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ABSTRACT 

In recent years, researches for perception of the flight environment and collision avoidance control have 

been actively conducted for the safe navigation for unmanned aerial vehicles (UAVs) used in various fields 

such as surveillance, agriculture, transportation, rescue and military. Accurate and real-time perception of the 

surrounding environment, such as the free area and the recognition of dynamic and static obstacles, is essential 

for path planning and control for navigation to avoid collision. The perception system of the UAV needs to 

recognize information such as the position and velocity of all objects in the surrounding local area regardless of 

the type of the object. At the same time, a probability based representation taking into account the noise of the 

sensor is also essential. In addition, a software design with efficient memory usage and operation time is 

required in consideration of the hardware limitations of the UAVs. 

In this paper, we propose a 3D Local Dynamic Map(LDM) with essential elements of the aforementioned 

UAV perception system. The proposed LDM uses a circular buffer as a data structure to ensure low memory 

usage and fast operation speed. Probability based occupancy map is created using sensor data, and the position 

and velocity of each object are calculated through clustering between grid voxels using this occupancy map and 

velocity estimation based on particle filter. The objects are predicted using the position and velocity of each 

object, and this is reflected in the occupancy map. This process is continuously repeated, and the flying 

environment of the UAV can be expressed in a three-dimensional grid map and the state of each object. 

For the evaluation of the proposed LDM, we constructed a simulation environment and the UAV for 

outdoor flying. In the simulation, multiple environments with dynamic and static obstacles are created, and the 

UAV equipped with a virtual LiDAR sensor is created in those situations. The UAV for outdoor flying is 

constructed with a LiDAR sensor and computing board for sensor data processing and LDM algorithm running. 

As an evaluation factor, the occupancy grid accuracy is evaluated, and the ground truth velocity and the 

estimated velocity are compared. 
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Ⅰ. Introduction   

In recent years, the use of unmanned aerial vehicles (UAVs) has increased significantly in various fields, 

including surveillance, agriculture, transportation, rescue and military [1–5]. Accordingly, for safe UAV 

navigation that avoid collisions, researches on perception of flight environments such as object detection, tracking 

and mapping are actively conducted [6–10]. For planning and control for safe UAV navigation, accurate and real-

time perception of the surrounding environment such as occupied and free areas, dynamic and static obstacles are 

essential. We believe that the following three are essential considerations for the perception system for safe 

navigation of UAVs. 

 

 It is necessary to know the state such as position and velocity for all objects existing in a local area around 

the UAV regardless of the type of object. When the UAV is flying, it is necessary to distinguish between 

places where collisions may occur and not. And further, in the case of dynamic objects, we need to predict 

the motion of objects and avoid them. Therefore, the current position and velocity of objects in the 

surrounding 3D local area of UAV are essential factors that must be recognized. 

 Probabilistic representation of the surrounding environment which considering the noise of the sensor is 

needed. We can recognize the surrounding environment through sensors such as LiDAR, camera, and 

radar. However, since sensor data always has noise, it must be expressed as a probabilistic expression 

that considers sensor noise like sensor noise models. This can further be useful for integrating different 

sensors. 

 The limit of hardware system of UAV should be considered when configuring the UAV’s perception 

system. Compared to other mobility platforms, UAV has a relatively limited payload weight. Due to this, 

the usable sensors and computing boards are limited. Therefore, we need to build a software with efficient 

memory and execution time within the limited hardware situation. 

 

As a perception system, Occupancy Grid Map (OGM) represents an environment by using probabilistic 

grid cells. OGMs discretize the space into grid cell space to improve memory efficiency and represent occupancy 

probability of each cell by using sensor noise model. [9] extended this to 3D space and made it possible to apply 

OGM for UAVs. However, since most OGMs are used as a prior map of wide areas for the purpose of global 

mapping or SLAM, it couldn’t be guaranteed that memory usage and computation time are used in real-time. As 
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UAVs have limited hardware specifications that can be implemented, we need to reduce memory usage and 

computational load by limiting the perception area to only adjacent surround area of the UAV. [11] proposed an 

occupancy grid map using a circular buffer for this purpose. Occupancy map of [11] is limited only for a local 

area around the current UAV location for efficiency and it is suitable for UAV. However, it is still regrettable that 

[11] does not have object-level expressions such as the position and velocity of each object which are useful for 

navigation. 

Most of object-level perception algorithms are based on deep learning approach such as [10,12,13]. In 

recent years, many studies have been continuously conducted, and object recognition and classification are 

performed using camera and LiDAR. However, deep learning based algorithms can recognize only pre-trained 

objects. In the case of autonomous vehicles, the objects that can appear on the road are limited, but since UAVs 

do not have the concept of a driving road, a wide variety of objects can appear, so it is difficult to fully recognize 

the surrounding environment only with deep learning approach. In addition, it requires vast amounts of training 

data, but UAVs’ flying data is insufficient, making it difficult to apply. Therefore, an additional method is needed, 

and OGMs are appropriate for perception system for collision avoidance navigation of UAVs.  

