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ABSTRACT

In recent years, researches for perception of the flight environment and collision avoidance control have
been actively conducted for the safe navigation for unmanned aerial vehicles (UAVS) used in various fields
such as surveillance, agriculture, transportation, rescue and military. Accurate and real-time perception of the
surrounding environment, such as the free area and the recognition of dynamic and static obstacles, is essential
for path planning and control for navigation to avoid collision. The perception system of the UAV needs to
recognize information such as the position and velocity of all objects in the surrounding local area regardless of
the type of the object. At the same time, a probability based representation taking into account the noise of the
sensor is also essential. In addition, a software design with efficient memory usage and operation time is
required in consideration of the hardware limitations of the UAVSs.

In this paper, we propose a 3D Local Dynamic Map(LDM) with essential elements of the aforementioned
UAV perception system. The proposed LDM uses a circular buffer as a data structure to ensure low memory
usage and fast operation speed. Probability based occupancy map is created using sensor data, and the position
and velocity of each object are calculated through clustering between grid voxels using this occupancy map and
velocity estimation based on particle filter. The objects are predicted using the position and velocity of each
object, and this is reflected in the occupancy map. This process is continuously repeated, and the flying
environment of the UAV can be expressed in a three-dimensional grid map and the state of each object.

For the evaluation of the proposed LDM, we constructed a simulation environment and the UAV for
outdoor flying. In the simulation, multiple environments with dynamic and static obstacles are created, and the
UAYV equipped with a virtual LIDAR sensor is created in those situations. The UAV for outdoor flying is
constructed with a LIiDAR sensor and computing board for sensor data processing and LDM algorithm running.
As an evaluation factor, the occupancy grid accuracy is evaluated, and the ground truth velocity and the
estimated velocity are compared.

Keywords: Local Dynamic Map(LDM), UAV, Clustering, Probabilistic Grid
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I. Introduction

In recent years, the use of unmanned aerial vehicles (UAVs) has increased significantly in various fields,
including surveillance, agriculture, transportation, rescue and military [1-5]. Accordingly, for safe UAV
navigation that avoid collisions, researches on perception of flight environments such as object detection, tracking
and mapping are actively conducted [6—10]. For planning and control for safe UAV navigation, accurate and real-
time perception of the surrounding environment such as occupied and free areas, dynamic and static obstacles are
essential. We believe that the following three are essential considerations for the perception system for safe

navigation of UAVs.

® [tisnecessary to know the state such as position and velocity for all objects existing in a local area around
the UAV regardless of the type of object. When the UAV is flying, it is necessary to distinguish between
places where collisions may occur and not. And further, in the case of dynamic objects, we need to predict
the motion of objects and avoid them. Therefore, the current position and velocity of objects in the
surrounding 3D local area of UAV are essential factors that must be recognized.

® Probabilistic representation of the surrounding environment which considering the noise of the sensor is
needed. We can recognize the surrounding environment through sensors such as LiDAR, camera, and
radar. However, since sensor data always has noise, it must be expressed as a probabilistic expression
that considers sensor noise like sensor noise models. This can further be useful for integrating different
Sensors.

® The limit of hardware system of UAV should be considered when configuring the UAV’s perception
system. Compared to other mobility platforms, UAV has a relatively limited payload weight. Due to this,
the usable sensors and computing boards are limited. Therefore, we need to build a software with efficient

memory and execution time within the limited hardware situation.

As a perception system, Occupancy Grid Map (OGM) represents an environment by using probabilistic
grid cells. OGMs discretize the space into grid cell space to improve memory efficiency and represent occupancy
probability of each cell by using sensor noise model. [9] extended this to 3D space and made it possible to apply
OGM for UAVs. However, since most OGMs are used as a prior map of wide areas for the purpose of global

mapping or SLAM, it couldn’t be guaranteed that memory usage and computation time are used in real-time. As



UAVs have limited hardware specifications that can be implemented, we need to reduce memory usage and
computational load by limiting the perception area to only adjacent surround area of the UAV. [11] proposed an
occupancy grid map using a circular buffer for this purpose. Occupancy map of [11] is limited only for a local
area around the current UAV location for efficiency and it is suitable for UAV. However, it is still regrettable that
[11] does not have object-level expressions such as the position and velocity of each object which are useful for
navigation.

