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Abstract: Supervised deep learning-based foreign object detection algorithms are tedious, costly, and
time-consuming because they usually require a large number of training datasets and annotations.
These disadvantages make them frequently unsuitable for food quality evaluation and food manufac-
turing processes. However, the deep learning-based foreign object detection algorithm is an effective
method to overcome the disadvantages of conventional foreign object detection methods mainly
used in food inspection. For example, color sorter machines cannot detect foreign objects with a color
similar to food, and the performance is easily degraded by changes in illuminance. Therefore, to
detect foreign objects, we use a deep learning-based foreign object detection algorithm (model). In
this paper, we present a synthetic method to efficiently acquire a training dataset of deep learning that
can be used for food quality evaluation and food manufacturing processes. Moreover, we perform
data augmentation using color jitter on a synthetic dataset and show that this approach significantly
improves the illumination invariance features of the model trained on synthetic datasets. The F1-score
of the model that trained the synthetic dataset of almonds at 360 lux illumination intensity achieved
a performance of 0.82, similar to the F1-score of the model that trained the real dataset. Moreover, the
F1-score of the model trained with the real dataset combined with the synthetic dataset achieved
better performance than the model trained with the real dataset in the change of illumination. In
addition, compared with the traditional method of using color sorter machines to detect foreign
objects, the model trained on the synthetic dataset has obvious advantages in accuracy and efficiency.
These results indicate that the synthetic dataset not only competes with the real dataset, but they also
complement each other.

Keywords: computer vision; foreign object detection; deep learning; data augmentation

1. Introduction

Foreign objects contained in raw materials of food (RMF) not only can be disgust-
ing to consumers but also can have a negative effect on health. With the increase in the
consumption of processed food, consumer complaints about foreign objects mixed with
food are also increasing. This reduces weakened consumer satisfaction and causes various
types of boycotts [1–3]. To tackle this problem, a large number of screening personnel
are employed to ensure quality production manually. However, most of these manual
inspections are slow and inefficient and have a low rate of foreign object detection [4].
To replace manual inspection, many food companies and laboratories in different countries
have conducted various studies on foreign object detection using computer vision [5–7].
Figure 1 shows various methods for foreign object detection. The conventional foreign
object detection method (FODM) is manual detection by humans during food inspec-
tion of green onion flakes (GOF), as shown in Figure 1a. Computer vision technology is
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used to assist humans in detecting foreign objects in the food inspection of GOF, as shown in
Figure 1b. Computer vision technology detects foreign objects in moving almonds, as shown
in Figure 1c. Both Figure 1b,c are inference stages, not training stages. Foreign objects
consist of various types such as insects, wood debris, plants, paper scraps, metal parts,
and plastic scraps, as shown in Figure 1d.

Figure 1. Methods for foreign object detection. (a) Manual foreign object detection in food inspection of GOF. (b) Assistant
with manual foreign object detection using computer vision technology. (c) Foreign object detection in moving almonds
using computer vision technology. (d) Collected samples of foreign objects.

Computer vision technology is one of the best alternatives to replace the human
eye [8–10]. Many researchers have proposed various image processing methods to detect
foreign objects. However, they have mainly used methods to learn the features of objects
manually (handcrafted features). Handcrafted features are obtained from classifying
each object in an image belonging to a certain class to extract features of each object
directly [11]. Feature extraction is defined as a set of features (e.g., color features, shape
features, texture features), and classification is ordering objects into groups based on
similarities and differences [12]. Most detection of foreign objects adopts color sorting
machines based on computer vision [13]. The color sorter machines mainly use the principle
of the color difference between RMF and foreign objects. In addition, these machines focus
on detecting the color of an object while ignoring its shape or texture. Therefore, the color
sorting machines significantly suffer from detection failures for foreign objects with a
similar color [14]. Moreover, they have a disadvantage in that the performance of FODM
drops sharply due to changes in illuminance [15] and have another disadvantage in that it
is necessary to select the optimal parameters manually.

Recently, deep convolutional neural networks (DNN) have been in the spotlight,
replacing handcrafted features. DNN [16] were first used in the 2012 ImageNet Massive
Visual Recognition Challenge and became famous for their success in classifying a huge
dataset with superior performance. Unlike handcrafted features that manually select the
optimal parameters, DNN can automatically optimize parameters based on a training
dataset. In previous food safety research, D. Rong [17] proposed a method to detect foreign
objects in walnuts by combining two different convolutional neural networks. The study
achieved a 95% foreign object detection rate based on a self-collected dataset. Y. Shen [18]
proposed a method to detect worms in stored grains. The study results achieved 88mAP
detection rates based on a self-collected dataset.