As mentioned above, the limitation of OGM is no representation of object-level state. So, OGM that 

contains object-level representation can break the limitation and Occupancy Grid Filter(OGF) algorithms such as 

[14–16] are most similar to this purpose. OGF expresses the occupancy and velocity of each cell as probability.  

Furthermore, [17,18] calculated the position and velocity of each object cluster through clustering and tracking 

between cells. However, these algorithms are studied for autonomous vehicles so they are conducted in 2D space. 

For UAVs, [19] expresses even the dynamic situation by utilizing the Bin-occupancy filter for the local area around 

the UAV, but the computational load is heavy. 

In this paper, we propose an algorithm for 3D Local Dynamic Map(LDM) generation that includes 

occupancy grid map and object state that position and velocity with reduced computation load considering the 

hardware limitations of UAVs. We use circular buffer based mapping algorithm from [11] to reduce used memory 

and computation time. Occupancy probability of grid map is predicted by using previous state of objects and 

updated by using sensor measurement of current time. Using this occupancy grid, occupied area and velocity of 

each object are obtained through particle filter based velocity estimation and clustering. We evaluate proposed 

LDM algorithm with ground truth of occupancy grid map and state of objects such as position and velocity in 

simulation. In addition, it is also tested and evaluated using an outdoor UAV composed of LiDAR sensor and 

onboard PC. 
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This paper is structured as follows. Section 2 describes related works of LDM. Section 3 explains LDM 

algorithm that we proposed, and evaluation of algorithm is described in section 4. Finally, section 5 conclude the 

paper. 

 

 

Ⅱ. Related Works 

OGM is an algorithm that represents the surrounding environment for safe navigation. Various sensors 

such as a sonar sensor, LiDAR, RGB-D camera are used and applied to various platforms such as mobile robot 

and autonomous vehicle, [20–24]. However, these OGMs express the environment in two dimensions, [9] makes 

3D grid map by using octree data structure to reduce memory usage and computation time. [25,26] use Octomap 

as a perception system for 3D Navigation of UAV. However, OGMs have weakness in update speed and prediction 

for dynamic objects because they accumulate measurements and shows only the occupancy probability of current 

state.  

[14] proposed one of the OGF, Bayesian Occupancy Filter (BOF), which extended OGM to a 4D-grid that 

consists of velocity probabilities of each occupancy grid cell to compensate for the weaknesses of OGM that can 

only consider occupancy. In BOF, the state of each cell is predicted using the previous occupancy and velocity 

probability. Through this, a corresponding grid map is created for dynamic objects, but there is an inefficient 

aspect of having a velocity grid for all cells include free cells. 

[16] and [15] applied particle filter to BOF to solve the above inefficient problem, and expressed the 

velocity of each cell as particle distribution. In addition, the cell is divided into static, dynamic and free, and the 

efficiency of calculation is improved by allocating and removing particles. 

The aforementioned OGF algorithms express the occupancy probability and velocity of a grid cell, but 

these are all two-dimensional representations and are not suitable for 3D navigation of UAVs. [19] creates 3D 

grid map for a local area around the UAV to avoid collision based on bin-occupancy filter which predicts the 

movement of particle in each cell. However, it is limited in use due to insufficient evaluation of the accuracy of 

mapping and the heavy computational load. [27,28] use Euclidean Signed Distance Fields (ESDF) grid map as 

3D representation for UAV navigation. These obtain the shortest distance to the occupied voxel and obtains the 

possible collision distance in real-time. However, these algorithms have no representation of velocity field or 

object state so the trajectory of dynamic objects cannot be predicted. 
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[11] proposed an algorithm that creates a circular buffer based local grid map for UAV replanning. The 

data structure of occupancy grid is circular buffer to reduce computation time. We take the circular buffer data 

structure proposed by [11] for our proposed LDM. However, unlike [11], we perform the occupancy prediction 

process to respond to dynamic objects.  

Clustering of occupancy grid has been proposed for a planning technique that using object recognition 

information. In [29], the states of grid cells are determined through comparison between cell occupancy 

probability of the current and previous time, and cell clustering is applied using these states. [18] project the 

clustering result from superpixel approach, which pixel clustering algorithm, to grid space and assign the clusters 

to each cell. [17] applied clustering and tracking between cells using BOF grid. 

 

 

Ⅲ. Local Dynamic Map(LDM) Generation 

 

 

Figure 1. An overview of proposed Local Dynamic Map algorithm. 

 

We propose an algorithm for Local Dynamic Map(LDM) generation that expresses the surrounding 

environment by occupancy grid and obstacle clusters. Proposed algorithm represents the space that occupied by 

obstacles in the local area around the UAV as occupancy grid and at the same time recognizes the obstacles’ states 

such as position and velocity. Occupancy grid is predicted by using previous state of objects and updated by using 

sensor measurement of current time. To extract obstacle state, LDM use grid voxel clustering and particle filter 

based velocity of cluster estimation. As shown in Figure 1, the overall process proceeds in the order of prediction, 

update, resampling, and clustering. In this section, the main states of LDM are defined and then each process is 

described in detail. 
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3.1 LDM State Representation 

In LDM, the environment around the UAV is divided into 3-dimensional grid composed of voxels. Each 

voxel in the form of a cube expresses occupancy and dynamic state by using the occupancy probability and 

velocity. Occupancy probability is stored as log-odds notation as shown in equation 1 for computational benefits. 