Most of object-level perception algorithms are based on deep learning approach such as [10,12,13]. In
recent years, many studies have been continuously conducted, and object recognition and classification are
performed using camera and LiDAR. However, deep learning based algorithms can recognize only pre-trained
objects. In the case of autonomous vehicles, the objects that can appear on the road are limited, but since UAVs
do not have the concept of a driving road, a wide variety of objects can appear, so it is difficult to fully recognize
the surrounding environment only with deep learning approach. In addition, it requires vast amounts of training
data, but UAVs’ flying data is insufficient, making it difficult to apply. Therefore, an additional method is needed,
and OGMs are appropriate for perception system for collision avoidance navigation of UAVs.

As mentioned above, the limitation of OGM is no representation of object-level state. So, OGM that
contains object-level representation can break the limitation and Occupancy Grid Filter(OGF) algorithms such as
[14-16] are most similar to this purpose. OGF expresses the occupancy and velocity of each cell as probability.
Furthermore, [17,18] calculated the position and velocity of each object cluster through clustering and tracking
between cells. However, these algorithms are studied for autonomous vehicles so they are conducted in 2D space.
For UAVs, [19] expresses even the dynamic situation by utilizing the Bin-occupancy filter for the local area around
the UAYV, but the computational load is heavy.

In this paper, we propose an algorithm for 3D Local Dynamic Map(LDM) generation that includes
occupancy grid map and object state that position and velocity with reduced computation load considering the
hardware limitations of UAVs. We use circular buffer based mapping algorithm from [11] to reduce used memory
and computation time. Occupancy probability of grid map is predicted by using previous state of objects and
updated by using sensor measurement of current time. Using this occupancy grid, occupied area and velocity of
each object are obtained through particle filter based velocity estimation and clustering. We evaluate proposed
LDM algorithm with ground truth of occupancy grid map and state of objects such as position and velocity in
simulation. In addition, it is also tested and evaluated using an outdoor UAV composed of LiDAR sensor and

onboard PC.



This paper is structured as follows. Section 2 describes related works of LDM. Section 3 explains LDM

algorithm that we proposed, and evaluation of algorithm is described in section 4. Finally, section 5 conclude the

paper.

I1. Related Works

OGM is an algorithm that represents the surrounding environment for safe navigation. Various sensors
such as a sonar sensor, LiIDAR, RGB-D camera are used and applied to various platforms such as mobile robot
and autonomous vehicle, [20-24]. However, these OGMs express the environment in two dimensions, [9] makes
3D grid map by using octree data structure to reduce memory usage and computation time. [25,26] use Octomap
as a perception system for 3D Navigation of UAV. However, OGMs have weakness in update speed and prediction
for dynamic objects because they accumulate measurements and shows only the occupancy probability of current
state.

[14] proposed one of the OGF, Bayesian Occupancy Filter (BOF), which extended OGM to a 4D-grid that
consists of velocity probabilities of each occupancy grid cell to compensate for the weaknesses of OGM that can
only consider occupancy. In BOF, the state of each cell is predicted using the previous occupancy and velocity
probability. Through this, a corresponding grid map is created for dynamic objects, but there is an inefficient
aspect of having a velocity grid for all cells include free cells.

[16] and [15] applied particle filter to BOF to solve the above inefficient problem, and expressed the
velocity of each cell as particle distribution. In addition, the cell is divided into static, dynamic and free, and the
efficiency of calculation is improved by allocating and removing particles.

The aforementioned OGF algorithms express the occupancy probability and velocity of a grid cell, but
these are all two-dimensional representations and are not suitable for 3D navigation of UAVs. [19] creates 3D
grid map for a local area around the UAV to avoid collision based on bin-occupancy filter which predicts the
movement of particle in each cell. However, it is limited in use due to insufficient evaluation of the accuracy of
mapping and the heavy computational load. [27,28] use Euclidean Signed Distance Fields (ESDF) grid map as
3D representation for UAV navigation. These obtain the shortest distance to the occupied voxel and obtains the
possible collision distance in real-time. However, these algorithms have no representation of velocity field or

object state so the trajectory of dynamic objects cannot be predicted.