DNN with annotated training datasets shows improvement on various image recog-
nition tasks including image classification [19,20], object detection [21,22], and semantic
segmentation [23,24]. However, the performance of DNN greatly depends on the qual-
ity and number of training datasets [25]. In food safety research, there are not enough
datasets required for training DNN, and many researchers are using datasets collected by
themselves. However, when a DNN-based algorithm is applied to the detection of foreign
objects, it requires thousands of different images and annotations for training. Manual
annotation is a cumbersome task that requires a lot of time and effort. Figure 2 shows how
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to manually annotate the training data required for DNN-based algorithm training. A man-
ual method to collect annotations is to use annotation tools. Figure 2a shows manually
collecting annotations on GOF using Labelme [26]. Labelme is a method of drawing the
outline of objects in a polygonal method. Manual annotation of GOF in Figure 2a requires
at least 5 minutes of time and effort. Annotation collected using annotation tools is shown
in Figure 2b.

Figure 2. Manual annotation. (a) Annotation tool for manual annotation. (b) Annotation result obtained using the manual
annotation tool.

Our proposed method, similar to the color sorting machines, focuses on the RMF and
background of the work bench that can be easily obtained in food inspection. However,
it uses DNN to consider not only color but also various features such as shape, texture,
and size. To train the features of RMF, several images of RMF mixed with various objects
are required [27]. However, our system is not a multi-class classification. It is a pixel-wise
binary classification consisting of an RMF category and a category grouping all objects
except RMF. For example, if almond is selected as the RMF, it is a pixel-wise binary
classification consisting of the almond category and the object category excluding almond.
The proposed method predicts pixel-wise binary classification using U-Net [28]. U-Net
is an architecture used for medical cell image segmentation [29] and is recognized as a
representative model of semantic segmentation using deep learning due to its simple
structure and high performance. Accordingly, research using U-Net is actively conducted
in various fields such as agriculture, medicine, and engineering [30–33]. In addition, we
introduced a method of generating a synthesis image that trains U-Net to only focus on
features of RMF.

The synthesis method is a simple and easy approach to generating training datasets
with minimal effort. The conventional synthesis method [34–36] should manually generate
the annotation of the training dataset. However, the proposed method automatically
acquires the mask of RMF using an effective image acquisition system that uses illumination
and the Otsu algorithm. The automatically acquired mask of RMF is used as annotations
for the training dataset of U-Net detecting RMF. As a result, the time and effort of collecting
training datasets and annotations were dramatically reduced using an effective image
acquisition system and synthesis image. As a result, the proposed method improves the
performance of FODM through the combination of U-Net, a synthetic dataset, and the Otsu
algorithm [37], rather than improving the DNN model alone.
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2. Material and Methods
2.1. Sample Preparation

We adopt almonds and GOF among various RMF to verify the performance of the
proposed method. However, GOF and almonds are only examples of various RMF; the pro-
posed method can be widely used in various RMF. Almond is a very familiar nut and is
used to make bread, butter, cakes, and other desserts. GOF is used widely in seasoning
food, removing unpleasant odors, and increasing the richness of taste. Recently, the con-
sumption of GOF as subsidiary materials for instant food continues to increase. From the
acquired image standpoint, most almonds have similar features such as color, texture,
shape, and size. Individual GOFs also have similar features to each other. However, thin
and light GOFs have a tendency to overlap each other. GOFs overlapping each other have
arbitrary shapes and sizes, and sometimes foreign objects are hidden. However, it should
be noted that separation of the overlapping GOF and detection of hidden foreign objects are
not considered in this paper, because it is expected that overlapping GOF or hidden foreign
objects can be resolved by a vibration of the workbench [38]. When the proposed method
is deployed with the above vibration equipment together, the overall performance will
certainly be enhanced. Table 1 shows the training dataset and the test dataset. The training
dataset was acquired at an illuminance intensity of 360 lux. The test dataset acquires the
same sample at different illuminance intensities. Test dataset (1) is an image acquired at
360 lux, which is the same illuminance intensity as the training dataset. Test dataset (2) is
an image acquired at 550 lux, which is a brighter illuminance intensity than the training
dataset. Test dataset (3) is an image acquired at 175 lux, which is a darker illuminance
intensity than the training dataset.