 

𝑙(𝑂𝑐𝑐𝑘
𝑖 ) =  𝑙𝑜𝑔 (

𝑃(𝑂𝑐𝑐𝑘
𝑖 )

1 − 𝑃(𝑂𝑐𝑐𝑘
𝑖 )

),                        (1) 

 

with 𝑙(𝑂𝑐𝑐𝑘
𝑖 ) is log-odds notation of voxel 𝑖 and 𝑃(𝑂𝑐𝑐𝑘

𝑖 ) is occupancy probability of it. 

 

In order to recognize only the local area around the UAV, the grid map region continuously moves based 

on the location of the UAV. The easiest way to do this is to match center of grid map region with the location of 

the UAV. However, it requires occupancy probability update process for whole voxels every time when the UAV 

moves. And in most cases, the accuracy of occupancy probability may be lost due to overlap between voxels. To 

prevent this, we update the grid map region so that the UAV is located only inside the center grid voxel of the 

map. Due to the movement of UAV, if the UAV located voxel moves ∆𝚾 = (∆X,∆Y,∆Z), where X, Y, Z are 

multiples of voxel resolution from the previous UAV located voxel(same as center grid voxel), the grid map region 

moves by the same distance so that the UAV located voxel becomes the center grid voxel. Also, the rotation of the 

grid map due to the rotation of the UAV is not considered, and the orientation of the map is fixed as the orientation 

of the initial. Therefore, since the grid map region moves only in multiples of the voxel resolution, the overlap 

between voxels can be blocked. Figure 2 describes it with example situation. 
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Figure 2. An example of update process of grid map in proposed LDM. For visualization, we reduce dimension 

to 2D. Left case is the example of overlap situation when update grid map region depends on UAV position and 

orientation. Right image is that update process that used in our LDM. If UAV located voxel moves (∆X, ∆Y) as 

shown in right image, grid map region is also moves (∆X, ∆Y). LDM prevent overlap issues by using this update 

process. 

 

The estimated velocity of each voxel is expressed as a set of particles. The particles have their position 

and velocity. To represent the reliability of the state of particle that position and velocity, each particle has the 

weight. The representation of particle state is: 

 

𝐱𝑖 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) , 𝐯𝑖 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) ,                    (2) 

 

where 𝐱𝑖 is position of particle 𝑖 and 𝐯𝑖 is velocity of particle 𝑖. Obstacles can move randomly, so we have to 

predict the probability of movement in all possible directions. Therefore, we use weighted particles as a probability 

of obstacle state to recognize the velocity and position of each obstacle. 

The particles of LDM are initialized so that it is evenly distributed over the entire grid map region. So, the 

position of particle 𝑖, 𝐱𝑖~𝑈(−
M

2
,

M

2
) is uniform distribution over the grid map region with M = (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧) 

is size of grid map region. The velocity of particle 𝑖, 𝐯𝑖~𝑁(0, Σ) is normal distribution with covariance Σ. The 

weight of each particle, 𝑤𝑖 , is set to the same value. 
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3.2 Prediction  

Because traditional occupancy grid measurement update methods such as [9,11] are based on accumulation 

of measurements, reaction of dynamic obstacles is slow in a dynamic environment. To prevent this, occupancy 

prediction is applied using the clustering result. Through the clustering to be described in 3.5, we collected the 

clusters with their corresponding voxels and the velocity of clusters. By using this, the current moving position of 

clusters are predicted and the corresponding occupancy probability can be predicted as described in Figure 3. 

 

Figure 3. Example of occupancy prediction. The gray color cells are occupied cells and the part where the border 

is drawn with a thick line is one cluster. In left image, red dots are position of each cluster, red arrows are velocity 

of each cluster. The end of the arrow is the predicted position of each cluster. In this case left upper cluster is 

predicted to right upper direction and right lower cluster is predicted to right lower direction. The occupancy 

probabilities are moved as same direction of clusters. 

 

Particles that distributed over the grid map region are predicted using prediction model from [16]. 

 

𝐯𝑘
𝑖 = 𝐯𝑘−1

𝑖 +  𝜎 , 𝐱𝑘
𝑖 = 𝐱𝑘−1

𝑖 + 𝑑𝑡 ⋅ 𝐯𝑘
𝑖  ,                   (3) 

 

where 𝑑𝑡  is time difference between time 𝑘  and time 𝑘 − 1 , 𝜎~𝑁(0, Σ)  is zero mean normal distribution 

noise with covariance Σ. If the predicted location of the particle is outside of grid map, it is removed and is not 

used in the subsequent processes. 
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3.3 Update 

3.3.1 Movement Update 

 

Figure 4. Movement update process. For visualization, we reduce the dimension to 2-dimension. The number of 

each voxel is index of circular buffer array. At time 𝑘 − 1, the voxel that index of the circular buffer equals 18, 

is the origin voxel of grid voxel coordinate. And the offset voxel 𝑜𝑘−1 = (2, 2), and 𝑋𝑘−1
𝑘−1 = (2,2) where the 

