

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Thesis
박사학위논문

An Effective and Efficient Method for
Tweaking Deep Neural Networks

Jinwook Kim (김진욱金珍旭)

Department of
Information and Communication Engineering

DGIST

2021

Ph.D. Thesis
박사학위논문

An Effective and Efficient Method for
Tweaking Deep Neural Networks

Jinwook Kim (김진욱金珍旭)

Department of
Information and Communication Engineering

DGIST

2021

Ph.D/IC
201142005

김진욱. Jinwook Kim. An Effective and Efficient Method for
Tweaking Deep Neural Networks. Department of Information and
Communication Engineering . 2021. 77 pages. Advisor Prof. Dae-
hoon Kim. Co-Advisor Prof. Min-Soo Kim.

Abstract

Today, training of deep learning models is conducted in the direction of learn-

ing using given training data and obtaining results with high overall accuracy for all classes for

the validation data. That is, even if the accuracy of specific classes is very poor, the optimiza-

tion proceeds in the direction of improving the overall accuracy by predicting correct answers

for as many samples as possible regardless of class. Even if additional training is performed to

improve a specific class having poor accuracy, the accuracy of each class fluctuates greatly as

the learning progresses. That is, even if training is stopped at any point, classes that are signif-

icantly less accurate than average accuracy occur. This is an inevitable problem with current

deep learning training methods. In particular, in applications where the accuracy of a specific

class is important, such as medical artificial intelligence systems, this problem can be fatal.

To solve this problem, we need a method to improve the accuracy of the specific target class,

which is important in the given application, while maintaining the overall accuracy.

The first part of this dissertation, we propose the Synaptic Join method that precisely

adjusts the accuracy of a specific class (target class) that the user wants to improve, rather

than performing additional learning on an already learned deep learning model. The proposed

synaptic join method finds active neurons that can improve the accuracy of the target class and

minimize the damage on the accuracy of non-target classes. The active neurons are connected

in the form of synapses to the output neurons to improve the target class. The proposed method

i

can tweak the original model according to the user’s request while maintaining the original

model as it is. Also, we introduce a technique that can quickly process synaptic join operations

on the limited memory of multiple GPUs. Experimental results compared to the retraining

methods show that our method can better control and effectively improve the accuracy of target

classes.

In the second part of this dissertation, we propose Network Augmentation with Ac-

tive Neurons. The network augmentation method is one of the widely used techniques to extend

a neural network model or perform transfer learning. The method adds a new hidden layer to the

model that has already been trained and performs fine-tuning to obtain more accurate models or

models that fit the purpose of given applications. However, adding layers to a large-scale deep

neural network model can increase the learning time and the number of parameters required

for training the model. We propose an augmented network with only a small number of active

neurons as input values for efficient training. In addition, unlike general network augmentation,

the proposed method learns only the augmented model while maintaining the original model.

Compared to the depth augmented method, we show that our method can achieve similar or

better accuracy with fewer parameters and shorter training time in all experiments.

In summary, this dissertation proposes the methods to improve the model to suit the

user’s purpose without changing the original deep neural network models. For improving the

accuracy of the target class in the original model while minimizing the effect on the accuracy

of the non-target class, we propose Synaptic Join method. To efficiently augment deep neural

networks, we propose a network augmentation method using active neurons. The proposed

methods are effective and efficient methods of adjusting neural networks according to the user’s

purpose and are useful in customized artificial intelligence service applications.

Keywords: Deep neural networks, synaptic join, network augmentation.

ii

List of Contents

Abstract . i

Contents . iii

List of Tables . v

List of Figures . vii

Chapter 1. Introduction 1

1.1 Introduction . 1

1.2 Main contributions . 5

1.3 Structure of thesis . 6

Chapter 2. Background 7

2.1 Deep Neural Network Models . 7

2.1.1 Deep Neural Network . 7

2.1.2 Convolutional Neural Networks . 8

2.2 Network Augmentation . 11

Chapter 3. Tweaking Deep Neural Networks 17

3.1 Simple Retraining Method . 17

3.2 Synaptic Join Method . 19

3.2.1 Tables for Join . 19

3.2.2 Algorithm θ . 20

3.2.3 Synaptic Join Method . 25

3.2.4 Synaptic Retraining Method . 28

iii

3.3 Experimental evaluation . 30

3.3.1 Environments . 30

3.3.2 Comparison with Retraining and Relevant Methods 31

3.3.3 Quantitative Analysis . 36

3.3.4 Evaluation of Different Models for the Same Data 37

3.3.5 Distribution of Synapses . 38

3.3.6 Characteristics of Synaptic Join . 39

3.3.7 Characteristics of Synaptic Retraining 41

3.3.8 Synaptic Join for Imbalanced Data 42

3.3.9 Time and Space Cost of Synaptic Join 44

Chapter 4. Augmenting Deep Neural Networks with Active Neurons 51

4.1 Augmentation with Active Neurons . 51

4.2 Experimental Evaluation . 52

4.2.1 Environments . 52

4.2.2 Comparison with DA and WA Method 54

Chapter 5. Related Work 59

Chapter 6. Conclusions 62

References . 64

Appendix . 77

A Result of Simple Retraining Methods . 77

iv

List of Tables

3.1 Validation accuracy between 126 k and 135 k iterations. 19

3.2 Proportions of the high rank synapses. 26

3.3 Results of the retraining methods (3-layer CNN for SVHN). 34

3.4 Quantitative analysis of the methods. 37

3.5 Comparison of major retraining methods and synaptic join method (ResNet-

20 and DenseNet-40 for SVHN). 38

3.6 Results of synaptic join using the two different criteria, count and threshold (ResNet18

for CIFAR-100). 40

3.7 Results of synaptic join for three target classes of the lowest, median, and

highest accuracies (3-layer CNN for SVHN). 40

3.8 Results of synaptic join for multiple target classes (3-layer CNN for SVHN,

n = 40). 41

3.9 Results of repeating synaptic join and retraining. 42

3.10 Accuracy gains while varying the number of tail classes (DenseNet-121 for

SUN-397). 44

3.11 Time cost of training, retraining, synaptic join, and synaptic retraining. . . 46

4.1 Number of hidden units and active neurons used in DA, WA and our models. 55

4.2 Comparison of the number of parameters between DA and WA models. . . 55

4.3 Comparison of the number of parameters between DA and our models. . . 56

4.4 Comparison of overall accuracy between DA, WA and our models. 57

v

4.5 Comparison of overall accuracy between synaptic join, synaptic retraining

and our method. 57

4.6 Comparison of training time of 1 K iterations between DA, WA and our

models. 58

vi

List of Figures

1.1 Results of the simple retraining and synaptic join method (NIN for CIFAR-

10, target: class#3). 2

2.1 Architecture of LeNet-5 [50]. 9

2.2 An example of VGG models. 12

2.3 Architectures of inception and GoogLeNet. 13

2.4 An example of the components of ResNet and ResNet-152 model. 14

2.5 An example of the components of DenseNet and DenseNet-121 model. . . . 15

2.6 An example of DA and WA models on AlexNet. 16

3.1 Overall and per-class test accuracy (3-layer CNN for SVHN, target: class#9) 18

3.2 An example of synaptic join (|D| = 4). 21

3.3 Distributions for Ew and Ec for four synapses picked from ResNet56 for

CIFAR-100. 25

3.4 Distribution of the count of all the synapses in a hidden layer of the ResNet56

for CIFAR-100. 26

3.5 Target and overall accuracies while varying n (3-layer CNN for SVHN). . . 27

3.6 Target and overall accuracies while varying the scale (3-layer CNN for

SVHN). 29

3.7 Per-class and overall test accuracies of compared methods (3-layer CNN

for SVHN). 48

vii

3.8 Correlation between the number of parameters and the number of active

neurons (SV 3CN: 3-layer CNN for SVHN, SV RN: ResNet-20 for SVHN,

SV DN: DenseNet-40 for SVHN, C100 RN18: ResNet18 for CIFAR-100,

C100 RN56: ResNet18 for CIFAR-100, SUN DN: DenseNet-121 for SUN-

397, IMG GN: GoogLeNet for ImageNet). 49

3.9 Distribution of active neurons. 49

3.10 Oversampling method and synaptic join (DenseNet-121 for SUN-397, c=50,

n=100, scale=6). 50

3.11 Accuracies of normal retraining and synaptic retraining at equal number

of iterations. 50

4.1 Augmented networks with active neurons. 52

6.1 Boxplot comparison of class accuracy of five retraining methods (3-layer

CNN for SVHN). 77

6.2 Barplot comparison of class accuracy of five retraining methods (3-layer

CNN for SVHN). 78

viii

Chapter 1. Introduction

1.1 Introduction

Deep neural networks have been widely used in many real applications in various areas such

as computer vision [4, 48, 66, 68, 85, 87, 100], speech recognition [8, 21, 31, 36, 40, 64,

102] and natural language processing [18, 20, 41, 65, 88, 91, 96]. In general, they have a

layer-by-layer architecture and are trained using tensor-based operations including convolution

and matrix multiplication. In supervised learning, a neural network is trained to achieve the

maximum overall accuracy through a learning process using given training data. In such cases,

the accuracies of classes are usually different from each other. In particular, the accuracy

of some classes might not be good enough, although these classes are more important than

the other classes in certain applications (e.g., in the medical area) or for certain users (e.g., in

customized AI service). This problem can occur not only for specific classes (e.g., car class)

but also for some kinds of data objects, i.e., implicit sub-classes (e.g., truck objects).

However, it is nontrivial to fix or adjust a neural network to further improve the

accuracy for specific classes or objects after training because the whole network is already

optimized through hundreds of thousands of iterations and there exist complex dependencies

among the features and outputs.

A potential method to improve the accuracy of specific classes selectively is to per-

form additional training (i.e., simple retraining) with a larger loss penalty than that of the other

classes being assigned to the target classes. However, when the model has a complex struc-

ture (e.g., deep neural networks), this simple retraining approach may not be effective to im-

prove the accuracy of the target classes. Fig. 1.1a shows the result of the simple retraining of

– 1 –

a deep neural network for CIFAR-10, performed to improve the accuracy of the class having

the lowest accuracy, i.e., class#3 by assigning a ×1.3 loss penalty to class#3. A network in

network (NIN) model of an overall accuracy of 87.57% [60] is used. The result shows that after

retraining, the accuracy of class#3 is not improved and instead degraded, while the accuracy of

the other classes (e.g., class#5) is improved. Through numerous other experiments, the results

of the weighted retraining method are unpredictable and uncontrollable when using relatively

small loss penalties. Although using considerably large loss penalties could improve the accu-

racy of the target class, it might also adversely influence the results. The red bars in Fig. 1.1a

show the results for the case when a loss penalty of ×100 is assigned to the same class. It can

be note that the accuracy of class#3 considerably improves from 76.1% to 85.5%; however, the

overall accuracy is severely deteriorated from 87.57% to 77.59%.

��

��

��

��

��

��

���

� � � � � 	
 � � �

�
�
�
��
�
�
�
�
	�
�

��
�

��
�����

������
��
����
��

���
��������

���
��������

(a) ×1.3 & ×100 loss penalties

��

��

��

��

��

��

���

� � � � � 	
 � � �

�
�
�
��
�
�
�
�
	�
�

��
�

��
�����

������
��
����
��

���
���������

(b) Synaptic join

Figure 1.1: Results of the simple retraining and synaptic join method (NIN for CIFAR-10,
target: class#3).

To address this issue, we define a problem involving the adjustment of a given deep

neural network to improve the accuracy of the specific classes, presented as Definition 1. The

specific classes for which the accuracy is intended to be improved are referred to as target

classes, and the other classes are termed as off-target classes. The target classes are user

or application-specific. We consider a deep neural network as a weighted graph consisting

of nodes and edges, where the nodes indicate neurons, and the edges indicate synapses (or

– 2 –

weights). A given original neural network that is already optimized is denoted as nn. The over-

all accuracy of nn may be maintained by only slightly degrading the accuracy of the off-target

classes while increasing the accuracy of the target classes. We can generate a neural network

having synapses different from those of the original nn by applying one of three types of tweak-

ing processes: adding new synapses across the layers to nn, deleting the existing synapses from

nn, or changing the weights of the existing synapses. We denote the changes in synapses as

∆nn.

Definition 1. For a given deep neural network nn, the problem is to find ∆nn such that

nn + ∆nn can improve the accuracy of the user- or application-specific target classes while

maintaining the original overall accuracy.

In this study, we consider the approach of adding additional synapses to the original

network nn, since the approach of deleting the existing synapses is usually used for compress-

ing neural networks, as described in many existing studies including [16, 33, 34, 35, 38, 51, 51,

54, 56, 99], and the approach of changing the existing weights is similar to the simple retrain-

ing method described above. ∆nn is user- or application-specific, and thus a neural network

nn+∆nn can be made to work differently for different users and applications by only changing

∆nn.

In the first part of this dissertation, we propose the synaptic join method, which adds

additional synapses from some nodes in the hidden layers to the target class nodes across the

layers to improve the accuracy of the target classes almost without sacrificing the accuracies

of the other classes. If a set of nodes {x} in the hidden layers has a relatively stronger signal

than that of the other nodes for a target class, we call the corresponding nodes {x} as active

neurons for the target class. The primary concept of our method is to strengthen the target class

by adding a synapse with a suitable weight from the active neurons to the target class node.

– 3 –

Fig. 1.1b shows the result obtained using the proposed method for the target class#3. The

accuracy of class#3 is considerably and selectively improved while sacrificing the accuracy of

the off-target classes to a limited extent and retaining the same overall accuracy. These findings

indicate that the result obtained using our method is predictable and controllable.

From a technological perspective, it is difficult to find the effective active neurons

from a huge number of possible candidates and to determine the suitable weights of the synapses

between the selected neurons and the target class node. In general, adding new arbitrary

synapses to an already optimized network tends to degrade the accuracy. To overcome this is-

sue, the proposed method finds the effective active neurons and determines the suitable weights

of the synapses between the source and destination.

In the second of this dissertation, we present augmented deep neural networks with

active neurons. Network augmentation is one of the widely used techniques for growing ca-

pacities of network models or transferring knowledge from already trained models [89]. By

inserting new layers and fine-tuning the augmented networks, users can obtain models with

better accuracy or get models that fit the purpose of their application. However, adding layers

in a large-size deep neural network model can cause the model to grow too much in terms of

the number of parameters, thus increase the training time. We propose the augmented net-

works, which feed only the active neurons to a small network model for efficient learning. The

synaptic join method exploits only the linearity of every synapse to tweak a given neural net-

work model; however, the proposed augmentation with active neurons can train models to learn

non-linearity.

– 4 –

1.2 Main contributions

The main contributions of Synaptic Join are as follows:

• We propose a tweaking method for neural networks that can improve the accuracy of

specific classes of interest without performing any retraining.

• We propose an algorithm θ that can evaluate the performance of all the possible candidate

synapses in the training data.

• We propose the synaptic join and synaptic retraining methods based on θ.

• Through extensive experiments, we demonstrate that the proposed methods can control

the test accuracy of the target and off-target classes in a more predictable and controllable

manner than the other methods.

The main contributions of Augmentation with Active Neurons are as follows:

• We propose an augmentation method for neural network models that can efficiently im-

prove the accuracy of all classes without modifying the original models.

• We expand the synaptic retraining method to learn non-linearity by configuring augmented

models as small MLP models.

• Through extensive experiments, we demonstrate that the proposed methods can improve

the accuracy with short training time and small number of parameters.