2.2. Equipment

The color image acquisition system was set up to acquire color images with RMF and
foreign objects, as shown in Figure 3. The system consists of machine vision (Figure 3a),
LED line illuminations (Figure 3b), a backlight (Figure 3c), a transfer unit (Figure 3d), and a
computer (Figure 3e). The machine vision with a resolution of 2048 pixels × 1536 pixels
(BFLY-PGE-31S4C-C, FLIR Integrated Imaging Solutions, USA) contained a focal length
16mm fixed megapixel lens (LM16JC5M2, KOWA, JP). The machine vision was connected
to a personal computer (i7-8700@3.2 GHz, 16 GB of RAM (random access memory), and a
Titan XP graphic card with 16 GB of RAM). The LED line illuminations were used to adjust
angle independently as bar illuminations mounted in four directions (LDBQ300, CLF, KOR).
The backlight has a wide illuminating angle and high uniformity with chip mount LED on
PCB at a regular interval (LXL300, CLF, KOR). This backlight serves to remove shadows
from objects and provide a constant background to the image. The transfer unit included
an X-axis and a Y-axis transfer unit for transferring the imaging section. All components
except the computer were fixed inside a dark chamber to avoid any light. A light meter
was used to measure the intensity of illumination (TES-1330A, TES, TW).

Figure 3. The color image acquisition system equipped with: (a) an image acquisition unit, (b) a light
source, (c) a backlight, (d) a sample transfer unit, and (e) a computer.
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2.3. Proposed Method

All foreign objects could not be collected, so FODM using DNN limited them to
frequently appearing foreign objects. However, both foreign objects that appear frequently
and foreign objects that appear sometimes are foreign objects. Ideally, we want to detect all
foreign objects that can be found during food inspection. However, to train a model for
FODM, collecting all foreign objects that can be found during food inspection is almost
impossible. To resolve this matter, we propose a method for detecting foreign objects
without collecting any foreign objects. The main idea is to only focus on RMF and a
background that can be easily obtained during food inspection. Only foreign objects will
remain naturally when the proposed method removes RMF and a background from the
test image. Figure 4 shows the two main steps of the proposed method. The first step is
the training of U-Net to predict the RMF. The training dataset of U-Net uses images with
RMF pasted in the Food101 background scenes in Section 2.3.2. The next step is the FODM
through RMF prediction and background estimation. The proposed method uses deep
learning as the main algorithm to detect foreign objects, so it is called deep learning-based
foreign object detection (DLFOD). The steps for DLFOD are: (1) predict mask of RMF from
an unseen real image using the trained U-Net in Section 2.3.3; (2) estimate background of
the test image in Section 2.3.4; and (3) subtract predicted RMF and estimated background
from the unseen real image. The proposed method provides high accuracy of FODM with
little effort and no human annotation.

Figure 4. Diagram of foreign object detection method.

2.3.1. Effective Image Acquisition System

The illumination plays an important role in improving the performance of the camera,
but it also has a problem of creating shadows of objects. The RMF image, which is
required when generating a synthesis image, should not have shadows. Therefore, we
propose a method of combining the reflectance and transmittance modes of illumination
for shadow removal as shown in Figure 5b. Modes of illumination are reflectance mode
and transmittance mode depending on the location where the illumination is installed.
Typically, illumination installed above the object being observed is in reflectance mode as
shown in Figure 5a, which emphasizes the features of the object in the image gained by
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the camera, making the colors more vivid. However, the transmittance mode illumination
installed under the observation object is mainly used for observing the inside of thin objects.
We tried a combination of reflective and transmittance modes for shadow removal. As a
result, this method achieved the effect of emphasizing the features of the object more but
removing the shadows. In addition, there was an advantage in that the distinction between
the foreground and the background becomes clear. This advantage becomes an important
clue to easily obtaining the training dataset and annotation required for DNN.

Figure 5. Two different illumination modes. (a) Reflectance mode. (b) Combination mode of reflective
and transmittance modes.

We use the Otsu algorithm as a method to separate the RMF images acquired in an
effective image acquisition system into foreground and background. In computer vision
and image processing, the Otsu algorithm is used to perform automatic image threshold.
This threshold is determined by minimizing intraclass intensity variance or, equivalently,
by maximizing interclass variance [39].

2.3.2. Generating Synthetic Images

To detect foreign objects using DNN, many images of RMF mixed with various foreign
objects are required. In general, it takes a lot of time and effort to collect RMF with
various foreign objects. To solve this problem, we generate synthetic images with only
RMF pasted on the scene in the open datasets. Open datasets [40–45] are collected images
from several categories of computer vision. We use open datasets to indirectly replace
unspecified foreign objects. Figure 6 shows the main steps of the method to generate the
synthetic image. The steps include: (1) prepare an image containing RMF acquired by
effective image acquisition system and a randomly selected image from the open dataset,
(2) convert RMF to a grayscale image, (3) acquire binarization mask image of RMF from
the grayscale image using Otsu algorithm, (4) acquire the image through bitwise AND
operation between RMF and the binarization mask image, (5) convert reversed binarization
mask image of RMF from binarization mask image, (6) acquire the image through bitwise
AND operation between the randomly selected image from the open dataset and the
reversed binarization mask image, and (7) acquire the synthesis image by merging the
two results. The binarization mask image is used as annotation for the resulting synthetic
image. The proposed method acquires the training images and extracts the annotation of
RMF without human effort.