[11] proposed an algorithm that creates a circular buffer based local grid map for UAV replanning. The
data structure of occupancy grid is circular buffer to reduce computation time. We take the circular buffer data
structure proposed by [11] for our proposed LDM. However, unlike [11], we perform the occupancy prediction
process to respond to dynamic objects.

Clustering of occupancy grid has been proposed for a planning technique that using object recognition
information. In [29], the states of grid cells are determined through comparison between cell occupancy
probability of the current and previous time, and cell clustering is applied using these states. [18] project the
clustering result from superpixel approach, which pixel clustering algorithm, to grid space and assign the clusters

to each cell. [17] applied clustering and tracking between cells using BOF grid.

I11. Local Dynamic Map(LDM) Generation

Time k —1 Time k Time k + 1
UAYV Position LiDAR Measurement
§ Occupancy Movement Occupancy Occupancy
Clustering Prediction o Update - Update ¥ Clustering Prediction
Particle Particle Particle
—+{ R | i —
= Prediction Update Resampling Prediction

Prediction Update

Figure 1. An overview of proposed Local Dynamic Map algorithm.

We propose an algorithm for Local Dynamic Map(LDM) generation that expresses the surrounding
environment by occupancy grid and obstacle clusters. Proposed algorithm represents the space that occupied by
obstacles in the local area around the UAV as occupancy grid and at the same time recognizes the obstacles’ states
such as position and velocity. Occupancy grid is predicted by using previous state of objects and updated by using
sensor measurement of current time. To extract obstacle state, LDM use grid voxel clustering and particle filter
based velocity of cluster estimation. As shown in Figure 1, the overall process proceeds in the order of prediction,
update, resampling, and clustering. In this section, the main states of LDM are defined and then each process is

described in detail.



3.1 LDM State Representation

In LDM, the environment around the UAV is divided into 3-dimensional grid composed of voxels. Each
voxel in the form of a cube expresses occupancy and dynamic state by using the occupancy probability and

velocity. Occupancy probability is stored as log-odds notation as shown in equation 1 for computational benefits.

P(Occ}) ) )

l(OCC,l() = lOg (TOC(;;{)

with l(Occ,i() is log-odds notation of voxel i and P(Occl) is occupancy probability of it.

In order to recognize only the local area around the UAV, the grid map region continuously moves based
on the location of the UAV. The easiest way to do this is to match center of grid map region with the location of
the UAV. However, it requires occupancy probability update process for whole voxels every time when the UAV
moves. And in most cases, the accuracy of occupancy probability may be lost due to overlap between voxels. To
prevent this, we update the grid map region so that the UAV is located only inside the center grid voxel of the
map. Due to the movement of UAYV, if the UAV located voxel moves AX = (AX,AY,AZ), where X, Y, Z are
multiples of voxel resolution from the previous UAV located voxel(same as center grid voxel), the grid map region
moves by the same distance so that the UAV located voxel becomes the center grid voxel. Also, the rotation of the
grid map due to the rotation of the UAV is not considered, and the orientation of the map is fixed as the orientation
of the initial. Therefore, since the grid map region moves only in multiples of the voxel resolution, the overlap

between voxels can be blocked. Figure 2 describes it with example situation.
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Figure 2. An example of update process of grid map in proposed LDM. For visualization, we reduce dimension
to 2D. Left case is the example of overlap situation when update grid map region depends on UAV position and
orientation. Right image is that update process that used in our LDM. If UAV located voxel moves (AX, AY) as
shown in right image, grid map region is also moves (AX, AY). LDM prevent overlap issues by using this update
process.

The estimated velocity of each voxel is expressed as a set of particles. The particles have their position
and velocity. To represent the reliability of the state of particle that position and velocity, each particle has the

weight. The representation of particle state is:

x' = (px' py»pz) , vi= (Ux. Uy, Uz) ’ (2)

where x! is position of particle i and v’ is velocity of particle i. Obstacles can move randomly, so we have to
predict the probability of movement in all possible directions. Therefore, we use weighted particles as a probability
of obstacle state to recognize the velocity and position of each obstacle.