– 5 –

1.3 Structure of thesis

The structure of this dissertation is organized as follows. Chapter 2 introduces the background

of this dissertation. In Section 2.1, we review commonly used deep neural networks models. In

Section 2.2, we explain about network augmentation method. Chapter 3 describes and evaluates

synaptic join method. Section 3.1 introduces the comparison simple retraining-based methods,

Section 3.2 describes the proposed synaptic join method, and Section 3.3 presents the results of

the experimental evaluation. Chapter 4 describes and evaluates our augmentation method using

active neurons. Chapter 5 discusses the related work of this dissertation. Finally, conclusions

are drawn in Chapter 6.

– 6 –

Chapter 2. Background

2.1 Deep Neural Network Models

2.1.1 Deep Neural Network

Deep neural network (DNN) is a sort of deep learning algorithm that attempts high-level ab-

straction through a combination of a number of nonlinear transducers [6, 14, 30]. The purpose

of DNN is to teach computers how to think of humans by forming and learning artificial neural

networks that resemble human brains. Today, DNN models show high levels of performance in

computer vision [12, 32, 43, 57, 67, 98], speech recognition [3, 5, 58, 63, 69, 76, 77, 97], natural

language processing [7, 19, 22, 29, 80, 95, 101], signal processing [9, 23, 24, 61, 71, 93, 103],

and medical data analysis [10, 11, 15, 26, 28, 52, 55, 72, 75, 79, 82] applications. DNN has

many variations, but in common, numerous hidden layers are stacked, and learning is per-

formed by adjusting the weights connecting hidden neurons so that each hidden neuron can

better express abstract features as the input data passes through each layer.

Learning of DNN is done with an error back-propagation [30] algorithm. Eq 2.1

represents the stochastic gradient descent that updates each weight wij as the model is trained

to solve the multi-class classification problem. At this time, each weight wij is updated through

the stochastic gradient descent method, such as eq 2.1.

∆wij(t+ 1) = ∆wij(t) + γ
∂(−

∑
j dj log(pj))

∂wij

. (2.1)

Where, d represents the target probability for output unit j, p represents the probability output

– 7 –

for j, and −
∑

j dj log(pj) stands for a cost function of cross entropy. γ is the learning rate and

t is the iteration number of the current learning.

2.1.2 Convolutional Neural Networks

A convolutional neural network (CNN) model is one of the most commonly applied DNN

to analyze visual images [86]. CNN is composed of several convolutional layers in charge

of feature abstraction (representation) and artificial neural networks for output to serve user’s

purposes such as classification. With this structure, it is easy to use the input data of a two-

dimensional structure; therefore, it is widely used for processing image, video, audio, and

medical data. Representative algorithms of CNN include LeNet-5, VGG, GoogLeNet, ResNet,

and DenseNet.

LeNet-5 [50] is the name of the CNN model developed in 1998 by Yann LeCun

research team, which first developed CNN. The model has an input layer, three convolution

layers, two subsampling (pooling) layers, one fully-connected layer, and an output layer. In the

convolution layers, feature maps are obtained through a convolution operation using an input

image as 5x5 kernels (filter). The subsampling layers reduce the size of each feature map by

half. Fig 2.1 shows the LeNet-5 model. The calculated feature maps pass through the fully-

connected layer and the output layer to predict the class label. At this time, the loss is calculated

as much as the difference between the output and the actual correct answer, and the kernel and

weight are modified by back-propagating it.

VGGs are relatively simple CNN models developed by Simonyan et al. (2014) [81].

It was developed to improve the accuracy of large-scale image recognition by increasing the

depth of the CNN model. Fig 2.2 shows representative VGG models, VGG16 and VGG19.

Instead of using a convolution layer with a large filter (e.g., 7× 7), VGG consists of a stack of

several convolution layers having small filters of 3× 3 size. This structure has two advantages:

– 8 –

���

�������

	
��
�

�����

���

��������

���

���

����

�������

������������ ����������

����

������

������������ ����������

!���

��

"�
��
�

��

!���#�

$���%$����

&��������

$���%$����

Figure 2.1: Architecture of LeNet-5 [50].

1) it is possible to learn more non-linearity from the input feature due to the many activation

functions, and 2) it can learn faster because the number of weights to be learned is reduced.

Their study showed that in image classification, the accuracy of VGG models improved with

increasing their depth (up to 19 layers). However, later studies such as He et al. (2015) [37]

pointed out that simply increasing the depth of the model too much has a problem in that

the gradient vanishes in the error back-propagation learning stage, which in turn lowers the

performance.

GoogLeNet was proposed by Szegedy et al. (2014) [83] and achieved the highest per-

formance in the ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)[74].

As the depth of networks gets deeper, the number of parameters required for learning and the

amount of computation required for learning increase, and as a result, the risk of falling into

the vanishing gradient [42] problem increases. GoogleNet constructed a model by stacking

inception modules to solve this problem. Fig 2.3a shows a naı̈ve form of the inception module.

Each module extracts features from the input image using a multi-scale Gabor filter [78]. The

1 × 1 convolution filter better preserves the spatial information of the input feature, while the

3× 3 or 5× 5 filter preserves more abstract information. Fig 2.3b shows the inception module

used in GoogLeNet. In this version, a 1 × 1 convolution layer is added to each layer of the

naı̈ve module. The additional 1 × 1 convolution layers can reduce the dimension of feature

– 9 –

maps, thereby reducing the amount of computation while maintaining feature-related informa-

tion. Fig 2.3c shows the network structure of GoogLeNet. GoogLeNet has auxiliary classifiers

in the middle of the stacked inception layers. The auxiliary classifier plays a role in mitigating

gradient vanishing by generating an error in the middle of the model.

ResNet [37] is a model proposed to solve the phenomenon that the performance

decreases as the layer of the model becomes too deep. As the layer of the model gets deeper,

more differentiation needs to be done, so even if back-propagation is performed, the difference

values become smaller as the layers in front are. As a result, the degree of weight affecting the

output decreases, i.e., a gradient vanishing problem occurs. ResNet overcomes this problem by

introducing skip connections between layers. When input x, output F (x) of block, output of

block with skip connection is F (x)+x. Since the differential gradient is F ′(x)+1, it is possible

to guarantee a minimum gradient of 1 or more; thus, gradient vanishing can be solved. A block

with a skip connection in which input x is directly connected to F (x) is called an identity block,

and its variation, the bottleneck block, is a method of adding x to F (x) after 1× 1 convolution

operation. Usually, a residual block is composed of one identity block and multiple bottleneck

blocks, and several residual blocks are stacked to construct a ResNet model. Fig 2.4 shows the

components of ResNet and an example of the ResNet model. Fig 2.4a shows the identity block,

Fig 2.4b shows the bottleneck block, and Fig 2.4c shows the ResNet-152 model with a total of

152 layers stacked with four residual blocks.

DenseNet [44] has a skip connection similar to ResNet; however, DenseNet connects

each successive layer (i.e., densely connected). That is, L(L+ 1)/2 direct connections exist for

L consecutive convolution layers. Through this structure, DenseNet has the following advan-

tages: alleviate the vanishing gradient, strengthen feature propagation, encourage feature reuse,

and substantially reduce the number of parameters. DenseNet also has a bottleneck structure

similar to ResNet. One difference with ResNet is that it concatenates the input and the output of

– 10 –

the bottleneck rather than adding them. Fig 2.5 shows each component of DenseNet and an ex-

ample of the DenseNet model made from them. Fig 2.5a shows the bottleneck block. Fig 2.5b

shows a dense block with six stacked bottlenecks and densely connected. Fig 2.5c shows the

DenseNet-121 model consisting of four dense blocks and having a total of 121 layers.

2.2 Network Augmentation

The depth augmented (DA) and width augmented (WA) methods [89] are proposed for growing

the topology of a neural network for fine-tuning. Given an already trained model, the DA

method adds a new fully-connected layer after the last representation module, while the WA

method adds a new fully-connected layer aside along with the last representation layer. For the

both methods, parameters in the new layer are randomly initialized. Fig. 2.6 shows examples of

DA and WA models [89] growing form AlexNet [48] structure. Most of deep neural networks

consist of two parts, one is a representation module which extracts features of input example

and the other is classifier module which predicts the label through the extracted features. In

Fig. 2.6a, the original AlexNet has five convolutional layers (from C1 to C5) and two fully-

connected layers (FC6 and FC7) for representation module; the model has one fully connected

layer for classification module. Fig. 2.6b shows DA model which had additional FC7a layer

after the representation module. Fig. 2.6c shows WA model which had additional FC7+ layer

aside along the last representation layer (i.e., FC7 layer).

– 11 –

�����

������

���	
��
�

���	
��
�

��������

���	
�����

���	
�����

��������

���	
����

���	
����

���	
����

��������

���	
�����

���	
�����

���	
�����

��������

���	
�����

���	
�����

���	
�����

��������

������

������

(a) VGG 16

�����

������

���	
��
�

���	
��
�

��������

���	
�����

���	
�����

��������

��������

���	
����

���	
����

���	
����

���	
����

��������

���	
�����

���	
�����

���	
�����

���	
�����

��������

���	
�����

���	
�����

���	
�����

���	
�����

������

������

(b) VGG 19

Figure 2.2: An example of VGG models.

– 12 –

�������� 	
���

��
��	����
�

�����

��
��	����
�

�����

��
��	����
�

�����

�
�����	�
�

�����

��	����

��
�
��

���

(a) Inception module, naı̈ve version

�������� 	
���

��
��	����
�

�����

��
��	����
�

�����

��
��	����
�

�����

�
�����	�
�

�����

��	����

��
�
��

���

��
��	����
�

�����

��
��	����
�

�����

��
��	����
�

�����

(b) Inception module with dimensionality re-
duction

���������	
�

���������	
�

����

�����

����

�����

���������	��

���������	�� ���������	��

���������	
�

���������	
�

���������	
�

���������	��

����

������

��������������������

��������������������

(c) GoogLeNet with auxiliary classifiers

Figure 2.3: Architectures of inception and GoogLeNet.

– 13 –

���� �����

���� �	�	�

���

��
��

����������

����
�

����

(a) Identity block

���� �����

���� �	�	�

���

��
��

����������

����

���� �����

�

����

(b) Bottleneck block

��������	
���
	�

��������
 ��

��������

��������	
���
	�

��������
 ��

��������

��������	
���
	�

��������
 ���

��������

��������	
���
	�

��������
 ��

��������

����

����	�����

���	����	�����

��� ��	!�"	����

#����$���������

%��&��

(c) ResNet-152

Figure 2.4: An example of the components of ResNet and ResNet-152 model.

– 14 –

���� �����

	�
��

��
��

����������

�������

(a) Bottleneck block

����������	

���
�

����������	�

����������	�

�
��
�

����������	�

����������	�

����������	�

(b) Dense block

����

�����	
�
�

��������	����

�������������

���������� ��

�����	����

�������������

���������� ���

�����	����

�������������	����

�������������	����

�������������

���������� ���

�����	����

�������������	����

�������������

���������� ���

���������������

���� !��������"

#��$��

(c) DenseNet-121

Figure 2.5: An example of the components of DenseNet and DenseNet-121 model.

– 15 –

����� ��������	�
	��	��	�
 ��� ��� ��� �������

��������������������� �����������������

(a) The original AlexNet [48]

����� ��������	�
	��	��	�
 ��� ��� ��� �����������

(b) Depth augmented (DA) AlexNet [89]

����� ��������	�
	��	��	�
 ��� ��� ��� �������

����

(c) Width augmented (WA) AlexNet [89]

Figure 2.6: An example of DA and WA models on AlexNet.

– 16 –

Chapter 3. Tweaking Deep Neural Networks

3.1 Simple Retraining Method

The reason that the result of the simple retraining method with a small loss penalty is unpre-

dictable and uncontrollable in Fig. 1.1a is due to the fluctuation of the accuracy of each class

during training. Fig. 3.1a shows the overall and per-class test accuracy curves of a 3-layer

CNN for the SVHN during 115 k iterations. The learning rate starts with 0.001 and is reduced

by 1/10 at 75 k iterations. In the figure, the per-class accuracy fluctuates widely, whereas the

overall accuracy fluctuate narrowly. After reducing the learning rate, the absolute difference

between the overall and per-class accuracy is reduced, but the relative difference is maintained.

Wherever we stop training, some specific per-class accuracy would be much worse than some

other per-class ones.

This result may be unavoidable under the current optimization of a neural network

based on the overall accuracy. We consider the 3-layer CNN trained for the 115 k iterations in

Fig. 3.1a as a given neural network. Class#9 has the lowest accuracy in the CNN, and so, we

set it to the target class. Then, Fig. 3.1b shows the overall and target (class#9) test accuracy

curves of the simple retraining method in the range between 115 k and 135 k iterations using

×1.3 and ×30 loss penalties. Retraining with a small loss penalty (e.g., ×1.3) to the target

class still shows the fluctuation of the per-class accuracy. Thus, it is difficult to improve the

accuracy of the target class in a controllable manner. In general, stopping training at the point

where the target accuracy becomes good, e.g., similar to or larger than the overall accuracy,

makes the accuracy of some of the other classes unpredictably worse. Retraining with a large

loss penalty (e.g., ×30) can improve the target accuracy markedly, but in that case, the overall

– 17 –

accuracy is degraded severely, as in Fig. 3.1b.

�
��
��
��
��

���

� �� ����
�
�
��
�
�
�
�
	�
�

��
�

	
��

����� ���

� � � � � � � � � � ����
��

(a) Overall and all per-class accuracy.

��
��
��
��
��
��

���

��� ��� ��� �	� �	� �
� �
��
�
�
��
�
�
�
�
	�
�

��
�

��
�������� ���

��������	
���
������� ��������	
���
�������� ��������	���
������� ��������	���
��������

(b) Overall and class#9 accuracy during simple retraining

Figure 3.1: Overall and per-class test accuracy (3-layer CNN for SVHN, target: class#9)

Table 3.1 shows the target and overall validation accuracy while varying loss penal-

ties between ×1.3 and ×30. We can extract a validation set from the training set and evaluate

the target and the overall accuracy using the validation set for some candidate penalties. We

note that the validation accuracy tends to be a little bit higher than the test accuracy in Sec-

tion 3.3. As the loss penalty increases, the target accuracy increases, while the overall accuracy

decreases. That is, there exists a trade-off between the target and overall accuracy. For the

retraining method, we use a loss penalty that can achieve the best target accuracy while not de-

grading the overall accuracy too much (less than 1.0%) in this dissertation. In Table 3.1, ×2.0

is such a penalty. Determination of proper penalty may be time-consuming since it needs to

repeat a retraining process b times, where b is the number of candidate penalties.

– 18 –

Table 3.1: Validation accuracy between 126 k and 135 k iterations.

base x1.3 x1.6 x2.0 x5.0 x10 x20 x30
target 91.4 93.0 94.2 95.2 97.1 97.9 98.5 98.5
overall 90.6 90.1 89.9 89.7 88.3 87.2 83.0 81.2

3.2 Synaptic Join Method

In this section, we explain our synaptic join method that can determine the effective synapses

from the active neurons to the target classes and their weights for tweaking neural networks.

We present the tables required for synaptic join in Section 3.2.1 and the algorithm θ that can

evaluate the performance of the synapses using the tables in Section 3.2.2. Then, we explain

the synaptic join method based on θ in Section 3.2.3 and the retraining of the newly added

synapses in Section 3.2.4.

3.2.1 Tables for Join

For determining the new synapses on a neural network, we perform a kind of theta join between

two large-scale information tables: vertex table V and class table C. The tables V and C are

extracted from the neural network nn and training data D during feed-forwarding D through

nn once. Theta (θ) join[27] indicates a binary operator between given two tables that returns a

set of tuple pairs satisfying a user-defined condition θ. Synaptic join is named after theta join

for creating new synapses. We note that synaptic join is for tweaking the behavior of the neural

network for new input (i.e., test) data although V and C are built based on the training data.

