up/down time estimation

U

¢ Categorizing
¢ Trimming

¢ cycle time estimation

Automated Logging System Preprocessing Stage Estimating Stage

Dyas

Figure 2. Parameter estimation procedure.

3.1. Preprocessing Stage

Figure 3 shows typical daily operation of the production line for a week in the Month
4 of 2019. This snapshot of the operation data is obtained as follows. First, break time had
to be determined from the logs. For this purpose, we use the ‘SN” of m;: if “SN” of m; does
not change for more than 10 min, we determine that the production line is not operational
(break time for the workers). The color of the bar represents different product types. This is
determined by the “Type’ data in m; from the fault monitoring dataset. We point out that
Figure 3 is the result of preprocessing that identifies in automatic manner the break time
and the types.

EPIEP2EP3EPAEPSEP6OPY

D1 | = F N N
D2 N I I O S S
DA BN | B B B [ S S— |
e = I & = 1 _F B |
D5 @ = | 2 .
D6 - WU — | | |

0 & 10 15 20

Time (hour)

Figure 3. Daily operations (determined by the idle time of ). Different part types are shown by different colors. Data
from Month 4 in 2019. The line produces multiple types of parts in a day. Most breaks are planned, but others exist due to

unexpected (either workers or machines) situations.
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From Figure 3, one may use all the data segment with the same color to extract the
cycle-time of each machine. However, for uptime, another aspect must be taken into
account. When the machine is in transient state, total operation time may not be accurate,
which affects the calculation of uptime (uptime is computed by subtracting downtime from
the total operation time). Hence, we additionally remove the first portion of the data until
the last machine completes five products. Therefore, we cut the data related to the first
five products off in the fault monitoring data in order to generate trimmed data.

3.2. Estimating Stage

The purpose of this stage is to extract uptime, downtime, and cycle-time of individual
machine (from m; tot myg) for a given product type. Trimmed segments for a given product
(same color in Figure 3) are used.

We first discuss how to obtain a cycle-time for each machine. The cycle-time is
identified by searching ‘Idle’-"Working’-’Complete’ states sequence in the fault log. This is
illustrated in Figure 4. It may appear that after find the sequence, use "Working’ state as
one instantiation of the cycle-time may suffice. However, after observing the operation on
the factory floor for an extended period of time, we realize that computing cycle-time in
this manner may not be accurate: there is time, referred to as loading time, for a machine to
load the product from the pallet. This portion must be included in the cycle-time, but it is
included in the ‘Idle’ state according to the fault log. As shown in Figure 4, we extract the
sequence in the log, then identify the duration of ‘Working’ and add to it the loading time
to obtain a realization of the cycle-time.

@ working ®alarm @ complete Oidling

Machine State for
Fault Monitoring

: t
Machine State for Loading Time Loading Time L Loading Time
Continuous < < > —
Improvement Cycle Time Cycle Time Cycle Time
w_/ H_/
Starvation Starvation

Figure 4. Machine state for fault monitoring (existing fault display system) and machine state for
continuous improvement.

For this procedure to work, the loading time for each machine needs to be determined.
As it turns out, we can identify the loading time from the log in a specific situation called
blockage. Blockage means that a machine completes the task, but cannot move the part to
the down stream buffer because the buffer is full. In order to identify the loading time of
m;, the blockage of m;_1 has to be searched. The condition for this is to look for a prolonged
‘Complete’ state of m;_1 (because m;_; cannot push the product out). When m;_1 is in
blockage, the upstream buffer for m; is full. Thus, m; takes the part right after it finishes
the task on the previous part. This means the duration of the ‘Idle’ state in m; is equal to
the loading time of the next machine. An illustration is given in Figure 5.

A code is written to identify for each machine the above described conditions. It
results more than thousand cases for loading time, the average of which is used as ‘loading
time’ for the machine.
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O working malarm O complete Oidling
Machine State for
Fault Monitoring
m;_q _ t
Machine State for
Continuous v
Improvement Blockage Blockage
Machine State for
Fault Monitoring
m; — — t
Machine State for Loading Time Loading Time
Continuous < >
Improvement Cycle Time Cycle Time

Figure 5. Machine state for fault monitoring and machine state for continuous improvement in
blockage cases.