The particles of LDM are initialized so that it is evenly distributed over the entire grid map region. So, the
position of particle i, x!~U(— %,%) is uniform distribution over the grid map region with M = (M,, M,,, M)
is size of grid map region. The velocity of particle i, vi~N(0,%) is normal distribution with covariance X. The

weight of each particle, wi, is set to the same value.



3.2 Prediction

Because traditional occupancy grid measurement update methods such as [9,11] are based on accumulation
of measurements, reaction of dynamic obstacles is slow in a dynamic environment. To prevent this, occupancy
prediction is applied using the clustering result. Through the clustering to be described in 3.5, we collected the
clusters with their corresponding voxels and the velocity of clusters. By using this, the current moving position of

clusters are predicted and the corresponding occupancy probability can be predicted as described in Figure 3.

<
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b

Figure 3. Example of occupancy prediction. The gray color cells are occupied cells and the part where the border
is drawn with a thick line is one cluster. In left image, red dots are position of each cluster, red arrows are velocity
of each cluster. The end of the arrow is the predicted position of each cluster. In this case left upper cluster is
predicted to right upper direction and right lower cluster is predicted to right lower direction. The occupancy
probabilities are moved as same direction of clusters.

Particles that distributed over the grid map region are predicted using prediction model from [16].

vi=vi, + o, xt =xi_,+dt-vi, 3)

where dt is time difference between time k and time k —1, 0~N(0,Z) is zero mean normal distribution
noise with covariance X. If the predicted location of the particle is outside of grid map, it is removed and is not

used in the subsequent processes.



3.3 Update

3.3.1 Movement Update
:Time k
19 15 16 17 18 Time k -1
13 14 10 11 12 13 14 10 11 12 13
8 9 5 6 7 8 9 s |40 7 8
/
3 4 0 1 2 3 4 0 1 2 3
,):r — y 12?’
23 24 20 21 22 23 24 20 21 22 23
¥
o] X
18 19 15 16 17 18 19 15 16 17
o X
25 25
AL _ A -
e ™ e ™
Circular buffer array D:I:I:D Dj D]:l Circular buffer array
Index 0 1 23 4 1516 222324 Index 01 23 4 1516 222324

Figure 4. Movement update process. For visualization, we reduce the dimension to 2-dimension. The number of
each voxel is index of circular buffer array. At time k — 1, the voxel that index of the circular buffer equals 18,
is the origin voxel of grid voxel coordinate. And the offset voxel 0,_; = (2,2), and X¥~1 = (2,2) where the
UAV located. At time k, after the UAV moved, the voxel where the UAV located relative to grid voxel coordinate
at time k —1, X¥~1 = (3,3). The offset voxel is updated as o, = 0,_; — (Xf™ 1 — X¥~1) = (1,1). Now the
voxel that index of the circular buffer equals 24, is the origin voxel of grid voxel coordinate. By update offset and
grid voxel coordinate, the voxels in green zone are now out of the grid map region and voxels in blue zones are
newly entered the grid map region. To reduce the time that used by data update, the circular buffer array indexes
of green zone voxels such as 3, 15, 16, 23 are allocated to blue zone voxels with 0 value.

We use circular buffer data structure of [11] for our grid map data structure. It is composed of a circular
buffer array that stores occupancy probability of each voxel in 3D grid space and offset voxel o = (oy, 0,0;)
indicating the grid voxel that corresponding to first index of circular buffer array. To update grid map region, the

offset voxel is updated using equation 4.

o = op—1 — (Xt = X{E21), 4)

with X1 = (ixy, iy, iz,) means grid voxel where UAV located at time k relative to grid voxel coordinate at
time k —1 and o, means the offset voxel at time k. In this process, voxels that move out of grid map region
are cleaned and voxels that included newly to the grid map region are initialized. To do this simply and fast,
circular buffer indexes of moved out voxels are allocated to newly entered voxels and initialized to log-odds

_8-



notation of unknown probability, zero as shown in Figure 4. Through this, grid map update according to movement

of UAV can be performed with high speed.