We explain V and C by using an example of a simple neural network in Fig. 3.2a.

The table V is extracted from the neurons of the hidden layers of nn and the training data

D. Here, we can extract only interesting neurons rather than every neuron into the table V .

For example, the table V in Fig. 3.2c is built using three neurons in the first hidden layer in

Fig. 3.2a. The table C is extracted from the neurons of the output layer of nn and the training

– 19 –

data D. For example, since there are two output neurons in Fig. 3.2c, the table C has two rows.

The numbers of columns of both V and C are the same as |D|, i.e., the number of training data

objects.

Synaptic join checks all the pairs in V × C, where each tuple of V and C has |D|

dimensions. We will use the term “tuple” interchangeably with the term “node” (or “neuron”)

in our dissertation. We let a tuple of V be V [i] (i.e., V [i] ∈ V) and a tuple of C be C[j] (i.e.,

C[j] ∈ C). Then, we assign the value of node V [i] for an input training data D[k] ∈ D to the

k-th column of the tuple V [i], i.e., V [i][k]. Likewise, we assign the value of node C[j] for the

data D[k] ∈ D to the k-th column of the tuple C[j], i.e., C[j][k]. That is, the tables V and C

record all the status of hidden and output neurons of the neural network during each data object

in D passes through the neural network.

For example, we assume |D| = 4 in Fig. 3.2c. For the first data object D[0] =

{0.1, 0.3, 0.4, 0.2}, we assume that the values of the hidden neurons {h0, h1, h2} are {0.3, 0.5,

0.4} and the values of the output neurons {y0, y1} are {0.3, 0.6}. Then, the first column value

of the first tuple of V , i.e., V [0][0] becomes 0.3, and the first column value of the second tuple

of C, i.e., C[1][0] becomes 0.6.

3.2.2 Algorithm θ

The purpose of synaptic join is to find the best pairs in V × C, i.e., the best synapses that

can strengthen the target classes as much as possible without degrading the overall accuracy.

In order to find the best synapses among a lot of possible candidate synapses, we need to

evaluate the performance of a synapse (V [i], C[j]). We present the algorithm θ to evaluate the

performance of a synapse (V [i], C[j]) for a single target class in Algorithm 1.

For the evaluation, we consider a set of auxiliary data structures L, MaxL, and

MaxV , in addition to the V and C tables. L means the array of the ground truth for D, MaxL

– 20 –

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

��	

�
�

���

�

���

�

���

�
��� �����
 ������

�

(a) A simple neural network with propagating
the first training data

� � � �

�

�����

��� ��� ��� ��	

����

� � � �

����

(b) Auxiliary data structures

��� ��� ��� ���

��� ��� ��� ���

��� ��	 ��� ���

��
����

�����

�����

��������
��� � ��

��
�����

��� ��� ��� ���

��� ��� ��� ���
�����

�����

�

�

�

�
�

�
�

(c) Two tables V and C for four training data

Figure 3.2: An example of synaptic join (|D| = 4).

means the array of class labels when feed-forwarding D, and MaxV means the array of the

maximum values of the output neurons. All these arrays have a length of |D|. Fig. 3.2b shows

examples of L, MaxL, and MaxV . In Fig. 3.2b, L[0] = 0 indicates that the class label of the

first data object D[0] is 0. MaxL[0] = 1 means that the resulting label of feed-forwarding D[0]

is 1, where the maximum value of the output neurons for D[0], i.e., MaxV [0] = 0.6.

For simplicity, we consider a single synapse that can make a target class C[j] as

correct as possible, while ensuring that the off-target classes are never incorrect, in terms of

data set D. Next, the algorithm θ is used to evaluate the performance of a synapse based on the

distribution of all the possible proper weights for the synapse.

The algorithm first finds the set of data objects Dw that correspond to class C[j], but

– 21 –

are incorrectly classified as belonging to the other classes (Lines 1-4). Similarly, the algorithm

finds the set of data objects Dc that belonging to the off-target classes and are correctly classi-

fied as belonging to the corresponding class (Lines 5-8). If the weight of synapse (V [i], C[j])

satisfies the condition of Eq. 3.1, the synapse will make the data object k ∈ Dw correct, since

the value of neuron V [i] for k multiplied by the weight makes the output value of the class

C[j] for k exceed the existing maximum output value MaxV [k]. We assign the infimum of the

absolute values of the weight satisfying Eq. 3.1 for k to Ew (Lines 9-11).

weight · V [i][k] + C[j][k] > MaxV [k]. (3.1)

Similarly, if the weight of synapse (V [i], C[j]) satisfies the condition of Eq. 3.2, the

synapse will make the data object k ∈ Dc retain its correctness, since the value of neuron V [i]

for k multiplied by the weight ensures that the output value of the class C[j] for k does not

exceed the existing maximum output value MaxV [k]. We assign the supremum of the absolute

values of the weight satisfying Eq. 3.2 for k to Ec (Lines 12-14).

weight · V [i][k] + C[j][k] < MaxV [k]. (3.2)

If the synapse has a weight satisfying both Eq. 3.1 and Eq. 3.2, it could correct some

misclassifications in Dw while retaining correct classifications in Dc. In order to maximize the

number of corrections, we try to find the absolute minimum value in Ec, which we define as

the threshold. Any absolute value in Ew smaller than the threshold satisfies both Eq. 3.1 for

k ∈ Dw and Eq. 3.2 for k ∈ Dc.

We can calculate the threshold corresponding to the maximum range (Line 15) and

– 22 –

Algorithm 1 θ of Synaptic Join

Input: V [i]; /* a tuple of vertex table */
C[j]; /* a tuple of class table */

Variable: L; /* class label array (ground truth) */
MaxL; /* class label array (result using a DNN) */
MaxV ; /* output value array for MaxL */

Output: 〈threshold, count〉; /* the best edge weight and the number of corrections */
/*Find a set of data objects wrongly classified for C[j] class*/

1: Dw ← ∅;
2: for 0 ≤ k ≤ |D| − 1 do
3: if L[k] = C[j] and L[k] 6= MaxL[k] then
4: Dw ← Dw ∪ {k};

/*Find a set of data objects correctly classified for non-C[j] class*/
5: Dc ← ∅
6: for 0 ≤ k ≤ |D| − 1 do
7: if L[k] 6= C[j] and L[k] = MaxL[k] then
8: Dc ← Dc ∪ {k};

/*Find a set of edge weights that can correct Dw*/
9: Ew ← ∅;

10: for each k ∈ Dw then
11: Ew ← Ew ∪ {MaxV [k]−C[j][k]

V [i][k]+ε1
};

/*ε1 for preventing division by zero*/

/*Find a set of edge weights that retain Dc correct*/
12: Ec ← ∅;
13: for each k ∈ Dc then
14: Ec ← Ec ∪ {MaxV [k]−C[j][k]

V [i][k]+ε1
};

/*Find the maximum edge weight that is harmless to off-target classes*/
15: threshold← min(abs(Ec))− ε2;
16: count← 0;
17: for each w ∈ Ew then
18: if abs(w) ≤ threshold then
19: count← count+ 1;
20: Return 〈threshold, count〉;

– 23 –

calculate the number of weight values within this range, which is considered as the count (Lines

16-19). We subtract an extremely small value ε2 from the threshold for satisfying the condition

in Eq. 3.2. The threshold value indicates the proper weight of synapse (V [i], C[j]), and the

count value indicates the number of corrections for the training data when adding the synapse

to the neural network.

We present an example of Algorithm 1 using Fig. 3.2. We consider the synapse

between (V [0], C[0]), where the target class is 0, and the off-target class is 1. Dw = {0} since

the set of data objects wrongly classified for the target class is {D[0]}. Likewise, Dc = {3}

since the set of data objects correctly classified for the off-target class is {D[3]}. For simplicity,

we let ε1 = 0.0 and ε2 = 0.01. Then, Ew = {0.6−0.3
0.3

= 1.0} for Dw = {0}, Ec = {0.9−0.2
0.5

=

1.4} for Dc = {3}, and the threshold becomes 1.4− 0.01 = 1.39. Under the value threshold,

the number of corrections, count, becomes 1. Thus, Algorithm 1 returns 〈1.39, 1〉 for the

candidate synapse (V [0], C[0]).

Fig. 3.3 shows the distributions of Ew and Ec for four different synapses picked

from the ResNet56 model for CIFAR-100 used in the experiments. The synapse in Fig. 3.3a

has a count = 2, i.e., the sum of frequencies of Ew (i.e., blue bars) within the range of the

threshold (i.e., green box), in its distribution. Likewise, the synapses in Fig. 3.3b, Fig. 3.3c,

and Fig. 3.3d have count = 4, count = 8, and count = 16, respectively. Fig. 3.3c and

Fig. 3.3d have a wider range of the threshold and a higher count than those shown in Fig. 3.3a

and Fig. 3.3b. That means the former synapses are more target specific and so likely to be more

effective than the latter synapses for improving the corresponding target class. In a distribution,

negative weight values mean that the status of a neuron is also negative for the corresponding

data objects.

Fig. 3.4 shows the distribution of the count for all synapses (a total of 8,192) in a

hidden layer layers of the ResNet56 model for CIFAR-100 used in the experiments. As shown

– 24 –

�

�

�

�

���� ���� ���� ���	 � ��	 ��� ��� ���

�
��
�
�
�
�
�
�

�������

�
�

(a) count = 2, threshold = 0.481

�

�

�

�

���� ���� ���� ���	 � ��	 ��� ��� ���

�
��
�
�
�
�
�
�

�������

�
�

(b) count = 4, threshold = 0.92

�

�

�

�

�

���� ���� ���� ���	 � ��	 ��� ��� ���

�
��
�
�
�
�
�
�

�������

�
�

(c) count = 8, threshold = 1.60

�

�

�

�

�

���� ���� ���� ���	 � ��	 ��� ��� ���
�
��
�
�
�
�
�
�

�������

�
�

(d) count = 16, threshold = 2.09

Figure 3.3: Distributions for Ew and Ec for four synapses picked from ResNet56 for CIFAR-
100.

in the figure, the distribution follows a power law interestingly. Most of the synapses just have

count = 1 or count = 0, i.e., are non-target specific. The synapse of the highest rank has a

count = 16, and the synapses having a count ≥ 8 make up only 0.46% of all the synapses.

We found this kind of power law distribution in all the data and models used in experiments.

Table 3.2 shows the proportions of the high rank synapses having a count ≥ 1
2
max(count),

where max(count) means count of the highest rank synapses. The proportions are between

0.46% and 6.19%. We consider the neurons having a count ≥ 1
2
max(count) as active neurons.

Then, the last column of Table 3.2 shows the number of active neurons.

3.2.3 Synaptic Join Method

Synaptic join method performs Algorithm 1 for all the possible tuple pairs between V and

C, and then, chooses the best synapses. So, the time complexity of synaptic join becomes

O(|V ||C||D|), where |V | is the number of neurons of the base model, |C| is the number of

– 25 –

�

�

�

��

��

�

�
�
�

�
�
�

�
�
�

�
�
	

�

�
�

�
�
�
�

�
	
�
�

�
�
�
�

�
�
�
	

�
�
�
�

�
�
�
�

�
	
�
�

�
�

�

�

�
	

�
�
�
�

�
�
	
�

�
�
�
�

�
�
�
�

�
�

	

�
�
�
�

�
	
�
�

�
�
	
�

�
�
�
�

	
�
�
	

	
�

�

	
�
�
�

	
�
�
�

�

�
�

�
�
�
	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�
	
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

��	
��
���	�������	������	��	�������

�������� �������������

Figure 3.4: Distribution of the count of all the synapses in a hidden layer of the ResNet56 for
CIFAR-100.

Table 3.2: Proportions of the high rank synapses.

Data Model
params
(x1,000)

P (≥ 1
2
max(count))

active
neurons

CIFAR-100 ResNet18 683 0.68% 8,057
CIFAR-100 ResNet56 869 0.46% 9,968

SVHN 3-layer CNN 89 6.19% 2,789
SVHN DenseNet-40 1,019 0.85% 18,487

SUN-397 DenseNet-121 7,360 2.91% 346,626
ImageNet GoogLeNet 6,990 0.67% 20,949

classes, and |D| is the number of training data objects. We show the time cost in more detail in

Section 3.3.9. A single synapse (V [i], C[j]) can improve the accuracy of a single target class

C[j] by count corrections for the training data by amplifying the signal of V [i] by threshold

times. If the training accuracy of the neural network nn is not 100%, we use the count as a

criterion for the performance of the synapses. We expect that the synapse having the largest the

count is the most effective for the test data as well. If the training accuracy of the neural net-

work is 100%, then Dw and Ew are empty, and so, the count becomes zero for all the synapses.

In this case, we choose the synapse having the maximum threshold under the assumption that

the distribution for test data would be similar to that for the training data.

The synaptic join method adds the top-n synapses instead of a single best synapse for

a target class to avoid overfitting. Here, by default, we divide the weight value of each synapse

– 26 –

by n since a total of n synapses are connected to the target class. This is a heuristic approach

for reducing the side effect that the overall accuracy is degraded. Adding n synapses together

will have more chance to activate the target classes for test data. We note that the method would

add a total of n× c synapses if the number of target classes is c.

For synaptic join, the value of n tends to affect the target and overall accuracy

slightly. Fig. 3.5 shows the tendency of the target and overall accuracies while varying n

from 1 to 150. Increasing n tends to continuously degrade the target accuracy slightly. On the

contrary, the target accuracy is converged at around n=120, in particular when scale=40.

��

��

��

��

���

�� �� �� �� ��� ��� ���

�
�
���
�
��
�
�
	�

�
��

	�
�
�

�

	
��
	����
�
���� 	
��
	����
�
���� 	
��
	����
�
����

��
�
������
�
���� ��
�
������
�
���� ��
�
������
�
����

Figure 3.5: Target and overall accuracies while varying n (3-layer CNN for SVHN).

If we want to improve the target class largely and intentionally, we can achieve it by

multiplying the weight of top-n synapses by a factor of scale. Fig. 3.6a shows the tendency of

the target and overall training accuracies for 0 ≤ scale ≤ 80. As the scale increases, the target

accuracy tends to increase, but the overall accuracy tends to increase slightly for a while and

then decrease. Fig. 3.6b shows the tendency of the overall training accuracy for scale ≤ 60

whose values are around the original overall accuracy. The reason why the overall accuracy

increases for relatively small scale values is that the target accuracy increases while the overall

– 27 –

accuracy is maintained.

A heuristic approach for determining n and scale is finding the n value where the

target accuracy is converged and then finding the scale value that can improve the target ac-

curacy as much as possible, but does not degrade the overall accuracy, for the training data.

For example, n=120 in Fig. 3.5 and scale=40 in Fig. 3.6b satisfy such conditions. The opti-

mal n and scale values can vary depending on the base model and the target class. Thus, we

evaluate the target and overall accuracy for some candidate pairs of values using a validation

set in an exhaustive manner and pick the best one. For example, we evaluate [40, 80, 120] for

n and [20, 30, 40] for scale and pick the one. Let α be the number of candidate n values, and

β be the number of candidate scale values. Then, there are a total of α × β configurations.

Since the size of n synapses is quite small, we can load the base model with α configurations

together and evaluate their target and overall accuracies simultaneously while feed-forwarding

the validation set once.