Next, we attend to the up and down time. From a continuous improvement analysis
point of view (e.g., PSE analysis framework) each machine state is either up or down.
Up state means that a machine is operational, and down state means that the machine is
not operational. The time that a machine is waiting for a product to arrive (starvation),
although the machine is not producing, is counting up towards a certain state that the
machine is capable of producing. The time that a machine cannot produce due to the
shortage of assembly parts (e.g., shortage of screws) although the machine is not out of
order is counted toward down state. Obviously, this classification of up and down state
does not match with machine state recorded in fault monitoring data. We illustrate this by
Figure 6.

@ working Ealarm O complete Oidling

Machine State for
Fault Monitoring

Machine State for down down t

Continuous
Improvement

up up up

Figure 6. Machine state for fault monitoring and machine state for continuous improvement in
down cases.

The first down state shown in Figure 6 matches with the “Alarm’ state (i.e., the machine
is out of order). However, the second down state does not show at all in the log. This
was due to the lack of assembly supplies. Uptime does not exactly align with “Working’
state either.

In the theory of PSE, downtime is the average amount of time a machine cannot
produce, even if it is capable of producing. We observed two situations for this production
system that corresponded to downtime of the machines. First is the breakdown of the
machines. This is indicated by ‘Alarm’. The second is running out of additional assembly
parts and materials (screws, lubricants, etc.) that are necessary for the assembly. The second
case does not correspond to any state in fault monitoring data. We identify this by looking
at abnormally long “Working’ state. Since we computed cycle-time earlier, the abnormally



Sensors 2021, 21, 7366

9o0f 16

long means that it is longer than 1.5 times the cycle-time. The long working duration minus
the cycle-time is counted toward down time. Again, a code is written to identify all such
cases for each machine to determine down time.

Once the down time is obtained, uptime is computed by subtracting down time from
a total operation time. The total operation time is computed from the trimmed data.

It must be pointed out that, although we discuss in detail the fault monitoring data
of the production system considered in the case study, no generalization is given how to
obtain cycle-time, uptime, and downtime from general fault monitoring data. For instance,
the fault monitoring data of [13,14] would require algorithms different from those used in
this work.

4. Modeling, Validation, Bottleneck Identification
4.1. Modeling Framework for Continuous Improvement

A very brief summary of [11] on the part relevant to this work is given here. In order
to quantify the productivity, a production system has to be modeled. The model consists
of serially connected machines and buffers. A machine is modeled by its cycle-time
and reliability characteristics. The cycle-time denoted by 7. Reliability of each machine
is modeled by probability distribution of the uptime. Here, uptime is modeled to be
exponential distributed with A. Then, A is given by the reciprocal of the mean of uptimes.
Similarly modeled is the downtime with a parameter y set to the reciprocal of mean of the
downtimes. Buffer capacity is given by a non-negative integers. An illustration is given
in Figure 7. We refer to parameters of each machine by A;, y;, and 7;, i = {1,2,3,4,--- }
and the buffer capacity of each buffer by N;, j = {1,2,3,--- }. Then, the theory of [11]
provides methods of bottleneck identification and tools to analyze the model to obtain
various performance metrics, such as throughput, work-in-process, lead-time, starvation,
and blockage.

oo lhe-

A, N, A2z, N, A3, U3, Nj A4y g
51 T2 T3 Ty

Figure 7. PSE model structure.

4.2. Structural Modeling of Production Line

The production line considered consists of serially connected 20 machines. This means
there are up to 19 buffers between each of the machines. We fist calculate the buffer capacity.
The capacity of the buffers is calculated with the velocity of the pallet, the size of the pallet,
and the distance between the machines [11]. If the machine operates with the BAS rule,
the buffer capacity should be increased by 1. If the machine runs under the BBS rule,
the capacity remains the same. The calculated buffer capacities are in Table 2, where b; is
ith buffer.