UAV located. At time 𝑘, after the UAV moved, the voxel where the UAV located relative to grid voxel coordinate 

at time 𝑘 − 1 , 𝑋𝑘
𝑘−1 = (3,3) . The offset voxel is updated as 𝑜𝑘 = 𝑜𝑘−1 − (𝑋𝑘

𝑘−1 − 𝑋𝑘−1
𝑘−1) = (1,1) . Now the 

voxel that index of the circular buffer equals 24, is the origin voxel of grid voxel coordinate. By update offset and 

grid voxel coordinate, the voxels in green zone are now out of the grid map region and voxels in blue zones are 

newly entered the grid map region. To reduce the time that used by data update, the circular buffer array indexes 

of green zone voxels such as 3, 15, 16, 23 are allocated to blue zone voxels with 0 value. 

 

We use circular buffer data structure of [11] for our grid map data structure. It is composed of a circular 

buffer array that stores occupancy probability of each voxel in 3D grid space and offset voxel 𝑜 = (𝑜𝑥 , 𝑜𝑦, 𝑜𝑧) 

indicating the grid voxel that corresponding to first index of circular buffer array. To update grid map region, the 

offset voxel is updated using equation 4. 

 

𝑜𝑘 = 𝑜𝑘−1 − (𝑋𝑘
𝑘−1 − 𝑋𝑘−1

𝑘−1),                          (4) 

 

with 𝑋𝑘
𝑘−1 = (𝑖𝑥𝑘 , 𝑖𝑦𝑘 , 𝑖𝑧𝑘) means grid voxel where UAV located at time 𝑘 relative to grid voxel coordinate at 

time 𝑘 − 1 and 𝑜𝑘 means the offset voxel at time 𝑘. In this process, voxels that move out of grid map region 

are cleaned and voxels that included newly to the grid map region are initialized. To do this simply and fast, 

circular buffer indexes of moved out voxels are allocated to newly entered voxels and initialized to log-odds 
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notation of unknown probability, zero as shown in Figure 4. Through this, grid map update according to movement 

of UAV can be performed with high speed. 

 

3.3.2 Occupancy Update 

We use 3D-LiDAR, which provides point measurements with low noise compared to vision and radar 

sensors, to recognize the surrounding environment of UAV. In order to update measurements to occupancy grid, 

a measurement flag grid that the size is same as occupancy grid is created to indicate the presence or absence of 

measurement of each voxel. In the measurement flag grid, the voxel with the measurement is marked as occupied. 

And we applying the ray-casting algorithm to the occupied voxels and voxels that passing by rays are marked as 

free. 

For each voxel of the occupancy grid, the occupancy probability is updated by using the marking of the 

measurement flag grid. Since we use log-odds notations, we can simplify update equation 5 to equation 6. 

 

𝑃(𝑂𝑐𝑐𝑘|𝑘
𝑖 )

1 − 𝑃(𝑂𝑐𝑐𝑘|𝑘
𝑖 )

=
𝑃(𝑂𝑐𝑐𝑘|𝑘−1

𝑖 )

1 − 𝑃(𝑂𝑐𝑐𝑘|𝑘−1
𝑖 )

⋅
𝑃(𝑂𝑐𝑐 

𝑖|𝑧𝑘)

1 − 𝑃(𝑂𝑐𝑐 
𝑖|𝑧𝑘)

 ,                (5) 

 

𝑙(𝑂𝑐𝑐𝑘|𝑘
𝑖 ) = 𝑙(𝑂𝑐𝑐𝑘|𝑘−1

𝑖 ) +  𝑙(𝑂𝑐𝑐 
𝑖|𝑧𝑘) ,                     (6) 

 

where 𝑧𝑘  is measurement at time 𝑘 , 𝑃(𝑂𝑐𝑐𝑘|𝑘−1
𝑖 )  is predicted occupancy probability of voxel 𝑖  at time 𝑘 , 

𝑃(𝑂𝑐𝑐𝑘|𝑘
𝑖 )  is occupancy probability posterior of voxel 𝑖  at time 𝑘  and 𝑃(𝑂𝑐𝑐 

𝑖|𝑧𝑘)  means measurement 

probability. The equation is: 

 

𝑃(𝑂𝑐𝑐 
𝑖|𝑧𝑘) =  { 

𝑝𝑜𝑐𝑐  ,   if flag of voxel 𝑖 is occupied
𝑝𝑓𝑟𝑒𝑒  ,      if flag of voxel 𝑖 is free

             (7) 

 

with 𝑝𝑜𝑐𝑐  and 𝑝𝑓𝑟𝑒𝑒  are constant parameters and it is recommended to set 𝑝𝑜𝑐𝑐  to more than 0.5 and 𝑝𝑓𝑟𝑒𝑒  to 

less than 0.5. 

Some voxels may not have any flags due to the influence of sensing field of view or interference from 

other objects. In dynamic environment, voxels without sensor information couldn’t be guaranteed that the previous 
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occupancy probability is reasonable for present occupancy probability. Therefore, LDM that we proposed updates 

these voxels using the survival probability so that the influence of the previous occupancy probability gradually 

decreases over time. Now we update voxels that not have any flags by using equation 8. 