3.2.4 Synaptic Retraining Method

The synaptic join method is a kind of static method that determines a set of synapses and their

weights based on the analysis of training data’s passing through a neural network. Then, there

may be a question: how the weights of the synapses newly added (∆nn) are changed if we

retrain only those synapses with fixing all the weights of the original neural network (nn). We

call this retraining method as synaptic retraining. It tries to maximize the overall accuracy as

a normal training method does. As a result, the target accuracy tends to decreases a little bit,

while the overall accuracy tends to increase a tiny bit, compared to the result of the synaptic

join method.

In fact, the above tendency is an interesting effect of the synaptic join method. A

model like GoogLeNet [83] is already highly optimized, and so, it is difficult to further improve

– 28 –

��

��

��

��

��

��

��

��

���

� �� �� 	�
� �� �� �� ��

�
�
���
�
��
�
�
	�

�
��

	�
�
�

�����

���������	
�� ���������	
�� ���������	���� ���������	����

����������	
�� ����������	
�� ����������	���� ����������	����

(a) Target and overall accuracies for 0 ≤ scale ≤ 80

����

��

����

��

����

� �� �� �� 	� ��
��
�
���
�
��
�
�
	�

�
��

	�
�
�

�����

���������	
��
 ���������	
��
 ���������	
���

���������	
���
 ��������������	��

(b) Overall accuracies for 0 ≤ scale ≤ 60

Figure 3.6: Target and overall accuracies while varying the scale (3-layer CNN for SVHN).

its accuracy. The simple retraining method tends to rather degrade the overall accuracy as

explained in Section 2. However, the synaptic retraining method can further improve the overall

accuracy of the model by retraining only the weights of the new synapses for the target classes.

Here, the number of iterations required for synaptic retraining is much smaller than that for

simple retraining, and at the same time, the degree of fluctuation in synaptic retraining is much

smaller than that in simple retraining (e.g., Fig. 3.1), due to a small number of synapses to be

trained.

– 29 –

3.3 Experimental evaluation

3.3.1 Environments

We use various neural networks for five datasets, SVHN (cropped digits) [62], CIFAR-10,

CIFAR-100 [47], ImageNet (ILSVRC12, classification) [74], and SUN-397 [92]. SVHN is

a real-world color image dataset of the digits obtained from house numbers in Google Street

View images, which consists of 10 classes of digits and contains 73,257 training samples and

26,032 testing samples of 32 × 32 pixels. CIFAR-10 [47] is a collection of color images of

32×32 pixels that contains 10 classes, 5,000 training samples per class, and 1,000 testing sam-

ples per class. CIFAR-100 is similar to CIFAR-10, but contains 100 finer classes, 500 training

samples per class, and 100 testing samples per class. ImageNet consists of 1,000 categorical

real-world images. The numbers of training and testing samples are about 1.2 million and

50,000, respectively. SUN-397 is a skewed and long-tailed dataset of color images for scene

understanding. The dataset consists of 108,754 images of 397 classes, and each class consists

of 100 to 2,361 images. We randomly choose 50 images as test data for each class and use the

remaining 50 to 2,311 images as training data. For both ImageNet and SUN-397, we resized

the images to 256×256 pixels and properly cropped them to satisfy the requirement on the size

of the input for each model.

In all the experiments about our method, we split training samples into training and

validation samples. For SVHN, 2,000 samples per class are used for validation, and the re-

maining samples for training. For CIFAR-10 and CIFAR-100, 2,500 and 250 samples per class

are used for validation, respectively, and the remaining samples for training. For SUN-397 and

ImageNet, 25 and 500 samples per class are used for validation, respectively, and the remaining

samples for training. We performed synaptic join using the training samples and determined

hyperparameters (i.e., n, scale) using the validation samples. Then, we measured the accuracy

– 30 –

using the test samples.

We explain the neural network models used in the experiments. For SVHN, we

have modified the 3-layer CNN model in [1] by adding a batch normalization layer to each

convolution layer. After training the model for 115 k iterations with a start learning rate of 0.001

and reduced the learning rate by 1/10 at 75 k iterations, the model achieved 88.99% overall test

accuracy. For CIFAR-10, basically, we used a 3-layer CNN model of the structure in [1], where

each convolution layer is followed by pooling and ReLU layers. After 50 k iterations of training

with a learning rate of 0.001, the model achieved 77.9% overall test accuracy. For CIFAR-

100, we have modified ResNet-18 [2] and ResNet-56 [39] models. The ResNet-18 model has

five residual blocks, and each block consists of three or four convolution layers. After 40 k

iterations of training with an initial learning rate of 0.1, which was reduced by a factor of 10

for every 5 k iterations, the model achieved 54.8% overall accuracy. The ResNet-56 model

has three residual groups, and each group has eight residual blocks, and each block consists of

two or three convolution layers. After 64 k iterations of training with an initial learning rate of

0.1, which is reduced by a factor of 10 at 32 k and 48 k iterations, the model achieved 66.1%

overall test accuracy. For ImageNet, we have used the GoogLeNet [83] binary model which has

68.98% overall accuracy (top-1). For more models used in a specific experiment, we explain

them in the corresponding sections.

We conducted all the experiments on a workstation equipped with two Intel Xeon

2.2 GHz CPUs of ten cores (a total of 20 cores), 384 GB main memory, eight NVIDIA GTX

1080Ti GPUs of 11 GB memory, and 10 TB HDD. We trained and ran the models using CAFFE [45].

3.3.2 Comparison with Retraining and Relevant Methods

We first compared our method with the simple retraining method and its variants. We used the

SVHN dataset and the 3-layer CNN model (overall accuracy: 88.99%). We retrained this base

– 31 –

model using a learning rate of 0.0001 in the retraining methods. We consider class#9 as the

target class, which had the lowest accuracy of 76.26% among all classes. We denote the simple

retraining method with ×2.0 loss penalty as Retraining-1 and its variants as from Retraining-2

to Retraining-5.

We also evaluate a method related to our method, in particular, the calibration method [17,

49]. The calibration method was originally proposed in the studies on zero-shot learning [17,

49]. It uses a hyperparameter µ (0.0 ≤ µ ≤ 1.0) for the target class and (1−µ) for the off-target

classes to calibrate the prediction of a given neural network. The values µ and (1 − µ) mean

prior probabilities that a sample belongs to the target and off-target classes, respectively. The

calibration method simply multiplies the softmax outputs of each target class and that of each

off-target class by the prior probabilities µ and (1−µ), respectively. In general, as µ increases,

the target accuracy increases, while the off-target accuracy decreases.

• Retraining-1: Retraining with 10 k iterations with a ×2.0 loss penalty on the target class

• Retraining-2: Retraining with 10 k iterations with a ×0.9 loss penalty on the off-target

classes (i.e., classes#0-8)

• Retraining-3: Training with 125 k iterations from the beginning with a ×2.0 loss penalty

on the target class

• Retraining-4: Retraining with 10 k iterations with a ×2.0 loss penalty on the target class

and using dropout (rate=0.5)

• Retraining-5: Retraining with 10 k iterations with ×2 oversampling for the target class

• Calibration: Calibrating the softmax output of the original model by varying µ from 0.0

to 1.0

• Synaptic join: Adding new n = 120 synapses to the original model by varying the scale

– 32 –

from 5 to 45

• Synaptic retraining-1: Retraining the model modified by synaptic join for 10 k iterations

• Synaptic retraining-2: Retraining the model modified by synaptic join for 10 k iterations

with a ×2.0 loss penalty on the target class

Retraining-1 in Fig. 3.7a shows the box plot of the individual accuracy of each

class from 116 K to 125 K retraining iterations. The accuracy of class#7 and class#9 fluctu-

ates severely, while the overall accuracy is relatively stable. Retraining-2 shows a similar ten-

dency to Retraining-1, but a much worse target accuracy (we omit the figure). Retraining-3 in

Fig. 3.7b shows the best average target accuracy among the five retraining methods. Retraining-

4 shows a worse performance than Retraining-1, that is, dropout has no special effects on

tweaking the model (we omit the figure). Retraining-5 in Fig. 3.7c shows a slightly better over-

all accuracy than Retaining-1 and Retaining-3, but a worse target accuracy than them. That

is, using ×2 loss penalty without dropout (i.e., Retaining-1 and Retaining-3) is more effective

for target accuracy than ×2 oversampling (Retraining-5). The detailed results of Retraining

methods (including the omitted figures) are in Appendix A.

Table 3.3 shows the target and overall accuracy of the retraining methods. The first

five rows show the results of the five retraining methods. In those methods, it is difficult to stop

retraining exactly at the point where the target accuracy is improved, and at the same time, each

non-target class accuracy is degraded only a little bit, not too much. It is also difficult to control

the degree of improvement in the target accuracy. Where to stop retraining becomes more

difficult if the target is not a single but multiple classes, since each per-class accuracy fluctuates

almost independently. Furthermore, retraining itself is time consuming, and the changes to the

model are permanent, i.e., irreversible.

We present Calibration in Fig. 3.7d and Synaptic join in Fig. 3.7e in bar plots rather

– 33 –

Table 3.3: Results of the retraining methods (3-layer CNN for SVHN).

Method Target accuracy Overall accuracy

Retraining-1 91.44 89.50
Retraining-2 85.90 89.70
Retraining-3 91.53 89.51
Retraining-4 89.73 89.18
Retraining-5 90.94 89.68

Calibration 97.19 87.36
Synaptic join 91.97 89.02
Synaptic retraining-1 87.90 90.68
Synaptic retraining-2 91.74 90.59

than box plots, since their per class accuracies do not fluctuate randomly, but are controlled

by parameters such as µ and scale. Calibration in Fig. 3.7d shows that the target accuracy

increases from 0% to 100%, and each off-target accuracy decreases, as µ varies from 0.0 to

1.0. The trend of the overall accuracy is a bit more complex. It largely decreases compared

to the original accuracy when µ = 0.0 due to wrong answers for all the target class images.

Then, it tends to increase due to the increased target accuracy and then decrease due to the

decreased off-target accuracy. In general, we need to determine µ using the validation data.

We can determine it using a simple method that finds the point where the target accuracy is

maximized, and at the same time, the training overall accuracy is not degraded compared to the

original overall accuracy, as we determine scale in Section 3.2.3. Accordingly, we set µ=0.9.

This method tends to achieve a high target accuracy more easily than the other methods, but

its overall accuracy (i.e., 87.36%) tends to be significantly degraded from the original one (i.e.,

88.99%).

Synaptic join in Fig. 3.7e shows the highest target accuracy except Calibration while

maintaining overall accuracy. Compared to Calibration, Synaptic join achieves a better overall

accuracy, and at the same time, its off-target accuracy is more predictable and controllable

by the scale. For example, in Fig. 3.7d, the accuracies of class#5, class#7, and class#8 are

– 34 –

suddenly decreased as µ increases, while the accuracy of some other classes including class#1

and class#4 is almost not changed. However, Synaptic join has no such a sudden decrease

or constancy in terms of the off-target accuracy. As the scale increases, the target accuracy

increases gradually while each off-target class accuracy decreases a little bit.

In Synaptic retraining-1 (we omit the figure) and Synaptic retraining-2 (in Fig. 3.7f),

all per-class accuracy converges quickly (only for 2-4 k iterations) due to a very small number

of additional parameters (n = 120) and so the heights of box plots are very small. Compared to

Synaptic join, Synaptic retraining-1 improves the overall accuracy by 1.66% while sacrificing

the target accuracy by 4.07%. In fact, Synaptic retraining-1 is equal to normal training of a

small number of new synapses between the target specific hidden neurons and the target out-

put neurons. Since normal training tries to maximize the overall accuracy, and the number of

new synapses is small, Synaptic retraining-1 tends to increase the overall accuracy. However,

it tends to decrease the target accuracy a little bit since it changes the weights of the synapses

which are already almost optimized by Synaptic join to achieve the best target accuracy. Synap-

tic retraining-2 is a synaptic retraining method to use a loss penalty like the retraining methods.

It improves the target accuracy by 3.84% while sacrificing the overall accuracy by 0.09%, com-

pared to Synaptic retraining-1.

In summary, for 3-layer CNN for SVHN, Retraining-3 shows the best overall per-

formance, except Synaptic retraining-1 and Synaptic retraining-2. Although its target accuracy

is slightly worse than Synaptic join, its overall accuracy is surely better than Synaptic join.

However, Synaptic retraining-2 outperforms Retraining-3 in terms of both target and overall

accuracy, which is done by retraining only a very small number of additional parameters cho-

sen by synaptic join with a loss penalty.

– 35 –

3.3.3 Quantitative Analysis

In this section, we perform some quantitative analysis to measure the performance of the meth-

ods shown in Section 3.3.2. For the analysis, we propose Eq. 3.3, where oi and ti are the

accuracies of the i-th class of an original model and the corresponding tweaked model, respec-

tively. The intuition of Eq. 3.3 is that a method that degrades each per-class accuracy of a

model evenly and as little as possible would be a better method for tweaking the model. To

take account of only the case (ti − oi) < 0 as a penalty, we introduce an indicator function 1i

that returns 1 if tk < ok and 0 otherwise. A larger E value indicates a larger or more uneven

degradation of the per-class accuracy in the tweaked model. Although Eq. 3.3 may not be the

best measure, it would be able to quantify how good a tweaking method is in some aspects.

E =

√√√√ 1

|C|

|C|∑
i=1

(ti − oi)21i (3.3)

Table 3.4 shows the mean and standard deviation (SD) of E for the nine methods.

Since the retraining methods and synaptic retraining methods have different E values at each

1 k iteration, they have both mean (E) and SD (E). In contrast, Calibration and Synaptic join

have a single E value due to no retraining. Synaptic retraining-1 and 2 have a very small

SD (E) value due to the quick convergence and no fluctuation of per-class accuracy after the

convergence. In Table 3.4, the relatively high mean (E) and SD (E) values of the retraining

methods are due to the large and independent fluctuations of the per-class accuracy during the

retraining. The high E value for Calibration is due to the sudden drop of the per-class accuracy

in some classes. Synaptic retraining-1 and 2 have the smallest E value since they improve the

per-class accuracy of most classes and so achieve the best overall accuracy.

– 36 –

Table 3.4: Quantitative analysis of the methods.

Method mean (E) SD (E)
Retraining-1 3.01 1.90
Retraining-2 2.34 1.72
Retraining-3 3.86 1.75
Retraining-4 3.33 1.30
Retraining-5 2.47 1.25
Calibration 6.22 N/A
Synaptic Join 1.64 N/A
Synaptic Retraining-1 0.62 0.10
Synaptic Retraining-2 0.68 0.11

3.3.4 Evaluation of Different Models for the Same Data

In the experiments using 3-layer CNN for SVHN, Retraining-1, Retraining-3, and Retraining-5

generally show the best performance among the existing methods. In this section, we compare

the three methods with our methods for different network models on the same dataset (i.e.,

SVHN). We use two additional network models, ResNet-20 [39] and DenseNet-40 [44, 104].

ResNet-20 has 272,464 weight parameters and 28,672 hidden neurons, and DenseNet-40 has

1,019,712 parameters and 270,336 neurons. ResNet-20 has achieved 95.0% after 64 k itera-

tions, and DenseNet-40 has achieved 96.0% after 60 k iterations.

Table 3.5 shows the comparison results for ResNet-20 and DenseNet-40. We select

the class of the lowest accuracy as the target class, which is class#7 for both ResNet-20 and

DenseNet-40. For ResNet-20, Synaptic join clearly shows the best target accuracy among all

methods compared. In terms of the overall accuracy, only Retraining-5 is marginally better

than others. For DenseNet-40, Synaptic join still shows the best target accuracy, but in terms

of overall accuracy, Synaptic retraining-1 shows the best accuracy. In terms of the overall

accuracy, all methods except our method degrade the overall accuracy.