To train a model that is robust for the change of illumination intensity, the color
jittering was performed by randomly adjusting the saturation, contrast, and brightness of
the synthetic image.
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Figure 6. Diagram of generating synthetic images.

2.3.3. Raw Materials of Food Prediction

We require a method to predict the region of RMF for input images mixed with RMF,
a background, and foreign objects. In addition, the predicted output image should have the
same spatial resolution as the input image. Semantic segmentation is the task of assigning
categorical annotations to every pixel in a given image and is used for image segmentation
tasks with the same resolution of the input image as the output image. We predict the
region of RMF using U-Net. U-Net is used to detect various objects such as vehicles and
medicine, but no research references exist concerning the detection of RMF such as almond
and GOF. However, RMF is similar to medical cells in that other RMF or foreign objects are
adjacent to each other and are symmetrical up and down and left and right. U-Net uses
the overlap-tile technique to train symmetric and adjacent cells. Therefore, we train the
RMF using U-Net, which enables segmentation between symmetric and adjacent objects
using the overlap-tile technique and tasks with the same resolution of the input image as
the output image for image segmentation.

The architecture of the U-Net is shown in Figure 7. It consists of contraction and
expansion paths and does not use the lateral connection between the contraction and
expansion paths. The contraction path is made of contraction blocks. Each block takes two
3 × 3 convolutions, each followed by a rectified linear unit (ReLU) and a 2× 2 max pooling
operation [46] with stride 2 for downsampling. The number of feature maps after each
block doubles. The feature map is a mapping that corresponds to the activation of different
parts of the image and is also a mapping of where a certain kind of feature is found in the
image. A high activation means a certain feature was found. As the number of feature
maps increases, the architecture can learn complex structures more effectively because the
architecture can find more certain features in the image [47]. For example, the first feature
map looks for curves. The next feature map looks at a combination of curves that build
circles. The next feature map could detect extended features from circles. Every block in
the expansive path is made up of a 2 × 2 convolution and two 3 × 3 convolutions, each
followed by a ReLU. The expansive path ensures that the features that are learned while
contracting the image will be used to reconstruct it. At the final layer, a 1 × 1 convolution
is used to map each 64-component feature vector to the 2 classes. In total, U-Net has 23
convolutional layers.

The energy function is computed by a pixel-wise sigmoid over the final feature map
combined with the cross-entropy loss function. The sigmoid layer at the end of the model
created a two-channel output and then an output image containing the result—whether it
is green onion flakes or not. The sigmoid used to train the model is shown in Equation (1):

s(x) =
1

1 + e−x (1)
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where x is the input data.
The cross-entropy used to train the model is shown in Equation (2):

CE = −
C=2

∑
i=0

[tilog( f (si)) + (1− ti)log(1− f (si))] (2)

where ti ∈ {0, 1}c is the true label of each pixel, and si ∈ [0, 1]c is sigmoid output data.

Figure 7. U-net architecture.
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2.3.4. Background Estimation

To leave only foreign objects in the image, we need to remove the background.
The background corresponds to the surface of the workbench. Figure 3c shows the work-
bench image which consists of a backlight. On a workbench without a backlight, shadows
appear on RMF, as shown in Figure 8a. Although the shadow is not a foreign object,
the FODM is highly likely to predict it as a foreign object. Hence, the workbench with a
backlight is effective in removing shadows from the objects, as shown in Figure 8c, and
has a white background. The white background pixels have high gray level strength [48].
Moreover, the color intensity of the background is very similar. Consequently, the mini-
mum intensity of the empty workbench image is used to calculate the threshold used to
determine whether it is a background or not. This is defined as

M(x, y) =
{

255 g(x, y) ≥ Tr
0 otherwise

}
(3)

where g(x,y) is the gray-value at position (x,y) of the input image, and Tr the minimum
intensity value of the empty workbench image. M(x,y) is a gray-value at position (x,y)
of the output image. At position M(x,y), the gray value of 255 means background, and 0
means foreground. The binarization result of region segmentation of a background is
obtained from Equation (3).

Figure 8. Images and binarization results acquired from image acquisition systems. (a) Image and (b) binarization result
based on the threshold intensity (Otsu algorithm) from image acquisition systems equipped with illumination in reflectance
mode. (c) Image and (d) binarization result based on the threshold intensity (Otsu algorithm) from image acquisition
systems equipped with combined illuminations with reflective and transmittance modes.