3.3.2 Occupancy Update

We use 3D-LiDAR, which provides point measurements with low noise compared to vision and radar
sensors, to recognize the surrounding environment of UAV. In order to update measurements to occupancy grid,
a measurement flag grid that the size is same as occupancy grid is created to indicate the presence or absence of
measurement of each voxel. In the measurement flag grid, the voxel with the measurement is marked as occupied.
And we applying the ray-casting algorithm to the occupied voxels and voxels that passing by rays are marked as
free.

For each voxel of the occupancy grid, the occupancy probability is updated by using the marking of the

measurement flag grid. Since we use log-odds notations, we can simplify update equation 5 to equation 6.

P(Occiy)  P(OcCiy—s) P(0cc'|z,)
1—-P(Occky) 1—P(Occy_y) 1—P(0ccl|z,)

)

1(0cchy) = 1(Occe—y) + 1(0cct|zy) (6)

where zj, is measurement at time k, P(Occ,ilk_l) is predicted occupancy probability of voxel i at time k,
P(Occ,ilk) is occupancy probability posterior of voxel i at time k and P(Occ'|z,) means measurement

probability. The equation is:

; _ ( Pocc » If flag of voxel i is occupied
P(Occt|z) = { Dfree » if flag of voxel i is free @)

with p,c. and pgre. are constant parameters and it is recommended to set pyc. to more than 0.5 and pfre. to
less than 0.5.
Some voxels may not have any flags due to the influence of sensing field of view or interference from

other objects. In dynamic environment, voxels without sensor information couldn’t be guaranteed that the previous

_9.



occupancy probability is reasonable for present occupancy probability. Therefore, LDM that we proposed updates
these voxels using the survival probability so that the influence of the previous occupancy probability gradually

decreases over time. Now we update voxels that not have any flags by using equation 8.

l(Occ,iclk) = l(Occ,iqk_l) - P} (8)

where, P! < 1 is survival probability that the state of voxel i can be remained. If a lot of time passes without
sensor measurement, log-odds notation of occupancy probability of voxel is converged to 0, which is the middle
of free and occupied state.

Survival probability is set differently for each voxel in consideration of occupancy grid of time k — 1 and
flag grid of current time. Voxels that not have any flags are divided into three cases. First, the voxels that are
occupied by a static objectat k — 1 time. In this case, it can be said that the occupancy probability of these voxels
is the same as before because they are occupied by the same object even after time passes. Therefore, if the velocity
of avoxel at k — 1 time is less than the threshold velocity, it is determined that the voxel is occupied by a static
object and the P} issetto 1.

Except for the above case, voxels can be divided into the case where they are located outside the sensor
range and the part of the voxels where they are inside the sensor range but interfered by other objects. In the
former case, the current situation is unknown due to the hardware limitation of the sensor, so all voxels in this
case have the same P} < 1. In the latter case, different P! is determined according to the distance from the object
causing the interference. The distance close to the interfering object is more likely to be occupied by the object
due to the effect of the object's thickness, motion, etc., but this decreases as the distance increases. Therefore, for
voxels passing by extending the ray between the voxel occupied by the interference object(same as occupied flag
voxel) and the sensor origin to the end of the map, voxels at a certain distance from the occupied flag voxel have

high P}, and subsequent voxels are set so that P! decreases in inverse proportion to the distance.

-10-



3.3.3 Particle Update

The reliability of the prediction of particle is high if the occupancy probability of the voxel that the
predicted particle is located is high. Therefore, the weight of the particle is updated using the occupancy

probability updated to the current measurement. Particle update equation is:
wi=wi_, +P (OCclilk) , 9

where wj is weight of particle i attime k and j is index of voxel that particle i is located.
We can express state of voxel using particles. Velocity of each voxel is expressed as the weighted average

of particles in each voxel:

n i i

j i=1 Wk " Vi

= Csir) 1o
1=

where, V;(j = (VX ] Vij VZ ,]() means velocity of voxel j, n is the number of particles in voxel j and v} is
velocity of particle i. In this process, some occupied voxels may not be properly updated due to insufficient

number of particles. Therefore, to prevent this, add particles to occupied voxels that not enough particles located.
The position of new particles, Xfmew~U (—g,g) (r=(r,r, 1), r is voxel resolution) is uniform distribution
within the voxel and velocity is:

Vlic,new = ij t+o (11)

with 0~N(0,X) is zero mean normal distribution noise with covariance X. The weight of each particle, W};’new,

is set as P(Occ,{lk) where j is voxel where particle i is located.