The reason why Synaptic join clearly shows a better performance than the existing

– 37 –

Table 3.5: Comparison of major retraining methods and synaptic join method (ResNet-20 and
DenseNet-40 for SVHN).

Model
[target#]

Methods Avg. target Avg. overall

ResNet-20
[7]

Original 91.9 95.0
Retraining-1 92.1 95.0
Retraining-3 93.0 95.0
Retraining-5 92.1 95.1
Synaptic join 95.1 95.0
Synaptic retraining-1 93.0 95.0
Synaptic retraining-2 93.9 95.0

DenseNet-40
[7]

Original 95.0 96.0
Retraining-1 95.8 94.4
Retraining-3 96.3 94.9
Retraining-5 96.6 95.0
Synaptic join 97.1 96.0
Synaptic retraining-1 96.6 96.3
Synaptic retraining-2 97.0 96.1

retraining methods in Table 3.5 is that both ResNet-20 and DenseNet-40 are larger than 3-

layer CNN in terms of parameters and so can exploit much more number of active neurons for

tweaking the networks. Fig. 3.8 shows the correlation between the number of parameters of the

network models in Table 3.2 and the number of their active neurons. Since SV RN (ResNet-

20 for SVHN) has zero count due to 100% training accuracy, we mark it as a vertical line in

Fig. 3.8. In this case, we use threshold instead of count as explained in Section 3.2. In general,

it is likely that Synaptic join can pick better (i.e., target-specific) n hidden neurons and connect

them to the target classes, as the number of active (or high threshold) neurons increase.

3.3.5 Distribution of Synapses

Fig. 3.9 shows the distribution of the active neurons that are selected by synaptic join across the

layers. Each layer shows the number of active neurons and the percentage of those active neu-

rons compared with the total neurons in that layer. For GoogLeNet, we set the worst ten classes

– 38 –

to the target class with n=30 and show the distribution of the 300 active neurons selected. For

3-layer CNN, we set the worst class to the target class with n=120 and show the distribution of

the 120 active neurons selected.

The result shows that both models tend to have more number of selected active neu-

rons at lower-level layers. It makes sense because there are more number of neurons at lower-

level layers, and at the same time, a lower-level layer tends to capture the relatively simple

features specific to each class. However, in terms of percentage, 3-layer CNN has the largest

percentage in the highest (i.e., deepest)-level layer. GoogLeNet has 50,176 and 1,000 neurons

at the highest-level and output layers, respectively (i.e., about 50:1 ratio), while 3-layer CNN

has 4,096 and 10 neurons (i.e., about 400:1 ratio). Thus, it is likely that 3-layer CNN has more

neurons specific to each class at the highest-level layer.

3.3.6 Characteristics of Synaptic Join

As explained in Section 3.3, we basically use the count as a criterion for the performance

of synapses, but should use the threshold as the criterion if the count is unavailable. Here,

we compare the effectiveness of both the criteria using the ResNet18 model for CIFAR-100.

The original overall accuracy of the model is 54.8%. Table 3.6 presents the test accuracy of

synaptic join for three different target classes, i.e., class#22 (chimpanzee), class#26 (crab), and

class#51 (mushroom), when using the top-20 synapses sorted by the count and the threshold.

Here, we select the classes of the median accuracy rather than those of the lowest accuracy. For

all the three classes, using the count achieves better target accuracy than using the threshold.

Both the criteria achieve the same overall accuracy.

Table 3.7 shows the results when we apply synaptic join to the three different target

classes of the lowest (class#9), median (class#6), and highest (class#0) accuracies. The effect

– 39 –

Table 3.6: Results of synaptic join using the two different criteria, count and
threshold (ResNet18 for CIFAR-100).

Target Accuracy Original By count By threshold
class#22 target 52.0 59.0 55.0

(chimpanzee) overall 54.8 54.7 54.7
class#26 target 51.0 56.0 56.0

(crab) overall 54.8 54.8 54.8
class#51 target 51.0 56.0 55.0

(mushroom) overall 54.8 54.8 54.8

of synaptic join gets larger as the target class has lower accuracy. The target accuracy of

class#9 (lowest) increases by 15.71%, while that of class#0 (highest) only by 0.17%.

Table 3.7: Results of synaptic join for three target classes of the lowest, median, and highest
accuracies (3-layer CNN for SVHN).

Target class#
9

(lowest)
6

(median)
0

(highest)

Target accuracy
91.97 90.34 96.23

(+15.71) (+2.92) (+0.17)

Overall accuracy
89.02 89.01 88.99

(+0.03) (+0.02) (+0.00)

Table 3.8 shows the result when we apply synaptic join to multiple target classes.

We select a total of c classes of the lowest accuracy and apply synaptic join to them. We

vary c from c = 2 to c = 10 (i.e., all the classes). The target accuracy in Table 3.8 means

the average accuracy of the c classes after synaptic join. As c increases, the effect of the

improvement of the target accuracy decreases gradually from 6.53% (c = 2) to 0.38% (c = 10).

The overall accuracy is improved and converges to 89.37% by increasing c. We note that

the overall accuracy when c = 1 (i.e., 89.03%) is lower than that when c = 2 (i.e., 89.27%).

Consequently, the overall accuracy tends to be improved by adding the synapses to more target

classes and converged to a certain accuracy.

– 40 –

Table 3.8: Results of synaptic join for multiple target classes (3-layer CNN for SVHN, n =
40).

Accuracy c=2 c=4 c=6 c=8 c=10

Target
83.5 81.52 84.03 86.53 89.37

(+6.53) (+2.64) (+1.70) (+1.04) (+0.38)

Overall
89.27 89.33 89.38 89.37 89.37

(+0.28) (+0.34) (+0.39) (+0.38) (+0.38)

3.3.7 Characteristics of Synaptic Retraining

In this section, we investigate the effect of the combination of synaptic join and synaptic re-

training, in particular, Synaptic retraining-1. Synaptic join can choose a small number of target

specific synapses. Synaptic retraining can train the weights of the synapses quickly through

a small number of iterations. Here is a possible new optimization strategy that exploits both.

The strategy is repeating a pair of synaptic join (i.e., choosing synapses) and synaptic retrain-

ing (i.e., training the synapses) in a progressive manner. The motivation of the strategy is further

optimization of a neural network already trained by further training only the worst classes. In

detail, the strategy chooses the worst classes as target classes, adds new synapses for them,

and performs synaptic retraining for the synapses. The strategy repeats the above process by

narrowing the scope of optimization (i.e., the number of target classes).

We evaluate the proposed strategy using GoogLeNet for the ImageNet (ILSVRC12)

dataset described in Section 3.3.1 (top-1 accuracy: 68.98%). We denote synaptic join for 100

target classes as J100 and synaptic retraining for 100 target classes as R100. The number of

synapses per class is n = 30, and the number of iterations for retraining is 20 k with a learning

rate of 10-6. Table 3.9 shows the results of the proposed strategy while varying the steps of

optimization. We consider ten classes having the lowest accuracy as the final target classes.

In the table, Expr#1 shows that a single synaptic join J10 for the target classes improves their

average target accuracy by 8.6%. Here, the overall accuracy is not changed due to being offset

– 41 –

by the degradation of some off-target accuracies. In Expr#2, we perform a pair of synaptic

join and retraining for the 100 target classes (i.e., J100+R100), another pair of synaptic join and

retraining for the ten target classes (i.e., J10+R10) and the final synaptic join for the ten target

classes (i.e., J10). Expr#2 achieves a better result than Expr#1 in terms of both target and overall

accuracy. In Expr#3, we add one more pair J50+R50 in the middle of the steps, and so, the scope

of the target classes is narrowed down more gradually. As a result, Expr#3 achieves a better

result than that of Expr#2.

We note that the above strategy is not the main method we propose for tweaking

neural networks. A generalization of the strategy for various networks and datasets would be

beyond the scope of this dissertation. We, however, believe that the strategy gives some hints

about a post-optimization (not tweaking) method of neural networks.

Table 3.9: Results of repeating synaptic join and retraining.

Expr# Steps Target Overall

1 J10
23.40 68.98

(+8.60) (+0.00)

2 J100+R100+J10+R10+J10
25.40 68.99

(+10.60) (+0.01)

3 J100+R100+J50+R50+J10+R10+J10
26.20 69.02

(+11.40) (+0.04)

3.3.8 Synaptic Join for Imbalanced Data

In this section, we evaluate synaptic join for imbalanced data, in particular, the SUN-397

dataset [92], described in Section 3.3.1. We prepare the base model by fine-tuning a pre-

trained DenseNet-121 model for ImageNet as explained in [90], which has an overall accuracy

of 49.8%. The oversampling method addressed in [90] oversamples the training data of each

class to 2,311 images.

– 42 –

Due to data imbalance, the base model demonstrates quite low performance for the

data-poor tail classes. It shows the average accuracy of 31.1% for the top 50 tail classes and

the one of 35.2% for the top 100 tail classes. Fig. 3.10 shows the results of the oversampling

method and our Synaptic join for the top 50 tail classes (c=50). In the figure, the x-axis means

397 classes, where the leftmost one indicates the top 1 head class, and the rightmost one the

top 1 tail class. The zero value on the y-axis means the original accuracy of the base model

for each class. The blue and orange bars in the figure indicate accuracy gains. Synaptic join

improves the tail classes in a more controllable manner compared to the oversampling method.

Table 3.10 shows the accuracies while varying the number of tail classes. The accuracies of

Synaptic join are better than those of the oversampling method for c=50 and c=100, while the

former becomes smaller than the latter for c=150. That is, Synaptic join methods tend to be

effective for a relatively small number of tail classes, while the oversampling for a relatively

large number of tail classes (more than about half).

Table 3.10 also shows the results of Retraining-1, 3 and 5. In the middle section

of Table 3.10 (i.e., no oversampling), Synaptic join shows the better performance than them

since it can exploit the best active neurons among a lot of ones existing in DenseNet-121 for

SUN-397, as in Table 3.2 and Fig. 3.8. Applying ×2.0 loss penalty might be only appropri-

ate for the data where each category has equal or similar number of examples, such as SVHN

and ILSVRC12, but not for the highly imbalanced data such as SUN-397. Thus, we evaluate

Retraining-1 and 3 and other methods after making the data balanced via oversampling (i.e.,

2,311 images per class) and preparing the model trained using that data. The last section of

Table 3.10 (i.e., oversampling) shows the results. Although Oversampling + Retraining-1 and

3 are better than Synaptic join, they are worse than Oversampling + Synaptic join. The im-

provement of Retraining-5 after oversampling is not large since it oversamples the data that is

– 43 –

Table 3.10: Accuracy gains while varying the number of tail classes (DenseNet-121 for SUN-
397).

Method
Target accuracy (%)
c=50 c=100 c=150

Original 31.12 35.20 37.79
Oversampling 49.42 50.80 51.59

Retraining-1 33.68 37.00 39.44
Retraining-3 41.68 44.58 41.11
Retraining-5 34.20 40.84 42.91
Synaptic join 50.08 51.62 51.48
Synaptic retraining-1 37.48 41.16 44.16
Synaptic retraining-2 42.28 45.92 48.32

Oversampling+Retraining-1 52.88 52.22 52.67
Oversampling+Retraining-3 53.44 51.24 52.76
Oversampling+Retraining-5 48.56 50.02 50.64
Oversampling+Synaptic join 58.16 56.42 55.47
Oversampling+Synaptic retraining-1 50.52 53.12 54.91
Oversampling+Synaptic retraining-2 57.00 58.42 59.27

already oversampled. Synaptic retraining-2 tends to be more effective for oversampled data

than imbalanced data, as Retraining-1 does. Thus, Oversampling + Synaptic retraining-2 be-

comes better than Oversampling + Synaptic join, in particular when c = 100 and c = 150.

3.3.9 Time and Space Cost of Synaptic Join

In this section, we evaluate the time and space cost of synaptic join. The cost is proportional

to the three values, |V |, |C|, and |D|, as explained in Section 3.2.3. Since Algorithm 1 can be

executed for each pair of a tuple of V and a tuple ofC independently as in Fig. 3.2, synaptic join

can be easily parallelized using GPUs, where Algorithm 1 is executed as a GPU kernel function.

Using GPUs for synaptic join is a reasonable approach since the base model itself is usually

trained using GPUs. In terms of implementation, we split the table V into chunks (smaller than

the GPU memory), copy all the tables in Fig. 3.2 except V to GPUs, and then, copy each chunk

of V to different GPUs while executing the kernel function.

– 44 –

Table 3.11 shows the elapsed times of (1) training a based model, (2) retraining the

based model with a loss penalty, (3) performing synaptic join for all hidden neurons, in the same

computer having four GPUs, and (4) performing synaptic retraining on the synapses selected

by synaptic join (c=1 and n=120 for 3-layer CNN and c=10 and n=30 for GoogLeNet) until

convergence. The time cost of synaptic join is much smaller than that of original training and

retraining although we perform synaptic join for all hidden neurons. We note that the current

implementation of synaptic join is not fully optimized, and so, can be further improved in terms

of speed.

The time cost of synaptic retraining is also much smaller than that of the retraining

methods. Since the number of synapses to be trained is small (e.g., 120 for 3-layer CNN, 300

for GoogLeNet), the weights of the synapses are quickly converged (e.g., 5k for 3-layer CNN,

20k for GoogLeNet). In addition, forward propagation of synaptic retraining does not need to

pass through all synapses. The table V stores all the values of hidden neurons including active

ones for every training data. Thus, forward propagation can be done quickly by regarding

the active neurons as input neurons and skipping most of synapses. In terms of seconds per

1 k iterations, synaptic retraining improves the performance of the retraining methods by 7.25

times for 3-layer CNN and 8.14 times for GoogLeNet.

Fig. 3.11 shows the accuracies of Retraining-1 and Synaptic retraining-2 for 3-layer

CNN at the correspondent iterations and time points. Synaptic retraining is more quickly con-

verged than normal retraining, and at the same time, the time per iteration of synaptic retraining

is shorter than that of normal retraining, as explained above. 5 k iterations of synaptic retraining

are done about in 16 seconds, while only about 1.3 k iterations of normal retraining are done

about in 31 seconds.

The time cost of determination of hyperparameters n and scale in Section 3.2.3 is

– 45 –

Table 3.11: Time cost of training, retraining, synaptic join, and synaptic retraining.

Experiment
SVHN

(3-layer CNN)
ILSVRC12

(GoogLeNet)
of neurons (|V |) 45,056 1,586,816
of images (|D|) 73,257 1,281,167
of classes (|C|) 10 1,000

Training 2,298 sec. (115k) 538,800 sec. (2,400k)
Retraining 232 sec. (10k) 54,090 sec. (240k)
Synaptic join 0.83 sec. 19,422 sec.
Synaptic retraining 16 sec. (5k) 554 sec. (20k)

Training / Retraining 23.2 sec. (1k) 225.4 sec. (1k)
Synaptic retraining 3.2 sec. (1k) 27.7 sec. (1k)

negligible compared to the above cost of Algorithm 1. We obtain a set of hidden neurons with

their 〈threshold, count〉 as a result of Algorithm 1. If we consider the range between nmin and

nmax for n, then we sort all hidden neurons by the count and threshold and select the top-nmax

neurons. We determine both hyperparameters using a validation set, which is usually much

smaller than the training set. The main cost for determination of both hyperparameters is just

feed forwarding using the validation set while storing the following three kinds of values for

each validation sample: (1) the values of output neurons, (2) the values of the top-nmax neurons,

and (3) the weights of synapses between the top-nmax neurons and the target output neurons.

We can calculate validation accuracy for each candidate pair of n and scale only using simple

operations (e.g., matrix addition) on the stored values, and so, determination of n and scale is

done within few tens of seconds.