2.4. Histogram Backprojection

Most food inspection methods use color sorting machines to detect foreign
objects [13,49]. The color sorter machines use a method to detect foreign objects based
on the color difference between RMF and foreign objects [50]. Color-based foreign object
detection mainly uses the histogram backprojection algorithm [51], so it is called histogram
backprojection-based foreign object detection (HBFOD). Histogram can be used to roughly
inspect the distribution of pixels in an image. Back projection is a method of recording
how well the pixels of a given image fit the distribution of pixels in the histogram model.
By deriving histograms of both a target image and a source image, the histogram back-
projection calculates the ratio histogram of the source with the target [52]. The source S
is determined from the object to be found, and the target T is determined to be searched.
A ratio histogram R is obtained by dividing S by T:

Ri = min[Si/Ti, 1] (4)

where i is the index of a bin. This ratio histogram R is then backprojected on the image:

bx,y = Rh(Cx,y) (5)
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where Cx,y is the pixel value at (x,y), h(Cx,y) is the bin corresponding to Cx,y, and the
backprojected image is bx,y.

2.5. Metrics to Evaluate the DNN Model

We assessed the performance of the FODM as F1-score [53]. F1-score is the har-
monic mean of precision and recall computed from the number of foreign objects detected.
The highest possible value of an F1-score is 1.0, and the lowest possible value is 0. Recall is
the ratio of the number of correctly detected foreign objects to the number of actual foreign
objects. Precision is the ratio of the number of correctly detected foreign objects to the
number of actual foreign objects and RMF. A high F1-score means that precision and recall
are harmoniously high. Therefore, the region of the foreign objects is accurately detected,
and the RMF region is not detected as the region of the foreign objects. However, A low
F1-score means that there is a gap between precision and recall, or that both precision and
recall are low. Therefore, a low F1-score has a disadvantage in that even if the region of
foreign objects is accurately detected, the false detection of the RMF region as a foreign ob-
ject is also high. Mean F1-score is the average F1-score of types of foreign objects included
in the test data. A high mean F1-score means that it can detect various types of foreign
objects. As a result, a high mean F1-score can detect various types of foreign objects and
does not misrecognize the RMF region as a foreign object, so it is a suitable method for
food inspection.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

3. Results and Discussion

We compare the effectiveness of the proposed synthesized dataset against the human-
annotated dataset. Firstly, we show that the effective image acquisition system obtains
images that can be easily distinguished between foreground (RMF) and background (work-
bench). Secondly, we generate synthetic images by pasting the RMF obtained from the
effective image acquisition system onto a randomly selected background in Food101. Lastly,
we compare the performance of detecting foreign objects in the test dataset using a trained
U-Net for the proposed synthesized dataset with automatically generated annotations and
the real dataset with the human-annotated annotations.

3.1. Training Image and Annotation Acquisition
3.1.1. Effective Image Acquisition System Result

To acquire RMF images and binarization masks for synthesis image generation, we
propose the effective image acquisition system with both reflectance and transmittance
modes. The image acquired in reflectance mode has a shadow as shown in Figure 8a,
whereas the image acquired in the proposed system has no shadow as shown in Figure 8c,
and the foreground and background can be clearly distinguished. The acquired image
is automatically converted to a binarization mask using the Otsu algorithm. In the bi-
narization mask obtained based on the reflectance mode, it is difficult to distinguish the
boundary between the foreground and the background due to shadows as shown in
Figure 8b. On the other hand, the binarization mask obtained based on the proposed sys-
tem can clearly distinguish the boundary between the foreground and the background as
shown in Figure 8d. A method similar to our proposed effective image acquisition system
is to acquire an object mask using a depth sensor. The Big Berkeley Instance Recognition
Dataset [54] provides object masks using a depth sensor, and many researchers use it as a
training dataset for semantic segmentation. However, the depth sensor is difficult to use for
RMF that are attached to the background or thin. On the other hand, the proposed image
acquisition system is advantageous for acquiring a mask of a thin object such as GOF.
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3.1.2. Synthetic Image Result