S11 -



The last part of update process, weight of particles is normalized and equation is:

; 1 ;
Wi =—- Wy , (12)
Hi
where p; is normalization factor that:
N
o=y wi (13)
i=1

with N is number of total particles.

3.4 Resampling

The total number of particles has changed due to the particles deletion or addition through the prediction
and update process. Therefore, to keep the number of particles as same as initial state, resampling process is
essential. The resampling sequence is as follows. First, a discrete distribution is created based on the weight of
particles, and a particle is randomly selected using this distribution and added to the new particle array. This is
done until the size of the new array becomes Nj,;:, which is the initial number of particles. Through this, particles

can be selected in proportion to the weight, and therefore, more particles can be placed in occupied voxels.

-12-



3.5 Voxel Clustering

Objects with different states are clustered using the occupancy probability of the voxels. We consider the
connectivity between 26-neighborhood voxels for only voxels with an occupancy probability higher than the
threshold. The position of each cluster is expressed as the average value of the voxels included in the cluster.

Velocity of each cluster is expressed as weighted average of particles existing in the cluster,

n i i
Vcluster,j _ Zi:l Wi - Vi (14)
k - yn wi
i=1"k
where V,flusrer'j is velocity of cluster j attime k, n is the number of particles in cluster j. From this process,

grid voxels included in each cluster and the velocity of the cluster are obtained.

After clustering, particles located in the clusters additionally adjust the velocity. We can know the velocity
of each cluster, grid voxels and particles corresponding to the cluster. Among the resampled particles, they are
located in the same cluster, but the velocity can be very different. Therefore, the velocity of these particles is

readjusted using the velocity of the cluster. The equation is

V,l; — chluster,j (15)

where deuSter'j is velocity of cluster j where particle i is located.

-13-



IV. Evaluation

To evaluate LDM algorithm, we build a testbed in both simulation and outdoor UAV with LiDAR sensor.

Occupancy grid and estimated velocity accuracy is evaluated in various scenarios.

4.1 Simulation

4.1.1 Simulation Setup

Simulation constructed a virtual environment using V-REP simulator. We created a number of static and
dynamic objects in a virtual space and constructed a virtual UAV equipped with 3D LiDAR. LDM algorithm is
implemented with C++ based ROS node. UAV position, orientation and LiDAR sensor data of V-REP are
communicated to the LDM algorithm node as a ROS topic using V-REP-ROS communication node. The
parameters for proposed LDM algorithm are initialized before activate UAV. Ny,;;, which is the initial number of
particles is set to 200000, resolution of voxel is set to 0.15m and number of grid voxel is 32768(323). p,. and
Dfree are setin the same manner as in [9] and [11].

To evaluate the occupancy probability and estimated velocity of LDM, we generated the corresponding
ground truth values. For evaluation of the scenarios which dynamic obstacles are exist, a ground truth grid map is
created based on the current position of the obstacle for every time. By comparing the occupancy probability with

this, we define an evaluation indicator:

Zt Xnumber

Occupancy Grid Accuracy(%) = Zt—D ,

(16)

with X, umper 1S number of voxels matched to the same state({Occupied, Free}) by comparing ground
truth and occupancy grid of LDM, D is number of voxels at onetime step and t is number of time step. We also
know the ground truth velocity of each object in the simulation, so we compared this value with the estimated
velocity of each cluster. We created various scenarios with dynamic and static obstacles through simulation and

measured the accuracy of LDM algorithm. The scenarios are:

® Scenariol: Dynamic obstacles and UAV flying
® Scenario2: Static obstacles and UAV flying

® Scenario3: Dynamic and static obstacles and UAV flying
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Figure 5. Simulation scenarios. Left image is scenariol, middle image is scenario2 and right image is scenario3.
The blue obstacles are static obstacles and green obstacles are static obstacles. The black arrows are trajectory of
dynamic obstacles.