 

𝑙(𝑂𝑐𝑐𝑘|𝑘
𝑖 ) = 𝑙(𝑂𝑐𝑐𝑘|𝑘−1

𝑖 ) ⋅ 𝑃𝑠
𝑖                          (8) 

 

where, 𝑃𝑠
𝑖 < 1 is survival probability that the state of voxel 𝑖 can be remained. If a lot of time passes without 

sensor measurement, log-odds notation of occupancy probability of voxel is converged to 0, which is the middle 

of free and occupied state. 

Survival probability is set differently for each voxel in consideration of occupancy grid of time 𝑘 − 1 and 

flag grid of current time. Voxels that not have any flags are divided into three cases. First, the voxels that are 

occupied by a static object at 𝑘 − 1 time. In this case, it can be said that the occupancy probability of these voxels 

is the same as before because they are occupied by the same object even after time passes. Therefore, if the velocity 

of a voxel at 𝑘 − 1 time is less than the threshold velocity, it is determined that the voxel is occupied by a static 

object and the 𝑃𝑠
𝑖  is set to 1. 

Except for the above case, voxels can be divided into the case where they are located outside the sensor 

range and the part of the voxels where they are inside the sensor range but interfered by other objects. In the 

former case, the current situation is unknown due to the hardware limitation of the sensor, so all voxels in this 

case have the same 𝑃𝑠
𝑖 < 1. In the latter case, different 𝑃𝑠

𝑖  is determined according to the distance from the object 

causing the interference. The distance close to the interfering object is more likely to be occupied by the object 

due to the effect of the object's thickness, motion, etc., but this decreases as the distance increases. Therefore, for 

voxels passing by extending the ray between the voxel occupied by the interference object(same as occupied flag 

voxel) and the sensor origin to the end of the map, voxels at a certain distance from the occupied flag voxel have 

high 𝑃𝑠
𝑖 , and subsequent voxels are set so that 𝑃𝑠

𝑖  decreases in inverse proportion to the distance. 

 

 

 

 

 



- 11 - 

3.3.3 Particle Update 

The reliability of the prediction of particle is high if the occupancy probability of the voxel that the 

predicted particle is located is high. Therefore, the weight of the particle is updated using the occupancy 

probability updated to the current measurement. Particle update equation is: 

 

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖 + 𝑃 (𝑂𝑐𝑐𝑘|𝑘
𝑗

) ,                         (9) 

 

where 𝑤𝑘
𝑖  is weight of particle 𝑖 at time 𝑘 and 𝑗 is index of voxel that particle 𝑖 is located.  

We can express state of voxel using particles. Velocity of each voxel is expressed as the weighted average 

of particles in each voxel: 

 

𝑉𝑘
𝑗

= (
∑ 𝑤𝑘

𝑖𝑛
𝑖=1 ⋅ 𝐯𝑘

𝑖

∑ 𝑤𝑘
𝑖𝑛

𝑖=1

) ,                           (10) 

 

where, 𝑉𝑘
𝑗

= (𝑉𝑋𝑘
𝑗
, 𝑉𝑌𝑘

𝑗
, 𝑉𝑍𝑘

𝑗
) means velocity of voxel 𝑗, 𝑛 is the number of particles in voxel 𝑗 and 𝐯𝑘

𝑖  is 

velocity of particle 𝑖. In this process, some occupied voxels may not be properly updated due to insufficient 

number of particles. Therefore, to prevent this, add particles to occupied voxels that not enough particles located. 

The position of new particles, 𝐱𝑘,𝑛𝑒𝑤
𝑖 ~𝑈(−

𝐫

2
,

𝐫

2
)  (𝐫 = (𝑟, 𝑟, 𝑟)   𝑟  is voxel resolution) is uniform distribution 

within the voxel and velocity is: 

 

𝐯𝑘,𝑛𝑒𝑤
𝑖 = 𝑉𝑘

𝑗
+ 𝜎                              (11) 

 

with 𝜎~𝑁(0, Σ) is zero mean normal distribution noise with covariance Σ. The weight of each particle, 𝑤𝑘,𝑛𝑒𝑤
𝑖 , 

is set as 𝑃(𝑂𝑐𝑐𝑘|𝑘
𝑗

) where 𝑗 is voxel where particle 𝑖 is located.  
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The last part of update process, weight of particles is normalized and equation is: 

 

𝑤𝑘
𝑖 =

1

𝜇𝑘
⋅ 𝑤𝑘

𝑖  ,                              (12) 

 

where 𝜇𝑘 is normalization factor that: 

 

𝜇𝑘 = ∑ 𝑤𝑘
𝑖

𝑁

𝑖=1

 ,                               (13) 

 

with 𝑁 is number of total particles. 