We augmented the training dataset using the synthetic image; the images in Figure 9
are examples of the data augmentation. To generate the synthetic image, we chose the
Food101 dataset as the open dataset to synthesize RMF. The Food101 dataset [55] pre-
sented in [41] consists of food images and related objects. The Food101 dataset contains
101 food categories and 101,000 images. For example, samples of the Food101 dataset
include spinach, carrots, cucumbers, and mushrooms belonging to natural objects and
some categories similar to RMF. In addition, it also includes metal, glass, and paper that
belong to man-made objects. The synthetic image is generated by combining the RMF
images and randomly selected images from the Food101 dataset. In Figure 9a, almond
and GOF are acquired by the effective image acquisition system. In Figure 9b, The image
acquired by the image acquisition system is separated into the region segmentation of
RMF and the background using the Otsu algorithm. The separated region segmentation of
RMF is used as the annotation for the training dataset. Figure 9c includes synthetic images
pasted with RMF from the training dataset to the randomly selected background from the
Food101 dataset. RMF were surrounded by various objects related to food in the synthetic
image. Color jittering was performed by randomly adjusting the saturation, contrast, and
brightness of the synthetic image.

Figure 9. The synthesis image of RMF combined with the Food101 dataset [55]. (a) RMF image acquired from effective
image acquisition systems. (b) The binarization results based on the threshold intensity (Otsu algorithm) from effective
image acquisition systems. (c) Synthetic images acquired from the proposed synthetic method.

3.2. Evaluation of the Synthesis Images

DLFOD To evaluate the performance of DLFOD across datasets, we conducted ex-
periments using the acquired real images or synthetic images or both real images and
synthesized images as training datasets. Table 1 shows the number of RMF and foreign
objects used in the training and test datasets. The real image with the human-annotated
annotations consisted of RMF and real foreign objects from the training dataset. On the
other hand, the synthesized image with automatically generated annotations uses images
pasted with RMF from the training dataset to the randomly selected background from



Sustainability 2021, 13, 13834 12 of 20

the Food101 dataset. The test dataset consists of real images including RMF mixed with
real foreign objects. The test dataset acquired the same sample at different illuminance
intensities (360, 175, and 550 lux).

We used the DLFOD introduced in Section 2.3 and initialized all the weights in the
training model to values generated randomly from a Gaussian. We trained all models for
50 epochs using SGD + momentum with a learning rate of 0.001, momentum of 0.9, batch
size of 5. A weight decay of 0.0005 was also used. We set the value of all the loss weights
as 1.0 in our experiments. We ensured that the model hyperparameters did not change by
utilizing the same random seed for consistency.

Table 1. Number of samples and objects used for training and testing.

Food Types Samples for Training Dataset Samples for Test Dataset

Almond

RMF 1470 883
Insects 178 107

Wood debris 184 106
Plants 179 98

Paper scraps 181 101
Metal part 177 100

Plastic scraps 188 108

GOF

RMF 2174 1204
Insects 178 103

Wood debris 184 105
Plants 179 103

Paper scraps 181 102
Metal part 177 100

Plastic scraps 188 107

Table 2 shows the evaluation results of the FODM performance of DLFOD according
to the training datasets. The mean F1-score of the test dataset (1) obtained from DLFOD
trained on the synthetic image (almonds) achieved a performance of 0.82, similar to
the mean F1-score obtained from the DLFOD trained on the real image (rows 1 vs. 3).
We collected manual annotations of real images (almonds) in the training dataset using
annotation tools in Figure 2a and took about 1–2 min per sample—a total of 40 h. On the
other hand, synthetic images are not annotated by humans, saving 40 h and effort. The
mean F1-score of the test dataset (1) obtained from DLFOD trained on the GOF synthetic
image achieved a performance of 0.70, which obtained lower performance than almond
(rows 10 vs. 12). Almonds have a distinct shape and texture compared to GOF and do not
overlap each other. It is easy for the DLFOD to accurately learn the almond features using
the synthetic image. Conversely, GOF is thin and easily overlaps with other GOFs, so the
shape of the GOF is unclear, making it difficult for the DLFOD to learn the GOF features
compared to almond. This agrees with [56] that the higher-level DNN layer concentrates
on the shape of an object. In Figure 10, (a) shows foreign objects having a color similar to
that of GOF mixed with GOF at an illuminance intensity of 360 lux, (b) shows that some of
the foreign objects with a shape and color similar to GOF are false detections, (c) shows
foreign objects mixed with GOF, and (d) shows that some of the RMF and foreign objects
are false detections.
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Figure 10. Example of false detection of a model trained on synthetic images. (a) GOF image mixed with foreign object with
similar color and shape to GOF. (b) Result of detecting foreign objects similar to GOF as food raw objects. (c) GOF image of
various shapes mixed with foreign objects. (d) Result of detecting GOF with an unspecified shape as foreign objects.

Table 2. Evaluation results for each dataset.