4.1.2 Occupancy Grid Accuracy

Scenario 1 Scenario 2 Scenario 3
Algorithm Proposed [11] Proposed [11] Proposed [11]
Occupancy Grid Accuracy 99.55% 99.49% 99.22% 99.26% 99.50% 99.48%
Number of casel false voxels 29355 40215 65034 57853 44520 49506
Number of case? false voxels 148406 158700 241245 233250 150593 154824

Table 1. Occupancy Grid Accuracy of each scenario. The number of casel false voxels means the number of false
expressed voxels that the ground truth is occupied but expressed as free. The number of case2 false voxels means
the number of false expressed voxels that the ground truth is free but expressed as occupied.

We evaluate occupancy grid accuracy of proposed LDM and circular buffer based grid map in [11]. And
also we measure the number of false expressed voxels divided into two cases. Casel means that the ground truth
is occupied but expressed as free, and case2 means that the ground truth is free but expressed as occupied.

Compared with [11], proposed LDM predicts occupancy probability by using velocity of clusters and Table
1 shows the effect of these approaches. In scenario 1 where there are dynamic obstacles, the number of casel and
case? false voxels of proposed algorithm less than that [11]. This is because the accumulation of the occupancy
probabilities continued more rapidly by the prediction of the occupancy probability using the predicted velocity
of the dynamic obstacle. Therefore, proposed algorithm provides more accurate representation of free space by
decrease the number of casel false voxels and also represents occupied space better.

In scenario 2, which is composed of only static obstacles, the accuracy of proposed algorithm is slightly
lower. Proposed algorithm applies the survival probability to voxels without measurement due to object
interference or sensor field of view. On the other hand, [11] keep the previous occupancy probability of not

observed voxels. Therefore, it can be seen that [11] is more advantageous in a static environment, but it is not
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appropriate to say that it is advantageous even in general scenarios involving dynamic obstacles such as scenario
3, because the accuracy of proposed algorithm is slightly higher. The average of total computation time of

proposed LDM is 98ms with 200000 number of particles and 32768(32%) number of voxels.

4.1.3 Velocity Estimation

To evaluate estimated velocity from proposed algorithm, we compared velocity of dynamic and static
obstacles with ground truth. There are many algorithms that estimate velocity in 2D grid, but in 3D grid, there is
no velocity estimation with voxels for local grid map. So, we used a method that applied the particle filter based
velocity estimation part of our proposed algorithm to the occupancy grid map of [11] as a comparison algorithm
of proposed algorithm, and this is expressed as ‘[11] with PF’ in this evaluation.

Figure 6 shows the absolute value of the estimated velocity error of a static obstacle. The velocity
estimation of proposed algorithm is more accurate for static obstacles in almost all times compared to [11] with
PF. The average velocity error of proposed algorithm is 0.009m/s, while [11] with PF showed an average velocity
error of 0.019m/s.

Figure 7, 8 and 9 show the result of velocity estimation of dynamic obstacle. The measured obstacle moved
only x and y directions. The time for the estimated velocity to reach the ground truth velocity of the dynamic
obstacle is similar between proposed LDM and [11] with PF. However, in the case of [11] with PF, the estimated
velocity is not constant, whereas in the case of proposed LDM, the estimated velocity is almost similar to the
ground truth velocity and is estimated at a constant. The average velocity error of proposed LDM is 0.12m/s,

while [11] with PF shows 0.15m/s average velocity error.
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Frame Number

_______ [11] with PF

Proposed

Figure 6. Estimated velocity error of static obstacle. Dotted line is [11] with PF method and solid line is proposed
LDM generation algorithm.
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Figure 7. Estimated x-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with
PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth.
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Figure 8. Estimated y-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with
PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth.
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Figure 9. Estimated z-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with
PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth.
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4.2 Outdoor UAV Experiment

4.2.1 Experimental Setup

Figure 10. The structure of implemented UAV. This consists of LIDAR, onborad PC, GPS, IMU, flight controller
and battery.