 

 

3.4 Resampling 

The total number of particles has changed due to the particles deletion or addition through the prediction 

and update process. Therefore, to keep the number of particles as same as initial state, resampling process is 

essential. The resampling sequence is as follows. First, a discrete distribution is created based on the weight of 

particles, and a particle is randomly selected using this distribution and added to the new particle array. This is 

done until the size of the new array becomes 𝑁𝑖𝑛𝑖𝑡 , which is the initial number of particles. Through this, particles 

can be selected in proportion to the weight, and therefore, more particles can be placed in occupied voxels. 
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3.5 Voxel Clustering 

Objects with different states are clustered using the occupancy probability of the voxels. We consider the 

connectivity between 26-neighborhood voxels for only voxels with an occupancy probability higher than the 

threshold. The position of each cluster is expressed as the average value of the voxels included in the cluster. 

Velocity of each cluster is expressed as weighted average of particles existing in the cluster, 

 

𝑉𝑘
𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑗

= (
∑ 𝑤𝑘

𝑖𝑛
𝑖=1 ⋅ 𝐯𝑘

𝑖

∑ 𝑤𝑘
𝑖𝑛

𝑖=1

)                         (14) 

 

where 𝑉𝑘
𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑗

 is velocity of cluster 𝑗 at time 𝑘, 𝑛 is the number of particles in cluster 𝑗. From this process, 

grid voxels included in each cluster and the velocity of the cluster are obtained.  

After clustering, particles located in the clusters additionally adjust the velocity. We can know the velocity 

of each cluster, grid voxels and particles corresponding to the cluster. Among the resampled particles, they are 

located in the same cluster, but the velocity can be very different. Therefore, the velocity of these particles is 

readjusted using the velocity of the cluster. The equation is 

 

𝐯𝑘
𝑖 = 𝑉𝑘

𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑗
                              (15) 

 

where 𝑉𝑘
𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑗

 is velocity of cluster 𝑗 where particle 𝑖 is located. 
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Ⅳ. Evaluation 

To evaluate LDM algorithm, we build a testbed in both simulation and outdoor UAV with LiDAR sensor. 

Occupancy grid and estimated velocity accuracy is evaluated in various scenarios.  

 

4.1 Simulation 

4.1.1 Simulation Setup  

Simulation constructed a virtual environment using V-REP simulator. We created a number of static and 

dynamic objects in a virtual space and constructed a virtual UAV equipped with 3D LiDAR. LDM algorithm is 

implemented with C++ based ROS node. UAV position, orientation and LiDAR sensor data of V-REP are 

communicated to the LDM algorithm node as a ROS topic using V-REP-ROS communication node. The 

parameters for proposed LDM algorithm are initialized before activate UAV. 𝑁𝑖𝑛𝑖𝑡 , which is the initial number of 

particles is set to 200000, resolution of voxel is set to 0.15m and number of grid voxel is 32768(323). 𝑝𝑜𝑐𝑐  and 

𝑝𝑓𝑟𝑒𝑒  are set in the same manner as in [9] and [11]. 

To evaluate the occupancy probability and estimated velocity of LDM, we generated the corresponding 

ground truth values. For evaluation of the scenarios which dynamic obstacles are exist, a ground truth grid map is 

created based on the current position of the obstacle for every time. By comparing the occupancy probability with 

this, we define an evaluation indicator: 

 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝐺𝑟𝑖𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
∑ 𝑋𝑛𝑢𝑚𝑏𝑒𝑟

𝑡
 

∑ 𝐷𝑡
 

 ,                (16) 

 

with 𝑋𝑛𝑢𝑚𝑏𝑒𝑟  is number of voxels matched to the same state({Occupied, Free}) by comparing ground 

truth and occupancy grid of LDM, 𝐷 is number of voxels at onetime step and 𝑡 is number of time step. We also 

know the ground truth velocity of each object in the simulation, so we compared this value with the estimated 

velocity of each cluster. We created various scenarios with dynamic and static obstacles through simulation and 

measured the accuracy of LDM algorithm. The scenarios are: 

 

 Scenario1: Dynamic obstacles and UAV flying 

 Scenario2: Static obstacles and UAV flying 

 Scenario3: Dynamic and static obstacles and UAV flying 
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Figure 5. Simulation scenarios. Left image is scenario1, middle image is scenario2 and right image is scenario3. 

The blue obstacles are static obstacles and green obstacles are static obstacles. The black arrows are trajectory of 

dynamic obstacles. 

 

4.1.2 Occupancy Grid Accuracy 

 

 

Table 1. Occupancy Grid Accuracy of each scenario. The number of case1 false voxels means the number of false 

expressed voxels that the ground truth is occupied but expressed as free. The number of case2 false voxels means 

the number of false expressed voxels that the ground truth is free but expressed as occupied. 

 

We evaluate occupancy grid accuracy of proposed LDM and circular buffer based grid map in [11]. And 

also we measure the number of false expressed voxels divided into two cases. Case1 means that the ground truth 

is occupied but expressed as free, and case2 means that the ground truth is free but expressed as occupied.  

Compared with [11], proposed LDM predicts occupancy probability by using velocity of clusters and Table 

1 shows the effect of these approaches. In scenario 1 where there are dynamic obstacles, the number of case1 and 

case2 false voxels of proposed algorithm less than that [11]. This is because the accumulation of the occupancy 

probabilities continued more rapidly by the prediction of the occupancy probability using the predicted velocity 

of the dynamic obstacle. Therefore, proposed algorithm provides more accurate representation of free space by 

decrease the number of case1 false voxels and also represents occupied space better.  