The space costs for storing the tables V and C in disks are |V | · |D| and |C| · |D|,

respectively, as shown in Fig. 3.2. Synaptic join has no memory problem since it is executed

for each pair of a tuple of V and a tuple of C independently, as explained above. Synaptic

retraining also can be done without a lack of memory, since it requires to load only small parts

of the tables into main memory at once. We denote the set of active neurons by T . Then, as

– 46 –

explained above, synaptic retraining regards T as input neurons and the T ’s rows of length |D|

in V as input examples. Thus, the amount of data that synaptic retraining needs to access is

only |T | · |D| + |C| · |D|. In addition, synaptic retraining loads only one or a few batches of

the data into main memory at once, as normal training or retraining does. We denote the batch

size by |B|. In our experiments, we used the same batch sizes for normal training/retraining

and synaptic retraining (e.g., |B| = 150 for SVHN and |B| = 64 for ILSVRC12). Thus, the

amount of data that synaptic retraining loads into main memory is just |T | · |B| + |C| · |B|,

which is quite small. For example, even if a 10% of all neurons of GoogLeNet are selected as

active neurons, the size of data loaded is just 158, 682 · 64 · 4 + 1, 000 · 64 · 4 = 41MB, when

using 4-byte floating point numbers.

– 47 –

(a) Retraining-1: ×2.0 loss penalty to the tar-
get class (average target accuracy: 91.44%, average
overall accuracy: 89.50%)

(b) Retraining-3: ×2.0 loss penalty to the target
class from the beginning (average target accuracy:
91.53%, average overall accuracy: 89.51%)

(c) Retraining-5: ×2 oversampling for the tar-
get class (average target accuracy: 90.94%, average
overall accuracy: 89.68%)

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

���

����

����

�	�

(d) Calibration: varying µ between 0.0 and
1.0 (when µ=0.9, the target accuracy is 97.19%, and
overall accuracy is 87.36%)

��
��
��
��

���

� � � � 	
 � � � � ��
�����
�
�
�
��
�
�
��
	

��������

��������
 �� �
 �� �
 �� �
 	� 	

(e) Synaptic join: n=120, varying scale between
5 and 45 (when scale=40, the target accuracy is
91.97%, and overall accuracy is 89.02%)

(f) Synaptic retraining-2: ×2.0 loss penalty to the
target class and n=120 (target accuracy: 91.74%,
overall accuracy: 90.59%).

Figure 3.7: Per-class and overall test accuracies of compared methods (3-layer CNN for
SVHN).

– 48 –

������
�����	��

�����	���

���
�
������

����
�

�����

������

�������

���������

������ ������� ���������

�
��
�
��
�
�
�	
�

��
	

��������

���	�

Figure 3.8: Correlation between the number of parameters and the number of active neu-
rons (SV 3CN: 3-layer CNN for SVHN, SV RN: ResNet-20 for SVHN, SV DN: DenseNet-40
for SVHN, C100 RN18: ResNet18 for CIFAR-100, C100 RN56: ResNet18 for CIFAR-100,
SUN DN: DenseNet-121 for SUN-397, IMG GN: GoogLeNet for ImageNet).

����

�������	�
��

�������	�
��

	
��
�

�	���

�		��
�����������

�	���

�		��
�����������

�������	�
�������������

�������	�
�������������

�����������

�����������

�������	�
��
����������

��������

�������	�
�� �����������

�������	�
�� �����������

�������	�
�� �����������

�������	�
�� ����������

(a) GoogLeNet

����

������

���	

����
 ��
��
���

����

���	�

����� �

������

�����

���	�

�����
�� �������

������
�����

(b) 3-layer CNN

Figure 3.9: Distribution of active neurons.

– 49 –

���

���

�

��

��

� �� �� �		 �

 ��� ��� 	�� 	�	 	�

�
�
�
�
��
�
�
��
�
	

��
�

�
�����

��������
��� ���������� ��

Figure 3.10: Oversampling method and synaptic join (DenseNet-121 for SUN-397, c=50,
n=100, scale=6).

��

��

��

��

��

���

� ���� ����	 ���
� ���	� ����
����

�
�
�
��
�
�
�
�
	�
�

��
�

��������	
��
������	
��
���� ��������	
��
������	
���
����

��
���	
��
������	
��
���� ��
���	
��
������	
���
����

���
������	����	
�����

�����
	��	

���
������

�������� � ����
��� 	��� − − −

	
���
 � ��� 	
� �	� ��	 ���� ����

Figure 3.11: Accuracies of normal retraining and synaptic retraining at equal number of
iterations.

– 50 –

Chapter 4. Augmenting Deep Neural Networks with Active Neurons

4.1 Augmentation with Active Neurons

In this chapter, we present augmented deep neural networks with active neurons. We call this

augmentation with active neurons method as AAN. The proposed method is similar to but ex-

tended to synaptic retraining. Unlike the previous chapter, which improved only certain classes,

the goal is to improve all classes. This method first selects active neurons to improve all classes,

then constructs small-size networks and augments them to the original base model. Unlike the

synaptic join and synaptic retraining introduced in the previous chapter, we designed the aug-

mented networks in the form of a multi-layer perceptron (MLP) which has a single hidden layer

in order to learn non-linearity in the training process. Also, the proposed augmentation method

does not change the base models during the training phases; in other words, as in Chapter 3.3.9,

by referring to the output values of active neurons and base model determined in tables V and

C (which we call table T) and using them as inputs, fast training is possible.

Fig 4.1 shows an example of an augmented model in 3-layer CNN on SVHN.

Fig 4.1a shows the concept that our method extracts active neurons from each layer of the

base model, inputs them as hidden layers, and corrects the output. Fig 4.1b shows the AAN

model actually used in our experiment. By using Table T in which active neurons and base

model’s output are already stored as input, the AAN model is efficiently learned without for-

ward propagation of the base model.

– 51 –

�����

���	

���
�� ���
�� ���
��

����

�

�
�������
����

�

�
������� ����

�

�
�������

����
�����
�

�

�������
�
�����������

������
��	�
��
�

������

���
 �����
���������
�

��	�
��
��� !

(a) A concept design of augmented networks with a base model (3-layer CNN)

���������

	��
��

����
��

���������

����
��

���������

����
��

���������

�������������������

������������

	��
��

�

��
������������������

(b) Actual design of augmented networks

Figure 4.1: Augmented networks with active neurons.

4.2 Experimental Evaluation

4.2.1 Environments

We use various neural networks for four datasets, SVHN (cropped digits) [62], CIFAR-100 [47],

ImageNet (ILSVRC12, classification) [74], and SUN-397 [92]. SVHN is a real-world color im-

age dataset of the digits obtained from house numbers in Google Street View images, which

consists of 10 classes of digits and contains 73,257 training samples and 26,032 testing samples

of 32 × 32 pixels. CIFAR-100 [47] is a collection of color images of 32 × 32 pixels that con-

tains 100 classes, 500 training samples per class, and 100 testing samples per class. ImageNet

consists of 1,000 categorical real-world images. The numbers of training and testing samples

are about 1.2 million and 50,000, respectively. SUN-397 is a skewed and long-tailed dataset of

color images for scene understanding. The dataset consists of 108,754 images of 397 classes,

and each class consists of 100 to 2,361 images. We randomly choose 50 images as test data for

– 52 –

each class and use the remaining 50 to 2,311 images as training data. For both ImageNet and

SUN-397, we resized the images to 256×256 pixels and properly cropped them to satisfy the

requirement on the size of the input for each model.

In all the experiments, we split training samples into training and validation sam-

ples. For SVHN, 2,000 samples per class are used for validation, and the remaining samples

for training. For SUN-397 and ImageNet, 25 and 500 samples per class are used for valida-

tion, respectively, and the remaining samples for training. We performed synaptic join using

the training samples and determined hyperparameters using the validation samples. Then, we

measured the accuracy using the test samples.

We explain the base neural network models used in the experiments. For SVHN,

we have modified the 3-layer CNN model in [1] by adding a batch normalization layer to each

convolution layer. After training the model for 115 k iterations with a start learning rate of

0.001 and reduced the learning rate by 1/10 at 75 k iterations, the model achieved 88.99%

overall test accuracy. For CIFAR-100, we have modified ResNet-18 [2] and ResNet-56 [39]

models. The ResNet-18 model has five residual blocks, and each block consists of three or

four convolution layers. After 40 k iterations of training with an initial learning rate of 0.1,

which was reduced by a factor of 10 for every 5 k iterations, the model achieved 54.8% overall

accuracy. The ResNet-56 model has three residual groups, and each group has eight residual

blocks, and each block consists of two or three convolution layers. After 64 k iterations of

training with an initial learning rate of 0.1, which is reduced by a factor of 10 at 32 k and 48 k

iterations, the model achieved 66.1% overall test accuracy. For ImageNet, we have used the

GoogLeNet [83] binary model which has 68.98% overall accuracy (top-1). For more models

used in a specific experiment, we explain them in the corresponding sections. For SUN-397,

we prepare the base model by fine-tuning a pre-trained DenseNet-121 model for ImageNet as

explained in [90], which has an overall accuracy of 49.8%.

– 53 –

We conducted all the experiments on a workstation equipped with two Intel Xeon

2.2 GHz CPUs of ten cores (a total of 20 cores), 384 GB main memory, eight NVIDIA GTX

1080Ti GPUs of 11 GB memory, and 10 TB HDD. We trained and ran the models using

CAFFE [45].

4.2.2 Comparison with DA and WA Method

This chapter compares the depth augmented (DA) method and width augmented (WA) method

with our augmentation with active neurons approach. The DA model is constructed by adding

a fully-connected layer after the last representation module of each base model. The WA model

is constructed by adding a fully-connected layer aside along with the last representation module

of each base model. We add an augmented layer for each DA and WA model, with 512 hidden

units for 3-layer CNN, ResNet-20, and DenseNet-40 models for SVHN data. Unlike the DA

and WA methods, our method no longer uses the base model for training. Instead, our aug-

mented models only require a relatively small amount of parameters because they consist only

of MLPs with fully-connected active neurons and single hidden layers. In the case of 3-layer

CNN for SVHN, a total of 1,000 active neurons are propagated to a hidden layer with 96 units.

The augmented output is then obtained by adding the output of the base model to the output

propagated from the augmented hidden layer. Since the entire outputs of the base model are

simply referenced from the table T , which are already stored during synaptic join operation,

our model does not require any forward-propagation of data to the base model. After that, the

augmented networks are trained using the loss of the final augmented output. Table 4.1 shows

the number of hidden units and active neurons used in the DA models, WA models, and our

models. We selected the optimal value for the size of each unit using the validation sets.

Table 4.2 shows a comparison of the number of parameters between DA and WA

– 54 –

Table 4.1: Number of hidden units and active neurons used in DA, WA and our models.

Dataset Model
DA WA AAN (ours)

hidden # hidden # active # hidden
units units neurons units

SVHN
3-layer CNN 512 512 1,000 96
ResNet-20 512 512 300 192

DenseNet-40 512 512 1,600 192

CIFAR-100
ResNet-18 1,024 1,024 4,000 320
ResNet-56 1,024 1,024 3,000 192

ILSVRC12 GoogLeNet 4,096 4,096 6,314 1,024
SUN-397 DenseNet-121 2,048 1,024 11,910 256

models. The numbers of additional parameters of the DA and WA methods for the base models

are proportional to the number of neurons in the layer where augmentation starts, the number

of hidden neurons in the DA and WA layers, and the number of classes. In Table 4.2, all the

numbers of augmented parameters for DA models are smaller than those of the WA models.

The WA model takes the feature maps of the layer before the last layer in the representation

module as the input, whereas the DA model takes the feature maps of the last layer in the

representation module as the input. Since the size of each layer (the size of feature maps) in

deep neural networks usually gets decreased as the depth of the layer becomes deeper, the size

of additional parameters on DA model also smaller than that of WA model.

Table 4.2: Comparison of the number of parameters between DA and WA models.

Dataset Model Original
DA WA

param
Ratio for

param
Ratio for

original original

SVHN
3-layer CNN 89.6 K 608 K 679% 1.14 M 1,275%
ResNet-20 272 K 309 K 114% 10.9 M 1,077%

DenseNet-40 1.02 M 1.25 M 123% 2.37 M 872%

CIFAR-100
ResNet-18 684 K 6.58 M 963% 30.2 M 4,429%
ResNet-56 869 K 1.03 M 119% 5.17 M 594%

ILSVRC12 GoogLeNet 6.99 M 20.6 M 295% 184 M 2,639%
SUN-397 DenseNet-121 7.36 M 9.86 M 134% 41.3 M 561%

– 55 –

Table 4.3 shows a comparison of the number of parameters between DA and our

models. The number of additional parameters of the DA method for the base models is propor-

tional to the number of neurons in the last representation layer, the number of hidden neurons

in the DA layer, and the number of classes. On the other hand, in our method, the number of

whole parameters is only proportional to the number of active neurons, the number of hidden

neurons in the added layer, and the number of classes. The last two columns of the table show

the ratio of the number of parameters for the base models and the DA models, respectively.

Our method can be configured with a small number of parameters less than about 22% of the

original and DA even though the active neurons of a sufficiently large size are used to improve

all classes.

Table 4.3: Comparison of the number of parameters between DA and our models.

Dataset Model Original DA
Synaptic retraining

param
Ratio for Ratio for
original DA

SVHN
3-layer CNN 89.6 K 608 K 35.2 K 39.2% 5.8%
ResNet-20 272 K 309 K 21.7 K 8.0% 7.0%

DenseNet-40 1.02 M 1.25 M 86.9 K 8.5% 7.0%

CIFAR-100
ResNet-18 684 K 6.58 M 300 K 43.9% 4.6%
ResNet-56 869 K 1.03 M 217 K 25.0% 21.1%

ILSVRC12 GoogLeNet 6.99 M 20.6 M 2.71 M 38.9% 13.2%
SUN-397 DenseNet-121 7.36 M 9.86 M 840 K 11.4% 8.5%

Table 4.4 compares the accuracy of the base model, DA, WA, and our method. In the

case of DA, the accuracy is improved over the original accuracy in most models; However, for

already highly optimized models such as GoogLeNet and ResNet-56, the accuracy was rather

reduced during the retraining process. On the other hand, our method obtained not only better

accuracy in all models than the original even though a small number of parameters were used,

but also mostly better or comparable results than the DA method. Even in GoogLeNet and

ResNet-56 models that the DA method did not improve, our method was able to improve the

– 56 –

accuracy.

Table 4.4: Comparison of overall accuracy between DA, WA and our models.

Dataset Model
Overall accuracy (%)

Original DA WA AAN

SVHN
3-layer CNN 88.99 90.14 90.88 91.00
ResNet-20 95.00 95.09 94.4 95.08

DenseNet-40 96.00 96.25 94.53 96.19

CIFAR-100
ResNet-18 54.80 54.90 52.32 54.92
ResNet-56 66.10 64.77 65.05 66.21

ILSVRC12 GoogLeNet 68.98 68.80 64.93 69.03
SUN-397 DenseNet-121 49.75 50.06 47.31 50.36

Table 4.5 compares the accuracy of our method to the synaptic join and synaptic

retraining methods introduced in the previous chapter. For the synaptic join and synaptic re-

training methods, the numbers of targets in synaptic join and synaptic retraining for SVHN and

CIFAR-100 datasets are one; the number of targets for ILSVRC12 dataset is 10; the number of

targets for SUN-397 dataset is 50. For the AAN method, the number of targets for each dataset

is the same as the number of classes. Since the AAN method uses more active neurons and

parameters than those of synaptic join and synaptic retraining methods, the overall accuracies

of the AAN method are better for most models.