We implement the hardware and software system for outdoor UAV to evaluate proposed LDM algorithm.
as shown in Figure 10. As the body frame, Matrice 100, which includes GPS, IMU and flight controller, is used.
Ouster 16-channel 3D LiDAR is used as a sensor to recognize the flying environment. Jetson TX2 board is used
to acquire sensor data and run the algorithm, and an extra battery is additionally installed to operate board.
Proposed LDM algorithm implementation is same as simulation’s one.

The evaluation is conducted in two scenarios. Scenario 1 is a scenario consisting of 2 moving people and
1 stationary person, and Scenario 2 is a situation where the UAV and the person move in the same direction as

shown in figure 11.

y y
—— a
Pegn 2
UAV ®
X x Person 1
® x UAV
Person 1 x
Person 3
< Scenario 1> < Scenario 2 >

Figure 11. Scenarios of outdoor UAV experiment. In scenario 1, UAV is stopped and there are three people. In
scenario 2, UAV and one person move same direction.
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4.2.2 Experiment Results

L7 N
[ &

- 4

Persoir i —

Figure 12. Snapshots of proposed LDM for scenario 1 of outdoor UAV experiment. Personl is static obstacle that
no moved, person2 and 3 are moved to each other. The colored points represent LIDAR measurements, and only
occupied voxels among all voxels are visualized. The color of each voxel means the cluster number and the
direction of the velocity of each voxel is marked with a red arrow.

Figure 12 shows part of the result of proposed LDM. For the experiment, we created an environment with
one static obstacle (Personl) and two dynamic obstacles (Person2 and Person3). Among the dynamic obstacles,
Person2 moves to Person3 (+x direction) and Person3 moves to Person2 (-x direction). When each other reaches
the other’s starting position, they come back to their own starting position. Interference of Person3 by Person2
occurs in image 3 in Figure 12, but it is not lost the cluster because of occupancy prediction. It can be seen that
the velocity direction is estimated according to the moving direction of the dynamic objects.

Figures 13, 14 and 15 show the velocity, which are estimated by proposed LDM, of obstacles in scenario
of Figure 12. Figure 13 is the estimated velocity of static obstacle (Personl). The proposed LDM shows an error
of up to 0.05m/s in all directions for the estimated velocity of a static obstacle. Figure 14 represent the estimated
velocity of Person2 and Figure 15 represent the estimated velocity of Person3. From 91 to 181 frames, when
Person2 moves in the +x direction, we can see that Person3 moves in the —x direction. And it is also seen that

after frame 181, these peoples are return to their starting points.
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Figure 13. Estimated velocity of static obstacle in Figure 12.

0.5

(syur) £)100[2 A pajewnsy
S

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281
Frame Number

Figure 14. Estimated velocity of dynamic obstacle that started at upper left (Person2) in Figure 12.
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Figure 15. Estimated velocity of dynamic obstacle that started at lower right (Person3) in Figure 12.
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Figure 16. Snapshots of proposed LDM for scenario 2 of outdoor UAV experiment with dynamic obstacle. In this
scenario, UAV and obstacle are moving same direction and the big blue arrow is the direction of UAV and obstacle.
The colored points represent LIDAR measurements, and only occupied voxels among all voxels are visualized.
The color of each voxel means the cluster number and the direction of the velocity of each voxel is marked with
ared arrow.

Figure 16 shows another scenario for test the proposed LDM and result of it. In this scenario, UAV and an
obstacle are moving same direction always. In image 1, 2, 3 of Figure 16, UAV is moved to the +y direction and
obstacle is also moved in the same direction. In image 4 of Figure 16, UAV is moved to the —y direction and
obstacle is also moved. We can see that the direction of the obstacle and the direction of estimated velocity of the

obstacle are the same.

V. Conclusions

We proposed LDM generation algorithm that represents a local area around the UAV using 3D
occupancy grid and object clusters. Proposed LDM provides a 3D occupancy grid map suitable for UAVs that are
considering dynamic obstacles. In addition, it provides object-level state information so that the movement of
obstacles can be predicted and avoided. By providing grid-level and object-level information at the same time, it
can be used in many collision avoidance navigation algorithms.

However, since the calculation time approaches 100ms, it may be difficult to use in real time when the
size of the grid map increases. So, it is necessary to improve the calculation time by applying parallel processing.

There is also a need to further improve the accuracy of the estimation velocity.
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