In scenario 2, which is composed of only static obstacles, the accuracy of proposed algorithm is slightly 

lower. Proposed algorithm applies the survival probability to voxels without measurement due to object 

interference or sensor field of view. On the other hand, [11] keep the previous occupancy probability of not 

observed voxels. Therefore, it can be seen that [11] is more advantageous in a static environment, but it is not 
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appropriate to say that it is advantageous even in general scenarios involving dynamic obstacles such as scenario 

3, because the accuracy of proposed algorithm is slightly higher. The average of total computation time of 

proposed LDM is 98ms with 200000 number of particles and 32768(323) number of voxels. 

 

4.1.3 Velocity Estimation  

To evaluate estimated velocity from proposed algorithm, we compared velocity of dynamic and static 

obstacles with ground truth. There are many algorithms that estimate velocity in 2D grid, but in 3D grid, there is 

no velocity estimation with voxels for local grid map. So, we used a method that applied the particle filter based 

velocity estimation part of our proposed algorithm to the occupancy grid map of [11] as a comparison algorithm 

of proposed algorithm, and this is expressed as ‘[11] with PF’ in this evaluation.  

Figure 6 shows the absolute value of the estimated velocity error of a static obstacle. The velocity 

estimation of proposed algorithm is more accurate for static obstacles in almost all times compared to [11] with 

PF. The average velocity error of proposed algorithm is 0.009m/s, while [11] with PF showed an average velocity 

error of 0.019m/s.  

Figure 7, 8 and 9 show the result of velocity estimation of dynamic obstacle. The measured obstacle moved 

only x and y directions. The time for the estimated velocity to reach the ground truth velocity of the dynamic 

obstacle is similar between proposed LDM and [11] with PF. However, in the case of [11] with PF, the estimated 

velocity is not constant, whereas in the case of proposed LDM, the estimated velocity is almost similar to the 

ground truth velocity and is estimated at a constant. The average velocity error of proposed LDM is 0.12m/s, 

while [11] with PF shows 0.15m/s average velocity error. 

 

 

Figure 6. Estimated velocity error of static obstacle. Dotted line is [11] with PF method and solid line is proposed 

LDM generation algorithm. 
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Figure 7. Estimated x-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with 

PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth. 

 

 

Figure 8. Estimated y-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with 

PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth.  

 

Figure 9. Estimated z-direction velocity and ground truth velocity of dynamic obstacle. Dotted line is [11] with 

PF method, black solid line is proposed LDM generation algorithm and blue solid line is ground truth.  
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4.2 Outdoor UAV Experiment 

4.2.1 Experimental Setup   

 

 

Figure 10. The structure of implemented UAV. This consists of LiDAR, onborad PC, GPS, IMU, flight controller 

and battery. 

 

We implement the hardware and software system for outdoor UAV to evaluate proposed LDM algorithm. 

as shown in Figure 10. As the body frame, Matrice 100, which includes GPS, IMU and flight controller, is used. 

Ouster 16-channel 3D LiDAR is used as a sensor to recognize the flying environment. Jetson TX2 board is used 

to acquire sensor data and run the algorithm, and an extra battery is additionally installed to operate board. 

Proposed LDM algorithm implementation is same as simulation’s one. 

The evaluation is conducted in two scenarios. Scenario 1 is a scenario consisting of 2 moving people and 

1 stationary person, and Scenario 2 is a situation where the UAV and the person move in the same direction as 

shown in figure 11. 

 

Figure 11. Scenarios of outdoor UAV experiment. In scenario 1, UAV is stopped and there are three people. In 

scenario 2, UAV and one person move same direction. 
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4.2.2 Experiment Results   

 

Figure 12. Snapshots of proposed LDM for scenario 1 of outdoor UAV experiment. Person1 is static obstacle that 

no moved, person2 and 3 are moved to each other. The colored points represent LiDAR measurements, and only 

occupied voxels among all voxels are visualized. The color of each voxel means the cluster number and the 

direction of the velocity of each voxel is marked with a red arrow. 

 

Figure 12 shows part of the result of proposed LDM. For the experiment, we created an environment with 

one static obstacle (Person1) and two dynamic obstacles (Person2 and Person3). Among the dynamic obstacles, 

Person2 moves to Person3 (+x direction) and Person3 moves to Person2 (-x direction). When each other reaches 

the other’s starting position, they come back to their own starting position. Interference of Person3 by Person2 

occurs in image 3 in Figure 12, but it is not lost the cluster because of occupancy prediction. It can be seen that 

the velocity direction is estimated according to the moving direction of the dynamic objects. 

Figures 13, 14 and 15 show the velocity, which are estimated by proposed LDM, of obstacles in scenario 

of Figure 12. Figure 13 is the estimated velocity of static obstacle (Person1). The proposed LDM shows an error 

of up to 0.05m/s in all directions for the estimated velocity of a static obstacle. Figure 14 represent the estimated 

velocity of Person2 and Figure 15 represent the estimated velocity of Person3. From 91 to 181 frames, when 

Person2 moves in the +x direction, we can see that Person3 moves in the –x direction. And it is also seen that 

after frame 181, these peoples are return to their starting points. 
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Figure 13. Estimated velocity of static obstacle in Figure 12. 

