

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis
석사학위논문

Analyzing Causes of Metadata Service Overheads in
Ceph File System

Hojun Kim (김호준金浩俊)

Department of Information and Communication Engineering

DGIST

2021

Master’s Thesis
석사학위논문

Analyzing Causes of Metadata Service Overheads in
Ceph File System

Hojun Kim (김호준金浩俊)

Department of Information and Communication Engineering

DGIST

2021

Analyzing Causes of Metadata Service Overheads in
Ceph File System

Advisor : Professor Sungjin Lee
Co-Advisor: Professor Yeseong Kim

by

Hojun Kim
Department of Information and Communication Engineering

DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of the re-
quirements for the degree of Master of Science in the Department of Information
and Communication Engineering. The study was conducted in accordance with
Code of Research Ethics1).

June 22, 2021

Approved by

Professor Sungjin Lee (signature)
(Advisor)

Professor Yeseong Kim (signature)
(Co-Advisor)

1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have

not committed any acts that may damage the credibility of my research. These include, but are not limited to:

falsification, thesis written by some-one else, distortion of research findings or plagiarism. I affirm that my thesis

contains honest conclusions based on my own careful research under the guidance of my thesis advisor.

Analyzing Causes of Metadata Service Overheads in
Ceph File System

Hojun Kim

Accepted in partial fulfillment of the requirements for
the degree of Master of Science.

(May 25, 2021)

Head of Committee (signature)

Prof. 이성진

Committee Member (signature)

Prof. 김예성

Committee Member (signature)

Prof. 좌훈승

MS/IC

201922012

김호준. Hojun Kim. Analyzing Causes of Metadata Service Overheads in Ceph File
System. Department of Information and Communication Engineering . 2021. 26p.
Advisor Prof. Sungjin Lee, Co-Advisor Prof. Yeseong Kim.

Abstract

Distributed File System (DFS) is a popular file system in High-Performance Computing

(HPC) due to the demand for a petabyte-scale file system. Among several DFSs, Ceph File

System (CephFS) is one of the most widely adopted DFS. It shows advantages in service avail-

ability and data reliability. However, CephFS suffers from severe performance degradation

when processing requests about a large number of files in HPC environment. The performance

degradation is caused by metadata service overheads in CephFS. In this paper, we discovered

CephFS metadata service overheads in terms of performance and scalability through meta-

data performance experiments. Also, we analyzed the causes of overheads by doing additional

experiments. The causes of metadata service overheads in CephFS are decoupled metadata

service and strict client cache policy in a multi-client environment. We verified the causes

of overheads by showing that removing causes of overheads in CephFS improves performance

greatly compared to the existing CephFS. Therefore, we expect that this work can help improve

the performance degradation of CephFS in the near future.

Keywords: Distributed File System, Ceph File System

– i –

List of Contents

Abstract . i

List of Contents . ii

List of Tables . iv

List of Figures . v

I. Introduction . 1

II. Background . 4

2.1 Distributed File Systems . 4

2.2 RADOS Storage Cluster . 5

2.3 Ceph File System . 7

III. Motivation . 9

3.1 Limited Performance Scalability of CephFS 9

3.2 Low Single MDS Performance . 12

IV. Performance Analysis . 13

4.1 Experiment Environment . 13

4.2 Decoupled Metadata Service . 14

4.3 Strict Client Cache Policy . 17

V. Discussion . 19

5.1 Solutions for Metadata Service Overheads . 19

– ii –

VI. Related Works . 21

VII. Conclusions . 23

References . 24

– iii –

List of Tables

IV.1 Server Specification . 13

– iv –

List of Figures

II.1 Architecture of RADOS Storage Cluster . 6

II.2 Architecture of Ceph File System . 8

III.1 Metadata Performance of CephFS with varying number of MDS 11

III.2 Metadata Performance of CephFS with varying number of Clients 11

III.3 Performance Comparison of Single MDS CephFS, Ext4 and NFS 12

IV.1 Structure Setups of CephFS Cluster . 15

IV.2 Performance Comparison in Different CephFS Cluster Configuration 16

IV.3 Performance Comparison when Clients Access Same/Different Directory . . . 18

– v –

I. Introduction

Distributed File System (DFS) is a popular component for computation systems that re-

quires enormous storage space to store data, such as High-Performance Computing (HPC).

In HPC environment, applications demand storage capacity of petabytes scale [1]. Ceph File

System (CephFS) [2] is a DFS for supporting such applications that require petabyte scale of

storage capacity. It is a well-known and one of the most widely adopted DFS in HPC envi-

ronment. This is because of the advantages of CephFS that it supports not only a large storage

capacity but also a high level of service availability and data reliability [3].