The capacities of the buffer by, bg, and bg are modeled as zero. As a results, the ma-
chines, my, mz, mg, my, mg, and mjy can be simplified by aggregating them into mgg?’g , mgs;g ,
and mg,gﬁ)' respectively. In addition, the last machine g is removed because my( rarely
goes down; the cycle-time of myg is half of the cycle-time of m119; and there is enough space
between m19 and myg. Thus, myg as it is now does not affect the rest of the production line.

Based on the above simplification, we develop a serial PSE model with 16 machines
as shown in Figure 8.
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Table 2. Buffer capacity of the production line.

Buffer by by b3 by bs
Capacity 1 0 1 1 1
Buffer b by bg bg bio
Capacity 0 1 1 0 1
Buffer byy b1p b3 b1y bis
Capacity 1 2 2 2 1
Buffer bie b1y big
Capacity 2 1 1

Figure 8. Simplified PSE model for automotive parts production line.

4.3. Machine Reliability Modeling

Table 3 shows the monthly normalized variation of the throughput for product type P1.
For confidentiality reason, the data shown are normalized by the maximum. The monthly
variations is about 2% which indicates that the underlying process does not seem to change
over time. We build a model using the data from the latest month (Month 5) and use other
sets for validation.

Table 3. Monthly normalized throughput for product type P1.

Month 1 Month 2 Month 3 Month 4 Month 5
Normalized Throughput 1 0.978 0.982 0.985 0.998

We use the parameters uptime, downtime, and cycle-time, estimated in Section 3.2
to calculate the parameters of each machine. Based on this parameters, we also calculate
the parameters of the aggregated machines denoted by )\z‘ﬁl, yz‘ﬁl, Tla;gfl wherei =2,6,9,
as follows [11].

1988 _ 2
Li+1 T 71 1 1 1 .
(Al + Hi + )‘i+1 + Vi+1)(elel+l)
s = 2
i,i+ 1, 1 1 1 e q)
()\i + Hi + iy + Hitl )(1—eieiy1) D)
agg
qugl _ Hiit
ii+ agg agg
Ajita T it
agsg  __
T5h = max(T;, Ti41),
where ”
1
e = Y
i+ Hi

Table 4 shows the model parameters of product type P1, A;, u;, ¢;, and 7; based on

Month 5 data ()\Zﬁl, ‘u?,‘lgfl, ezﬁl, and Tsffl are also included). The units of A; and y; are
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(1/minute), and in the case of 7; is (second). Some machines rarely exhibit downtime.
In this case we artificially use A; = 0.0004 and y; = 600, which yields large enough uptime
and almost no downtime. Based on the data we use asynchronous exponential line model

type [11].

Table 4. Estimated parameters of product type P1 based on Month 5 data.

my myss my ms mess mg meSs  mu
A (A% 0.5899  0.0265 0.0169  0.0019  0.0043 0.0095 0.0335  0.0004
pi (1355 1) 5.0808 09443 17065 23875  0.8478 2.0906  1.5939  600.000
ei (¢/3%) 0.8960  0.9727 09902 09992  0.9949 0.9955 0.9794  1.0000
7 (T75%) 1640 1746 1847 18.17 1544 1904 1768 1748
miz mi3 miq mis mie my7 mig 9
A 0.0032  0.0011  0.0074  0.0004  0.0100 0.0062 0.0184  0.0296
pi 3.1400 2.3957 25368 600.0000 1.8715 1.7231  1.7805 2.7315
e 0.9990 09995 0.9971  1.0000 09947 0.9964 09898  0.9893
T 1747 2007 1753 17.46 1746 2300 2314 1652

4.4. Model Validation

Using the recursive algorithm introduced in [11], we can calculate the throughput of
the asynchronous exponential production line as follows.