 

 

Figure 14. Estimated velocity of dynamic obstacle that started at upper left (Person2) in Figure 12. 

 

 

Figure 15. Estimated velocity of dynamic obstacle that started at lower right (Person3) in Figure 12. 
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Figure 16. Snapshots of proposed LDM for scenario 2 of outdoor UAV experiment with dynamic obstacle. In this 

scenario, UAV and obstacle are moving same direction and the big blue arrow is the direction of UAV and obstacle. 

The colored points represent LiDAR measurements, and only occupied voxels among all voxels are visualized. 

The color of each voxel means the cluster number and the direction of the velocity of each voxel is marked with 

a red arrow. 

 

Figure 16 shows another scenario for test the proposed LDM and result of it. In this scenario, UAV and an 

obstacle are moving same direction always. In image 1, 2, 3 of Figure 16, UAV is moved to the +y direction and 

obstacle is also moved in the same direction. In image 4 of Figure 16, UAV is moved to the –y direction and 

obstacle is also moved. We can see that the direction of the obstacle and the direction of estimated velocity of the 

obstacle are the same. 

 

Ⅴ. Conclusions 

We proposed LDM generation algorithm that represents a local area around the UAV using 3D 

occupancy grid and object clusters. Proposed LDM provides a 3D occupancy grid map suitable for UAVs that are 

considering dynamic obstacles. In addition, it provides object-level state information so that the movement of 

obstacles can be predicted and avoided. By providing grid-level and object-level information at the same time, it 

can be used in many collision avoidance navigation algorithms.  

However, since the calculation time approaches 100ms, it may be difficult to use in real time when the 

size of the grid map increases. So, it is necessary to improve the calculation time by applying parallel processing. 

There is also a need to further improve the accuracy of the estimation velocity.  
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요 약 문 

무인항공기의 안전한 주행을 위한 로컬 동적 맵 작성 알고리즘 

최근 몇 년간 무인기는 정찰, 감시, 농업, 운송, 구조, 국방 등의 다양한 분야에서 사용이 크게 

증가하고 있다. 이에 따라 충돌을 회피하는 안전한 무인기의 주행을 위해 주행 환경의 인지, 

충돌 회피 제어와 관련된 연구도 활발히 이루어지고 있다. 충돌을 회피하는 주행에 대한 경로 

계획, 제어를 위해서는 주행 가능 영역, 동적 및 정적 장애물 인지 등 주변 환경에 대한 

정확하고 실시간 인지가 필수적이다. 무인기의 인지 시스템은 물체의 종류와 관계없이 주변 

로컬 영역에 존재하는 모든 물체의 위치 속도 등의 정보를 인지함과 동시에 센서의 노이즈를 

고려한 확률기반의 표현이 필요하다. 또한 무인기의 하드웨어적 한계를 고려하여 메모리 사용 

및 연산 시간이 효율적인 소프트웨어 설계가 필요하다. 

본 논문에서는 앞서 언급한 무인기 인지 시스템의 필수 요소들을 갖춘 3 차원 로컬 동적 맵을 

제안한다. 제안하는 로컬 동적 맵은 데이터 구조로 원형 버퍼를 활용하여 적은 메모리 사용량과 

빠른 연산속도를 확보한다. 센서 데이터를 활용하여 확률 기반의 누적 맵을 작성하며 이 누적 

맵을 이용한 그리드 셀 간 클러스터링과 파티클 필터 기반의 속도 추정을 통해 각 물체 별 위치 

및 속도를 연산한다. 각 물체 별 위치와 속도를 이용하여 이동할 위치를 예측하고 이를 기존 

누적 맵에 반영한다. 이 과정이 지속적으로 반복되어 무인기 주행 환경을 3 차원 그리드 맵과 

물체 별 상태로 표현할 수 있다. 

제안하는 로컬 동적 맵의 평가를 위해 우리는 시뮬레이션 환경과 실외 주행용 무인기를 

구성했다. 시뮬레이션에서는 동적 및 정적 장애물이 존재하는 여러 환경을 만들고 해당 

상황에서 가상의 라이다 센서가 장착된 무인기를 생성했다. 실외 주행용 무인기는 시뮬레이션과 

동일하게 라이다 센서를 장착하여 구성했다. 평가 지표로 실제 장애물 점유 영역에 대한 

정확성을 평가했고 실제 속도와 추정된 속도의 비교를 수행했다. 그 결과 속도 추정 결과를 

반영한 예측과정으로 인해 기존의 누적 맵 작성 방식에 비해 동적환경에서 더 정확한 그리드 

맵을 작성할 수 있었고 추정된 속도 또한 실제 속도와 유사한 것을 확인할 수 있었다.  

 

 

 

핵심어: 무인항공기, 로컬 동적 맵, 클러스터링, 확률기반 그리드 
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