Food Test Dataset Training Dataset Insects Wood
Debris Plants Paper

Scraps
Metal
Parts

Plastic
Scraps Mean

Almond

1
Real Images 0.84 0.85 0.84 0.87 0.81 0.83 0.84

Synthetic Images 0.83 0.84 0.83 0.85 0.79 0.82 0.82
Synthetic Images + Real Images 0.85 0.85 0.85 0.89 0.80 0.85 0.84

2
Real Images 0.78 0.79 0.81 0.82 0.72 0.81 0.78

Synthetic Images 0.82 0.81 0.82 0.83 0.74 0.82 0.80
Synthetic Images + Real Images 0.83 0.82 0.81 0.84 0.74 0.82 0.81

3
Real Images 0.77 0.73 0.73 0.81 0.72 0.72 0.74

Synthetic Images 0.78 0.81 0.83 0.84 0.79 0.81 0.81
Synthetic Images + Real Images 0.79 0.79 0.81 0.85 0.81 0.82 0.81

GOF

1
Real Images 0.81 0.86 0.75 0.82 0.78 0.81 0.80

Synthetic Images 0.73 0.78 0.54 0.70 0.73 0.77 0.70
Synthetic Images + Real Images 0.83 0.85 0.76 0.83 0.80 0.82 0.81

2
Real Images 0.77 0.81 0.62 0.75 0.70 0.77 0.73

Synthetic Images 0.72 0.77 0.52 0.68 0.71 0.74 0.69
Synthetic Images + Real Images 0.78 0.82 0.59 0.76 0.71 0.76 0.73

3
Real Images 0.75 0.81 0.63 0.71 0.71 0.74 0.72

Synthetic Images 0.73 0.78 0.51 0.69 0.74 0.73 0.69
Synthetic Images + Real Images 0.76 0.81 0.58 0.70 0.74 0.76 0.72

The mean F1-score of the test dataset (2) obtained from DLFOD trained on the synthetic
image (almonds) achieved a performance of 0.80. On the other hand, the DLFOD learned
from the real image was 0.78, which had a lower performance than the synthetic image.
In addition, The mean F1-score of the test dataset (3) obtained from DLFOD trained on the
real image (almonds) achieved a performance of 0.74, which had a lower performance than
the synthetic image. As a result, the mean F1-score of the test dataset (2, 3) obtained from
DLFOD that learned the real image showed a large difference in performance according
to the change in illuminance. However, the mean F1-score of DLFOD that learned the
synthetic image that conducted dataset augmentation using color jitter showed a relatively
small difference in performance according to the change in illuminance. Combining the
real image and the synthetic image can overcome the disadvantage that the training dataset
of the real image is weak to changes in illuminance. These results show that the synthetic
dataset not only competes with the real dataset, but the two also complement each other.
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3.3. Foreign Object Detection Performance of Each Method

Table 3 shows the evaluation results of DLFOD trained using the proposed synthetic
image and HBFOD. Figures 11 and 12 show the foreign object detection of the model for
the test image acquired at the same illuminance (360 lux) as the training dataset. In order
to emphasize the foreign object detection performance in RMF, the foreign object regions
from the image are marked in red. In Figure 11, (a) shows images of foreign objects of
various colors (plastic) mixed with RMF at an illuminance intensity of 360 lux, (b) shows
the foreign object detection result of DLFOD for foreign objects of various colors, and (c)
shows the foreign object detection result of HBFOD for foreign objects of various colors.
For both DLFOD and HBFOD, the foreign object detection result was reasonably good,
and all regions of the foreign object were highlighted in red. In Figure 12, (a) shows images
of foreign objects (fly eggs, plants, paper scraps) having a color similar to that of a food
raw object mixed with RMF at an illuminance intensity of 360 lux, (b) shows the detection
result of DLFOD, and (c) shows the foreign object detection result of HBFOD. The foreign
object detection result of the DLFOD was reasonably good. On the other hand, HBFOD
could not detect foreign objects similar to RMF.

Table 3. Evaluation results for the prediction of foreign object detection for each method.

Food Test Dataset Method Insects Wood Debris Plants Paper Scraps Metal Parts Plastic Scraps Mean