Throughput = TP(A, M, T, ©), )

where

a a a
A= {Alr /\2,838" /\4/ A5/g6g/ /\71 /\8/ )Lg,glgor /\ll/ Tty )L19}/

_ agg agg agg
M= {Vlr Vzrg, s R4, ‘u5,6 s U7, 18, ]/l9,101 Hi1, 0y V19}/
a a a
T = {Tlr ngg/ T4, T5,%g/ 17,18, Tg,g]%r M1, Tl9}r
0= {Nl/ N3/ N4/ N6/ N7/ NS/ NlO/ Nl]/ Tty N19}‘

Throughput prediction results are shown in Figure 9. Green and yellow bars represent
model prediction throughput and actual throughput, respectively. The black dash-dotted
line shows 5% error boundary of the actual throughput. The error is a percentage error

defined as follows.

Error(%) = |M0dii;u1:lctual| x 100 (©)]

where Model means model prediction value and Actual means actual throughput of the
production line.

The model accuracy under the 5% error is acceptable in the field of manufacturing [11].
As shown in Figure 9, the model prediction values have an error of less than 5%, which
indicate that the parameter estimation method presented in Section 3 are acceptable. We
emphasize here that the monthly data used for the analysis came from the fault monitoring
system (which is never intended for continuous improvement analysis). Judging from the
accuracy, the work of converting the fault data to uptime, downtime, cycle-time appear to
be highly effective.
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Figure 9. Comparison of actual throughput and model prediction.

4.5. Bottleneck Identification

To improve the performance of the production line, the bottleneck machine identifica-
tion method is defined in [12] as follows.

Definition 1. Consider the asynchronous exponential line with M machines. Exponential machine
mj, i € {1,---, M} is bottleneck if

OTP(A, M, T,®) _ oTP(A,M,T,0)
> ’
aCi aC]

Vi A 4)
where c; = 1/1;.

A simple way to identify the bottleneck machine is introduced in [12], called the arrow
method. The arrow method is an algorithm. The inputs of this algorithm are starvation
and blockage, which can be measured from the actual production line or can be calculated
by the PSE model. Let the starvation and blockage of the ith machine as ST; and BL;.
If BL; > ST;41, assign the arrow from m; to m; 1. In the opposite case, the arrow is also
assigned oppositely.

Based on the assigned arrows, we can identify the bottleneck machine with the
following bottleneck indicator [12].

e If two arrows converge into a single machine, the machine is bottleneck machine;

e If more than two arrows converge into multiple machines, the machines are all
bottleneck machines. One machine, which has the largest severity value denoted by
Si, becomes the primary bottleneck machine, where the severity value is defined as

Si = [STiy1 — BL;| + |ST; — BLi14],
S, =|ST, — BL4|, 5)
Sm = [STp—1 — BLy-

e If all arrows are in the same direction, the bottleneck machine is located the end of
the line. In case that the first machine emanates the arrow, the last machine is the
bottleneck machine. In the other case, the first machine is the bottleneck machine.

The result of the arrow method is shown in Figure 10. The starvation and blockage
are calculated by the PSE model. The machine g is identified by the bottleneck machine.
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Figure 10. Bottleneck identification result.

5. Continuous Improvement Scenarios
5.1. Effect of Improving the Bottleneck

A scenario is considered that the bottleneck machine (11g) is improved by reducing its
cycle-time by 10%, i.e., 23.14 s to 20.83 s. The resulting throughput improvement, predicted
by the developed model from Month 5 data, is 1.19%. Whether this amount is significant
or not is the decision of the operation manager.

It turns out that if the cycle-time of mg is reduced by 1.6% (which is much less than
10%), the machine is not the bottleneck any more. The bottleneck has moved to m1;. Thus,
more efficient strategy may be to reduce 113 by 1.6%, and then reduce 117 by the amount
that it is not a bottleneck any more, and continue improving the subsequent bottlenecks.
An implication of exercising this scenario is the production line is well ‘balanced’ or ‘close
to optimal’ in the sense that improving a single machine does not yield a great amount of
improvement of the whole.