Table 4.5: Comparison of overall accuracy between synaptic join, synaptic retraining and our
method.

Dataset Model Synaptic join Synaptic retraining AAN

SVHN
3-layer CNN 89.02 (+0.03) 90.68 (+1.69) 91.00 (+2.01)
ResNet-20 95.00 (+0.00) 95.00 (+0.00) 95.08 (+0.08)

DenseNet-40 96.00 (+0.00) 96.30 (+0.30) 96.19 (+0.19)

CIFAR-100
ResNet-18 54.80 (+0.00) 54.83 (+0.03) 54.92 (+0.12)
ResNet-56 66.10 (+0.00) 66.11 (+0.01) 66.21 (+0.11)

ILSVRC12 GoogLeNet 68.98 (+0.00) 68.99 (+0.01) 69.03 (+0.05)
SUN-397 DenseNet-121 50.12 (+0.37) 50.19 (+0.44) 50.36 (+0.61)

Table 4.6 compares the training times per 1 K iterations of original, DA, WA, and

– 57 –

our models. As the number of parameters increases, DA and WA models need a longer learn-

ing time for the same 1 K iterations. The model with the largest increase in training time is

GoogLeNet, which takes about 514 seconds to train the DA model and 556 seconds to train the

WA model by 1 K iterations. On the other hand, our method requires less than 20% training

time for most models compared to the DA method. Exceptionally, in 3-layer CNN, both the

base model and the DA model have a small model size and a short training time, so the training

time of our method has a ratio of 33.6% for DA method. In particular, even in GoogLeNet, our

method can learn 10 times faster than the DA method and obtain better accuracy.

Table 4.6: Comparison of training time of 1 K iterations between DA, WA and our models.

Dataset Model
Training time (sec.) Ratio for

Original DA WA AAN DA

SVHN
3-layer CNN 23.2 24.1 34.2 8.1 33.6%
ResNet-20 133.6 164.1 181.2 7.8 4.8%

DenseNet-40 254.4 304.7 324.9 14.1 4.6%

CIFAR-100
ResNet-18 120.1 137.6 165.2 22.4 16.3%
ResNet-56 364.1 395.5 426.0 19.1 4.8%

ILSVRC12 GoogLeNet 225.4 514.9 556.3 48.9 9.5%
SUN-397 DenseNet-121 172.5 379.6 401.3 29.6 7.8%

– 58 –

Chapter 5. Related Work

There are a number of methods that delete existing synapses from the original neural network.

They are widely used for compressing the neural networks in order to save memory space and

computational resources. In particular, they are useful in resource-limited environments such

as mobile devices or embedded systems. Network pruning [34, 35] removes all the synapses

of weights below a threshold from the original network, and so, converts a dense network into

a sparse network. In particular, this pruning method can reduce much of the size and amount

of computations for the networks having many fully connected layers since there exist much

more number of synapses in fully connected layers than convolutional layers. We note that

this method removes the existing synapses having weights around zero, while our method adds

new synapses having weights around zero. Dynamic network surgery [33] has been proposed

to avoid incorrect pruning of the synapses. This method evaluates the importance of every

synapses at each iteration and decides each synapse should be pruned or spliced. Pruning

filters [51] has been proposed to avoid sparse kernels (filters) in convolutional neural networks.

This method prunes the whole sparse (i.e., unimportant) filters with their connected feature

maps to reduce the inference cost of the networks.

The network dissection method [13] tries to interpret a CNN by scoring the semantics

of each hidden unit into six human-labeled visual concepts, which are the scene, object, part,

material, texture, and color. The method evaluates every individual convolutional unit in a CNN

as a solution to a binary segmentation task for every visual concept. In detail, it determines a

threshold Tk for each convolutional unit k such that P (ak ≥ Tk) = 0.005, where ak is the

activation of unit k. Then, after selecting all the regions for which the activation exceeds the

threshold Tk, the score of each unit k as a segmentation for concept c is calculated as a data-

– 59 –

set-wide Intersection over Union (IoU). This method is similar to our method in terms of the

concept of scoring each hidden unit k during the feed-forwarding, but quite different from

our method in terms of the purpose of scoring and the method of scoring. The scoring of the

network dissection method is for evaluating the quality of the segmentation of each unit. It

also scores each unit for each visual concept individually. In contrast, our method scores each

hidden neuron by considering both the target and off-target classes. Moreover, our method not

only scores a neuron but also calculates a suitable weight from the neuron to the target class

node.

Zero-shot learning [17, 49] aims to solve a task whose instances may not have been

trained. It uses the side information of the classes, i.e., attributes, to infer the label of one of

the unseen classes. It first predicts the attributes of an input image whose class label is unseen

during the training stage, and then, infers the class label of the image by searching the class

which has the most similar set of attributes. Although zero-shot learning itself is not related to

our method, the calibration method proposed in [17, 49] can be used for tweaking the neural

networks, and thus, we compared it with our method. In detail, it calibrates the prediction

for the target class with a prior probability µ and that for the off-target classes with a prior

probability (1−µ) (0.0 ≤ µ ≤ 1.0). In our experiments, it tends to increase the target accuracy

too drastically, and thus, some off-target class accuracies decrease suddenly and unexpectedly.

Recently, there is growing interest in automating designing good neural network ar-

chitectures [25, 46, 53, 59, 70, 73, 84, 94, 105, 106]. There are two major types of network

architecture search (NAS) methods: reinforcement learning-based (RL) methods and evolu-

tionary algorithm-based (EV) methods. RL methods [70, 84, 105, 106] use a controller model

that enumerates a bunch of candidate models and is updated using the validation accuracy of

the candidate models. To reduce the search space, they usually assume a candidate model is

composed of cells having the same architecture and focus on searching for the best cell ar-

– 60 –

chitecture. A cell is composed of multiple blocks, and each block is composed of multiple

operations, which are selected from a pool of various operations (e.g., convolution, pooling).

EV methods [46, 53, 59, 73, 94] search a good architecture based on evolutionary algorithm.

The population is initialized with models with random architectures, and some models are sam-

pled from that. The model with the highest validation fitness within the samples is selected as

the parent (i.e., exploitation), and a child having a mutation in terms of operations and skip

connections is constructed from the parent (i.e., exploration). The existing NAS methods usu-

ally search for a good architecture in terms of operations. In contrast, synaptic join can be

considered as a greedy heuristic NAS method in terms of synapses.

– 61 –

Chapter 6. Conclusions

In this dissertation, we proposed Synaptic Join and Augmentation with Active Neurons meth-

ods that could improve the accuracy of a deep neural network model without modifying the

original model.

In Chapter 3, the proposed method tweaks a neural network by adding a small num-

ber of new synapses from the active hidden neurons to the output neurons of the target classes.

We proposed the algorithm θ that can evaluate the performance of all the possible candidate

synapses in the training data. In addition, we proposed the synaptic join and synaptic retraining

methods based on θ. Through experiments, we demonstrated that the methods could control

the test accuracy of the target and off-target classes in a more predictable and controllable man-

ner than the other methods. We note that the model tweaked by the proposed method is not

permanent, i.e., it can be recovered to the original model simply by removing the synapses;

in contrast, the model tweaked by the conventional weight retraining methods is permanent.

We expect that the proposed method can be used to operate a single original neural network

differently by using different user-/application-specific sets of synapses, i.e., this method can

make customized AI service possible without retraining.

In Chapter 4, we proposed augmented deep neural networks with active neurons. The

existing augmentation methods, which insert layers in the original model, usually generate too

large-size models and require a long training time. The proposed method feeds only the active

neurons to a small network model for efficient learning to overcome this problem. The synaptic

join method in Chapter 3 exploits only the linearity of each synapse to tweak a given neural

network model; however, the proposed augmentation with active neurons can train models to

learn non-linearity. Through experiments, we demonstrated that the methods could improve

– 62 –

the accuracy with a short training time and a small number of parameters.

In conclusion, the proposed methods can improve the model to suit the user’s purpose

without changing the original deep neural network. We believe that the proposed methods can

be helpful in the application field of customized artificial intelligence services.

– 63 –

References

[1] 3-layer cnn for cifar10. https://github.com/BVLC/caffe/blob/master/

examples/cifar10. Accessed on 31.10.2017.

[2] Resnet18 for cifar-100. https://github.com/beniz/deepdetect/blob/

master/templates/caffe/resnet_18/deploy.prototxt. Accessed on

31.10.2017.

[3] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional

neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and

language processing, 22(10):1533–1545, 2014.

[4] C. Affonso, A. L. D. Rossi, F. H. A. Vieira, A. C. P. de Leon Ferreira, et al. Deep learning

for biological image classification. Expert Systems with Applications, 85:114–122, 2017.

[5] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman. Deep audio-visual

speech recognition. IEEE transactions on pattern analysis and machine intelligence,

2018.

[6] C. C. Aggarwal et al. Neural networks and deep learning. Springer, 10:978–3, 2018.

[7] F. Ahmad, A. Abbasi, J. Li, D. G. Dobolyi, R. G. Netemeyer, G. D. Clifford, and

H. Chen. A deep learning architecture for psychometric natural language processing.

ACM Transactions on Information Systems (TOIS), 38(1):1–29, 2020.

[8] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,

B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end speech recognition in

– 64 –

https://github.com/BVLC/caffe/blob/master/examples/cifar10
https://github.com/BVLC/caffe/blob/master/examples/cifar10
https://github.com/beniz/deepdetect/blob/master/templates/caffe/resnet_18/deploy.prototxt
https://github.com/beniz/deepdetect/blob/master/templates/caffe/resnet_18/deploy.prototxt

english and mandarin. In International conference on machine learning, pages 173–182.

PMLR, 2016.

[9] K. Antczak. Deep recurrent neural networks for ecg signal denoising. arXiv preprint

arXiv:1807.11551, 2018.

[10] S. Bacchi, L. Oakden-Rayner, T. Zerner, T. Kleinig, S. Patel, and J. Jannes. Deep learning

natural language processing successfully predicts the cerebrovascular cause of transient

ischemic attack-like presentations. Stroke, 50(3):758–760, 2019.

[11] M. Bakator and D. Radosav. Deep learning and medical diagnosis: A review of literature.

Multimodal Technologies and Interaction, 2(3):47, 2018.

[12] K. Bantupalli and Y. Xie. American sign language recognition using deep learning and

computer vision. In 2018 IEEE International Conference on Big Data (Big Data), pages

4896–4899. IEEE, 2018.

[13] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quan-

tifying interpretability of deep visual representations. In Computer Vision and Pattern

Recognition (CVPR), 2017 IEEE Conference on, pages 3319–3327. IEEE, 2017.

[14] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new per-

spectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–

1828, 2013.

[15] M. Biswas, V. Kuppili, L. Saba, D. R. Edla, H. S. Suri, E. Cuadrado-Godia, J. R. Laird,

R. T. Marinhoe, J. M. Sanches, A. Nicolaides, et al. State-of-the-art review on deep

learning in medical imaging. Frontiers in bioscience (Landmark edition), 24:392–426,

2019.

– 65 –

[16] M. A. Carreira-Perpinán and Y. Idelbayev. “learning-compression” algorithms for neural

net pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8532–8541, 2018.

[17] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of

generalized zero-shot learning for object recognition in the wild. In European Confer-

ence on Computer Vision, pages 52–68. Springer, 2016.

[18] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced lstm for natural

language inference. arXiv preprint arXiv:1609.06038, 2016.

[19] J.-T. Chien. Deep bayesian natural language processing. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts,

pages 25–30, 2019.

[20] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural

language processing (almost) from scratch. JMLR, 12(Aug):2493–2537, 2011.

[21] L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network learning for

speech recognition and related applications: An overview. In 2013 IEEE international

conference on acoustics, speech and signal processing, pages 8599–8603. IEEE, 2013.

[22] L. Deng and Y. Liu. A joint introduction to natural language processing and to deep

learning. In Deep learning in natural language processing, pages 1–22. Springer, 2018.

[23] L. Deng and D. Yu. Deep learning for signal and information processing. Microsoft

research monograph, 2013.

[24] L. Deng and D. Yu. Deep learning: methods and applications. Foundations and trends

in signal processing, 7(3–4):197–387, 2014.

– 66 –

[25] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. arXiv

preprint arXiv:1808.05377, 2018.

[26] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,

G. Corrado, S. Thrun, and J. Dean. A guide to deep learning in healthcare. Nature

medicine, 25(1):24–29, 2019.

[27] H. Garcia-Molina. Database systems: the complete book. Pearson Education India,

2008.

[28] E. Goceri and N. Goceri. Deep learning in medical image analysis: recent advances and

future trends. 2017.

[29] Y. Goldberg. A primer on neural network models for natural language processing. Jour-

nal of Artificial Intelligence Research, 57:345–420, 2016.

[30] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning (adaptive computation and

machine learning series), 2016.

[31] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional

lstm and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

[32] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew. Deep learning for visual

understanding: A review. Neurocomputing, 187:27–48, 2016.

[33] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In NIPS,

pages 1379–1387, 2016.

[34] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. ICLR, 2016.

[35] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for

efficient neural network. In NIPS, pages 1135–1143, 2015.

– 67 –

[36] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,

S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech

recognition. arXiv preprint arXiv:1412.5567, 2014.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

CVPR, pages 770–778, 2016.

[38] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks.

In Proceedings of the IEEE International Conference on Computer Vision, pages 1389–

1397, 2017.

[39] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks.

In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[40] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups. IEEE Signal processing

magazine, 29(6):82–97, 2012.

[41] J. Hirschberg and C. D. Manning. Advances in natural language processing. Science,

349(6245):261–266, 2015.

[42] S. Hochreiter, Y. Bengio, and P. Fransconi. Gradient flow in recurrent nets: the difficulty

of learning long-term dependencies. A Field Guide to Dynamical Recurrent Neural Net-

works, 2011.

[43] L. Hongtao and Z. Qinchuan. Applications of deep convolutional neural network in

computer vision. Journal of Data Acquisition and Processing, 31(1):1–17, 2016.

[44] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected con-

– 68 –

volutional networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

[45] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM

Multimedia, pages 675–678, 2014.

[46] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent

network architectures. In International Conference on Machine Learning, pages 2342–

2350, 2015.

[47] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.

2009.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-

lutional neural networks. In NIPS, pages 1097–1105, 2012.

[49] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-

shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(3):453–465, 2014.

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[51] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient

convnets. arXiv preprint arXiv:1608.08710, 2016.

[52] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van

Der Laak, B. Van Ginneken, and C. I. Sánchez. A survey on deep learning in medical

image analysis. Medical image analysis, 42:60–88, 2017.

– 69 –

[53] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical rep-

resentations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

[54] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network

pruning. arXiv preprint arXiv:1810.05270, 2018.

[55] A. S. Lundervold and A. Lundervold. An overview of deep learning in medical imaging

focusing on mri. Zeitschrift für Medizinische Physik, 29(2):102–127, 2019.

[56] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural

network compression. In Proceedings of the IEEE international conference on computer

vision, pages 5058–5066, 2017.

[57] M. Mehdipour Ghazi and H. Kemal Ekenel. A comprehensive analysis of deep learning

based representation for face recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pages 34–41, 2016.

[58] H. Meng, T. Yan, F. Yuan, and H. Wei. Speech emotion recognition from 3d log-mel

spectrograms with deep learning network. IEEE access, 7:125868–125881, 2019.

[59] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In Artifi-

cial Intelligence in the Age of Neural Networks and Brain Computing, pages 293–312.

Elsevier, 2019.

[60] L. Min, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400, 2013.