Almond

1 DLFOD 0.83 0.84 0.83 0.85 0.79 0.82 0.82
HBFOD 0.27 0.71 0.79 0.76 0.73 0.78 0.67

2 DLFOD 0.82 0.81 0.82 0.83 0.74 0.82 0.80
HBFOD 0.22 0.57 0.64 0.69 0.68 0.62 0.57

3 DLFOD 0.78 0.81 0.83 0.84 0.79 0.81 0.81
HBFOD 0.21 0.49 0.48 0.43 0.51 0.51 0.43

GOF

1 DLFOD 0.73 0.78 0.54 0.70 0.73 0.77 0.70
HBFOD 0.71 0.72 0.19 0.64 0.72 0.78 0.62

2 DLFOD 0.72 0.77 0.52 0.68 0.71 0.74 0.69
HBFOD 0.66 0.62 0.17 0.55 0.56 0.64 0.53

3 DLFOD 0.73 0.78 0.51 0.69 0.74 0.73 0.69
HBFOD 0.51 0.45 0.16 0.34 0.48 0.52 0.41

To evaluate the performance of DLFOD and HBFOD according to changing illumina-
tion intensity, we conducted foreign object detection experiments in various illumination
intensities, and Figures 13 and 14 are examples of the experimental results. In order to
emphasize the foreign object detection performance in RMF, the foreign object regions
from the image are marked in red. In Figure 13, (a) shows images of foreign objects (fly)
mixed with RMF at an illuminance intensity of 550 lux, (b) shows the detection result of
DLFOD, and (c) shows the foreign object detection result of HBFOD. The foreign object
detection result of the DLFOD was reasonably good. HBFOD could distinguish between
RMF and foreign objects but only detected a part of the foreign objects. In Figure 14, (a)
shows images of foreign objects (fly) mixed with RMF at an illuminance intensity of 175
lux, (b) shows the detection result of DLFOD, and (c) shows the foreign object detection
result of HBFOD. DLFOD was reasonably good. HBFOD could distinguish between RMF
and foreign objects but only detected a part of the foreign objects. Additionally, HBFOD
had a problem of falsely detecting shadows or parts of RMF as foreign objects.
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Figure 11. Comparison of foreign object detection results between DLFOD and HBFOD. (a) The
sample images of RMF mixed with foreign objects (plastic scraps). (b) The foreign object detection
results of DLFOD. (c) The foreign object detection results of HBFOD.

Figure 12. Comparison of foreign object detection results of similar color to RMF between DLFOD
and HBFOD. (a) The sample images of RMF mixed with foreign objects (insects, plants, paper scraps).
(b) The foreign object detection results of DLFOD. (c) The foreign object detection results of HBFOD.
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Figure 13. Comparison of foreign object detection results between DLFOD and HBFOD in an
environment with high illumination intensity. (a) The sample images of RMF mixed with foreign
objects (insects). (b) The foreign object detection results of DLFOD. (c) The foreign object detection
results of HBFOD.

Figure 14. Comparison of foreign object detection results between DLFOD and HBFOD in an
environment with low illumination intensity. (a) The sample images of RMF mixed with foreign
objects (insects). (b) The foreign object detection results of DLFOD. (c) The foreign object detection
results of HBFOD.

3.4. Foreign Object Detection Platform

Figure 15 shows the foreign object detection platform. The foreign object detection
platform was implemented using the proposed method to verify its applicability in food
inspection. It was implemented in the Ubuntu 18.04 environment and used the python
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language. The foreign object detection platform consists of a screen that outputs the image
acquired by the camera and a screen that outputs only foreign objects. After classifying
the pixels using the proposed method, on the screen that outputs only the foreign object,
foreign objects were highlighted with red lines and bounding boxes to increase the visibility
of the classified results.

Figure 15. Foreign object detection platform.

4. Conclusions

We proposed a method to detect foreign objects regardless of the type of foreign
objects, focusing on RMF and background detection. In particular, we proposed a method
that effectively collects the training data required for RMF prediction using U-Net. From a
practical standpoint, the effective image acquisition system afforded the possibility to
collect training data that can detect RMF and foreign objects without manual annotation.

HBFOD extracted features from images of foreign objects and food based on color
and experience. This method could not detect foreign objects with a color similar to RMF,
and the performance was easily degraded by changes in illuminance. This paper used
a foreign object detection method using DNN to solve the problem of the conventional
method. As a result, DLFOD achieved higher performance than HBFOD in detecting
foreign objects, although there was a difference in performance depending on the type
of RMF such as almond and GOF. Additionally, the DNN which learned RMF using the
proposed synthetic images was robust to changes in illuminance compared to HBFOD.
However, our proposed method was not suitable for general object detection because there
are limitations that objects should have similar viewpoints and scales, and the background
should be monotonous, although it was a suitable method for food quality evaluation in
which the background is monotonous, and the acquired image had the same viewpoint and
scale using a camera installed at the same location. Nevertheless, it should be noted that
the detection of foreign objects mixed with thin and overlapping RMF such as GOF still
needs to be investigated. Future work will focus on DNN using multi-waveband imaging
hardware. We are convinced that the method to improve the performance of foreign object
detection is to acquire image datasets with more features of RMF by using multi-waveband
imaging hardware.
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