5.2. Effect of Improving Multiple Machines

Since improving a single machine may not be an efficient strategy for this production
line, here we consider the scenarios of improving multiple machines.

Notice that a portion of cycle-times is used for loading times for all machines. The
loading time has its own reason to exist. It is, in fact, the time that takes each pallet to
travel through repair area, which are from the stopper shown in Figure 1 to the entrance
of downstream machine. The repair area ensures the repair space for workers so that the
necessary repair or maintenance is completed in a short period of time. It means that the
repair area reduces the downtime of the machine, but increase the cycle-time due to the
loading time. Thus, eliminating the repair space will reduce the cycle-time, but it will
increase the downtime.

The estimated pallet loading times based on the operation data are shown in Table 5.
Note that the pallet loading time occupies more than 10% of the cycle-time as shown in
Figure 11. Thus, if we can remove the pallet loading time, then the cycle-time of machines
could be reduced about 10%.

The scenario is that we remove the repair area of myy and myg, hence reducing the
cycle-times for each machine by the amount shown in Table 5. In consequence, downtime of
each machine will increase. What is unknown here is the amount of increase in downtime
if we remove the repair area (in order to reduce loading hence cycle-time). Thus, three
cases are assumed for the amount: increase by 1 min, 5 min, and 10 min, uniformly for m;y
and mis.

The results of the scenario are in Table 6. As one can see, the throughput of the line is
increased by 9.41% in cases that the additional downtime is one minute. However, in cases
that the additional downtime is 5 min or 10 min, the results show that the throughput is
decreased by —0.31% and —10.64%, respectively. Thus, the throughput of this production
system can be improved by removing the pallet loading time, if the additional downtime
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is less than 1 min. However, if the additional downtime is longer than 5 min, such
modification yields no gain in the throughput.
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Figure 11. Proportion of loading time in cycle-time.

Table 5. Loading time of the production line.

Machine my mg,gag n ms
Loading Time 0 1.80 2.39 2.49
Machine mg‘;g mg mgi% mi1
Loading Time 247 3.80 2.34 2.50
Machine myp m13 M1y Mmis
Loading Time 3.01 1.73 2.76 2.84
Machine Mie myy mig M9
Loading Time 1.96 3.13 2.50 2.56

In fact, removing repair areas of other combinations of the machines are also investi-
gated. It turns out myy and mg is the best combination to improve the productivity.

Table 6. Productivity improvement when loading times for mjy mg are removed and downtimes
are increased.

Increase in Downtime 1 min 5 min 10 min

Improvement (%) 9.41% —0.31% —10.64%

6. Conclusions

Continuous improvement of the production line is one of the important issues of
the manufacturing industry. Thanks to the advance of IoT technology, infrastructures
to collect data are rapidly being developed. However, many data collection systems
(especially, in middle-size companies) still focus on fault monitoring systems. The data of
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the fault monitoring system are not directly matched to the data required for continuous
improvement project for productivity. Developing a new IoE enabled system dedicated for
a continuous improvement project is time-consuming and incurs additional cost.

In this work, we propose a data processing method to use the conventional fault
monitoring data for continuous improvement project. For an automotive part production
line, a case study is presented where the dataset required for continuous improvement
are derived from the dataset recorded for conventional fault monitoring system. Several
conditions for this data conversion have been explained and illustrated. Then, using the
converted dataset, the line is modeled with high accuracy based on the theory of produc-
tions systems engineering. Two improvement scenarios are considered using the model
to quantify throughput improvement. In one of the scenarios, more than 9% produc-
tivity improvement is possible if the cycle-times are decreased for two machines out of
20 machines.

This study showcases a method of obtaining the information necessary for continuous
improvement project from a legacy system. Extending the work to general fault monitoring
systems, beyond the case study, would be a future work. We expect the results will be
useful for manufacturing companies (especially middle-size) that are either building new
IoE devices or seek additional benefits from the existing data collection systems.
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