[61] A. Mousavi, A. B. Patel, and R. G. Baraniuk. A deep learning approach to structured

signal recovery. In 2015 53rd annual allerton conference on communication, control,

and computing (Allerton), pages 1336–1343. IEEE, 2015.

– 70 –

[62] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in

natural images with unsupervised feature learning. In NIPS workshop on deep learning

and unsupervised feature learning, volume 2011, page 5, 2011.

[63] H. Ninomiya, N. Kitaoka, S. Tamura, Y. Iribe, and K. Takeda. Integration of deep bot-

tleneck features for audio-visual speech recognition. In Sixteenth annual conference of

the international speech communication association, 2015.

[64] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and T. Ogata. Audio-visual speech

recognition using deep learning. Applied Intelligence, 42(4):722–737, 2015.

[65] D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning

for natural language processing. IEEE Transactions on Neural Networks and Learning

Systems, 2020.

[66] W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In Proceedings

of the IEEE international conference on computer vision, pages 2056–2063, 2013.

[67] O. K. Oyedotun and A. Khashman. Deep learning in vision-based static hand gesture

recognition. Neural Computing and Applications, 28(12):3941–3951, 2017.

[68] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Kr-

palkova, D. Riordan, and J. Walsh. Deep learning vs. traditional computer vision. In

Science and Information Conference, pages 128–144. Springer, 2019.

[69] J. Padmanabhan and M. J. Johnson Premkumar. Machine learning in automatic speech

recognition: A survey. IETE Technical Review, 32(4):240–251, 2015.

[70] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture

search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

– 71 –

[71] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and T. Sainath. Deep learn-

ing for audio signal processing. IEEE Journal of Selected Topics in Signal Processing,

13(2):206–219, 2019.

[72] D. Ravı̀, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G.-Z. Yang.

Deep learning for health informatics. IEEE journal of biomedical and health informatics,

21(1):4–21, 2016.

[73] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier

architecture search. In Proceedings of the aaai conference on artificial intelligence,

volume 33, pages 4780–4789, 2019.

[74] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–

252, 2015.

[75] B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, R. M. Sum-

mers, and M. L. Giger. Deep learning in medical imaging and radiation therapy. Medical

physics, 46(1):e1–e36, 2019.

[76] M. E. Sánchez-Gutiérrez, E. M. Albornoz, F. Martinez-Licona, H. L. Rufiner, and J. God-

dard. Deep learning for emotional speech recognition. In Mexican conference on pattern

recognition, pages 311–320. Springer, 2014.

[77] A. Satt, S. Rozenberg, and R. Hoory. Efficient emotion recognition from speech using

deep learning on spectrograms. In Interspeech, pages 1089–1093, 2017.

[78] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recogni-

– 72 –

tion with cortex-like mechanisms. IEEE transactions on pattern analysis and machine

intelligence, 29(3):411–26, 2007.

[79] D. Shen, G. Wu, and H.-I. Suk. Deep learning in medical image analysis. Annual review

of biomedical engineering, 19:221–248, 2017.

[80] A. Siddhant and Z. C. Lipton. Deep bayesian active learning for natural language pro-

cessing: Results of a large-scale empirical study. arXiv preprint arXiv:1808.05697,

2018.

[81] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[82] S. P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, and B. Gulyás. 3d deep

learning on medical images: a review. Sensors, 20(18):5097, 2020.

[83] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1–9, 2015.

[84] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnas-

net: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[85] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong parts for pedestrian de-

tection. In Proceedings of the IEEE international conference on computer vision, pages

1904–1912, 2015.

[86] M. V. Valueva, N. Nagornov, P. A. Lyakhov, G. V. Valuev, and N. I. Chervyakov. Ap-

plication of the residue number system to reduce hardware costs of the convolutional

– 73 –

neural network implementation. Mathematics and Computers in Simulation, 177:232–

243, 2020.

[87] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep learning for

computer vision: A brief review. Computational intelligence and neuroscience, 2018,

2018.

[88] S. Wang and J. Jiang. Learning natural language inference with lstm. arXiv preprint

arXiv:1512.08849, 2015.

[89] Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain: Fine-tuning by increasing

model capacity. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[90] Y.-X. Wang, D. Ramanan, and M. Hebert. Learning to model the tail. In Advances in

Neural Information Processing Systems, pages 7029–7039, 2017.

[91] S. Wu, K. Roberts, S. Datta, J. Du, Z. Ji, Y. Si, S. Soni, Q. Wang, Q. Wei, Y. Xiang, et al.

Deep learning in clinical natural language processing: a methodical review. Journal of

the American Medical Informatics Association, 27(3):457–470, 2020.

[92] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale

scene recognition from abbey to zoo. In 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 3485–3492. IEEE, 2010.

[93] D. Xie, L. Zhang, and L. Bai. Deep learning in visual computing and signal processing.

Applied Computational Intelligence and Soft Computing, 2017, 2017.

[94] L. Xie and A. Yuille. Genetic cnn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1379–1388, 2017.

– 74 –

[95] H. Yang, L. Luo, L. P. Chueng, D. Ling, and F. Chin. Deep learning and its applications to

natural language processing. In Deep learning: Fundamentals, theory and applications,

pages 89–109. Springer, 2019.

[96] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based

natural language processing. ieee Computational intelligenCe magazine, 13(3):55–75,

2018.

[97] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide. Feature learning in deep neural

networks-studies on speech recognition tasks. arXiv preprint arXiv:1301.3605, 2013.

[98] J. Yu, K. Weng, G. Liang, and G. Xie. A vision-based robotic grasping system using

deep learning for 3d object recognition and pose estimation. In 2013 IEEE international

conference on robotics and biomimetics (ROBIO), pages 1175–1180. IEEE, 2013.

[99] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and

L. S. Davis. Nisp: Pruning networks using neuron importance score propagation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

9194–9203, 2018.

[100] J. Zhang, Y. Xie, Q. Wu, and Y. Xia. Medical image classification using synergic deep

learning. Medical image analysis, 54:10–19, 2019.

[101] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li. Adversarial attacks on deep-learning

models in natural language processing: A survey. ACM Transactions on Intelligent Sys-

tems and Technology (TIST), 11(3):1–41, 2020.

[102] Z. Zhang, J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. Jin, and B. Schuller. Deep learn-

ing for environmentally robust speech recognition: An overview of recent developments.

ACM Transactions on Intelligent Systems and Technology (TIST), 9(5):1–28, 2018.

– 75 –

[103] W. Zhu, S. M. Mousavi, and G. C. Beroza. Seismic signal denoising and decomposition

using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing,

57(11):9476–9488, 2019.

[104] L. Zhuang. Densenet-40 model reference for cifar dataset. https://github.com/

liuzhuang13/DenseNetCaffe. Accessed on 31.10.2019.

[105] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv

preprint arXiv:1611.01578, 2016.

[106] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for

scalable image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 8697–8710, 2018.

– 76 –

https://github.com/liuzhuang13/DenseNetCaffe
https://github.com/liuzhuang13/DenseNetCaffe

APPENDIX

A Result of Simple Retraining Methods

(a) Retraining-1: ×2.0 loss penalty to the target class

(b) Retraining-2: ×0.9 loss penalty to the off-target classes

(c) Retraining-3: ×2.0 loss penalty to the target class from the
beginning

(d) Retraining-4: ×2.0 loss penalty with dropout

(e) Retraining-5: ×2.0 oversampling for the target class

Figure 6.1: Boxplot comparison of class accuracy of five retraining methods (3-layer CNN for
SVHN).

– 77 –

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ��
�

����

(a) Retraining-1 (average target accuracy: 91.44%, average overall
accuracy: 89.50%)

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ��
�

(b) Retraining-2 (average target accuracy: 85.90%, average overall
accuracy: 89.70%)

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ��
�

(c) Retraining-3 (average target accuracy: 91.53%, average overall
accuracy: 89.51%)

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ��
�

(d) Retraining-4 (average target accuracy: 89.73%, average overall
accuracy: 89.18%)

��

��

��

��

���

� � � � 	
 � � � � ��
����

�
�
�
�
��
�
�
��
	

��������

�������� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ��
�

(e) Retraining-5 (average target accuracy: 90.94%, average overall
accuracy: 89.68%)

Figure 6.2: Barplot comparison of class accuracy of five retraining methods (3-layer CNN for
SVHN).

– 78 –

요약문

심층신경망을조정하기위한효과적이고효율적인방법

오늘날 딥러닝 모델의 훈련은 주어진 훈련 데이터를 이용하여 학습하고 검증 데

이터에 대해 모든 클래스들에 대한 평균(overall) 정확도가 높은 결과가 나오는 방향으로

이루어진다. 즉,특정클래스들의정확도가매우나쁜결과가나오더라도,클래스상관없이

최대한 많은 검증 샘플들에 대해 정답을 맞힘으로써 평균 정확도를 향상시킬 수 있는 방

향으로 최적화가 진행된다. 저조한 정확도를 가지는 특정 클래스를 개선시키기 위한 추가

훈련을 진행하더라도, 학습이 진행됨에 따라 각 클래스별 정확도의 변동이 매우 크다. 즉

어느 지점에서 훈련을 중단시키더라도 평균 정확도보다 현저히 정확도가 떨어지는 클래스

들이 발생한다. 이는 현재의 딥 러닝 기술로서 피할 수 없는 문제이다. 특히 의료 인공지능

시스템등과같이특정클래스의정확도가중요한응용에서는이러한문제가치명적일수있

다. 이를위해서평균정확도를유지하면서응용에서중요한목표(target)클래스의정확도를

개선시킬수있는방법이필요하다.

본 학위논문의 첫 번째 부분에서는 이미 학습된 딥러닝 모델에 대해 추가 학습을

진행하는 것이 아닌 사용자가 개선을 원하는 특정 클래스(이하 목표 클래스)의 정확도를

정밀하게조정하는시냅틱조인(synaptic join)기술을제안한다. 제안된시냅틱조인은 1)학

습이완료된원본모델에서목표클래스의정확도개선에사용될수있으면서동시에비목표

클래스의정확도에영향을최소화할수있는활성뉴런(active neurons)들을찾고, 2)활성뉴

런들을목표클래스를개선하는간선(시냅스)의형태로연결하는방식이다. 제안된방식은

원본모델을그대로유지하면서시냅스들만추가그리고삭제하면서사용자의요구에따라

모델을수정할수있다. 또한우리는시냅틱조인연산을다중 GPU의한정된메모리상에서

빠르게처리할수있는기술을소개한다. 재학습방식과비교한실험결과는우리의방법이

– 79 –

특정 클래스의 정확도를 더 잘 컨트롤 할 수 있으며 또한 효과적으로 향상시킬 수 있음을

보여준다.

본학위논문의두번째부분에서는시냅틱조인을통해얻은활성뉴런을활용하여

심층 신경망을 증강하는 연구를 제안하였다. 신경망 증강 기술은 신경망 모델을 확장하거

나 전이학습을 하기 위해 널리 활용되는 기법 중 하나이다. 이 방식은 이미 학습이 완료된

모델에 새로운 은닉층을 추가하고 미세조정 학습을 하며, 그 결과 더 정확한 모델을 얻거

나 응용 프로그램의 목적에 맞는 모델을 얻을 수 있다. 그러나 대규모 심층 신경망 모델에

레이어를 추가하면 모델의 학습에 필요한 매개 변수의 수가 많아져 학습 시간이 늘어날 수

있다. 우리는 효율적인 학습을 위해 적은 수의 활성 뉴런 만 입력 값으로 갖는 증강 네트워

크를 제안한다. 또한 일반적인 신경망 증강과 달리 원본 모델의 학습 없이 증강된 모델만

효율적으로학습하는방식을제안한다. 깊이증강(depth augmented)방식과비교했을때우

리 방식이 모든 실험에서 더 적은 수의 매개 변수와 빠른 학습 속도로 비슷하거나 더 나은

정확도를얻을수있음을보였다.

요약하여, 본 학위논문은 원본 심층 신경망의 변경없이 모델을 사용자의 목적에

맞게 개선할 수 있는 방법을 제안한다. 원본 모델에서 목표 클래스의 정확도 개선하면서

동시에 비 목표 클래스의 정확도에 영향을 최소화하는 시냅틱 조인 기술을 제안한다. 또한

심층 신경망 증강을 효율적으로 할 수 있는 활성 뉴런을 활용한 심층 신경망 증강 기술을

제안한다. 제안된 방법들은 사용자의 목적에 맞게 효과적이고 효율적으로 신경망의 조정

하는 방법으로 맞춤형 인공지능 서비스 응용분야에 매우 유용하게 사용될 수 있을 것으로

사료된다.

핵심어 심층신경망,시냅틱조인,신경망증강

– 80 –

	Chapter 1 Introduction
	1.1 Introduction
	1.2 Main contributions
	1.3 Structure of thesis

	Chapter 2 Background
	2.1 Deep Neural Network Models
	2.1.1 Deep Neural Network
	2.1.2 Convolutional Neural Networks

	2.2 Network Augmentation

	Chapter 3 Tweaking Deep Neural Networks
	3.1 Simple Retraining Method
	3.2 Synaptic Join Method
	3.2.1 Tables for Join
	3.2.2 Algorithm θ
	3.2.3 Synaptic Join Method
	3.2.4 Synaptic Retraining Method

	3.3 Experimental evaluation
	3.3.1 Environments
	3.3.2 Comparison with Retraining and Relevant Methods
	3.3.3 Quantitative Analysis
	3.3.4 Evaluation of Different Models for the Same Data
	3.3.5 Distribution of Synapses
	3.3.6 Characteristics of Synaptic Join
	3.3.7 Characteristics of Synaptic Retraining
	3.3.8 Synaptic Join for Imbalanced Data
	3.3.9 Time and Space Cost of Synaptic Join

	Chapter 4 Augmenting Deep Neural Networks with Active Neurons
	4.1 Augmentation with Active Neurons
	4.2 Experimental Evaluation
	4.2.1 Environments
	4.2.2 Comparison with DA and WA Method

	Chapter 5 Related Work
	Chapter 6 Conclusions
	References
	Appendix
	요약문

<startpage>14
Chapter 1 Introduction 13
 1.1 Introduction 13
 1.2 Main contributions 17
 1.3 Structure of thesis 18
Chapter 2 Background 19
 2.1 Deep Neural Network Models 19
 2.1.1 Deep Neural Network 19
 2.1.2 Convolutional Neural Networks 20
 2.2 Network Augmentation 23
Chapter 3 Tweaking Deep Neural Networks 29
 3.1 Simple Retraining Method 29
 3.2 Synaptic Join Method 31
 3.2.1 Tables for Join 31
 3.2.2 Algorithm θ 32
 3.2.3 Synaptic Join Method 37
 3.2.4 Synaptic Retraining Method 40
 3.3 Experimental evaluation 42
 3.3.1 Environments 42
 3.3.2 Comparison with Retraining and Relevant Methods 43
 3.3.3 Quantitative Analysis 48
 3.3.4 Evaluation of Different Models for the Same Data 49
 3.3.5 Distribution of Synapses 50
 3.3.6 Characteristics of Synaptic Join 51
 3.3.7 Characteristics of Synaptic Retraining 53
 3.3.8 Synaptic Join for Imbalanced Data 54
 3.3.9 Time and Space Cost of Synaptic Join 56
Chapter 4 Augmenting Deep Neural Networks with Active Neurons 63
 4.1 Augmentation with Active Neurons 63
 4.2 Experimental Evaluation 64
 4.2.1 Environments 64
 4.2.2 Comparison with DA and WA Method 66
Chapter 5 Related Work 71
Chapter 6 Conclusions 74
References 76
Appendix 89
요약문 91
</body>