However, CephFS suffers from its limited performance when processing requests from a

large number of files of HPC workload. This can be a severe problem when adopting CephFS in

HPC environment. The poor performance of CephFS when handling a large number of files is

originated from its extremely low metadata operation performance and scalability. Measuring

file create operation on CephFS using 1 metadata server, which processes metadata operations

in CephFS, the throughput of file create operation is revealed as 2375ops/s. Comparing this

result to a local file system, Ext4, it is 97.1% lower performance than Ext4. Not only throughput

but also latency is slower than a local file system. For a file create operation, it shows 4x longer

latency than local file system [4]. However, local file system has an advantage in terms of

network overhead. So, we also compared CephFS to Network File System (NFS) which has

additional network overhead than Ext4. CephFS showed 50% lower performance in file create

operation than NFS which means that CephFS needs much more resources to be scaled as the

same performance of other non-distributed file systems like Ext4 or NFS. It can utilize only a

small fraction of the entire processing capacity of the storage server. In terms of scalability,

– 1 –

we measured its throughput by adding metadata servers from 1 to 16. It showed that metadata

performance is improved only 2x when we increased the number of metadata servers from 1 to

16. It is extremely low scalability considering the resources used for improving performance.

However, not all DFSs suffer greatly from their limited scalability. CephFS’s scalability is the

lowest among many DFSs [5]. These overheads in terms of performance and scalability of

CephFS eventually cause a higher cost for DFS service in HPC.

Despite the severity of the metadata service overheads in CephFS, detailed information

about overheads and their cause is little known. Therefore, this paper conducted experiments

about metadata operations in CephFS to analyze the causes of performance degradation. We

measured CephFS performance in detail using diverse experiment setups to find the reasons for

the metadata service overhead in CephFS.

As a result, we found two causes of CephFS overhead. The first cause is decoupled meta-

data service in CephFS. We found that CephFS separates metadata services into two parts,

unlike other DFS. Separated parts of the service usually work in a different physical server in

the cluster. This incurs additional network overhead when they communicate with each other.

To prove this, we configured CephFS cluster to three different setups and measured the perfor-

mance of each setup. As a result, we found that the cluster configured to have no additional

network overhead performs at most 4x better than the other cluster. The second cause is the

strict cache policy of CephFS. CephFS doesn’t allow multiple clients to cache the metadata

objects in the same directory. This makes clients accessing the same directory can’t utilize

metadata cache and causes huge overhead in the scalability of metadata reading operation. We

compared two different experiments, when each client accesses metadata objects located in the

same directory and in different directories, to show the performance degradation due to the

unavailability of the client cache.

– 2 –

As metadata service performance takes a large portion of the overall performance of DFS,

we expect that solving these overheads might help increasing CephFS performance signifi-

cantly in the future.

– 3 –

II. Background

2.1 Distributed File Systems

DFS is a network file system that can be accessed from different hosts concurrently. It

distributes data and metadata of a file to the storage servers for availability and scalability.

Hosts can handle files in DFS just like the files in local file systems. Commonly used DFS are

GlusterFS, Lustre, CephFS.

DFS’s metadata storing method can be categorized in two ways, hash-based store and

directory-based store. Hash-based store determines the location of file’s metadata by hashing

their unique id value such as file’s path. Thus, this method can spread metadata throughout the

server cluster evenly. However, hashing places metadata without considering the file’s location

in a directory hierarchy. No matter how close two files are in a directory tree, it places the

metadata in a random server. Therefore, it requires multiple servers to be involved in processing

metadata requests about files in the same directory. GlusterFS and Lustre use hash-based store

to distribute metadata. Directory-based store considers file’s location in a directory hierarchy.

It places files that have a similar path to the same server. However, it does not evenly distribute

metadata to the storage servers. There is a chance that metadata requests concentrate on part of

the servers if certain directories contain most of the files. CephFS uses directory-based store to

distribute metadata.

– 4 –

2.2 RADOS Storage Cluster

Ceph is a set of distributed object storage services that provides 3 kinds of different storage

services, file store, block store, and object store [6]. The file storage service is also called

CephFS. Ceph stores different types of data with high availability and strong fault tolerance

for a large amount of data. Data distribution and management through multiple servers are

taken by RADOS [7] using an efficient CRUSH algorithm [8]. Each of Ceph storage services

converts a given type of data such as a file, block, or object to RADOS object and RADOS

stores objects safely. Ceph

RADOS service consists of 4 types of daemons. Monitor daemon stores a master copy of

the entire cluster map which is used for other daemons to cooperate with each other. Manager

daemon deals with an overall system’s runtime status for administrators to manage the cluster.

Object Storage Device (OSD) daemon records data objects to a storage device and replicates

objects to other OSD daemon to provide fault tolerance and high availability. Metadata Server

(MDS) daemon manages the processing of file metadata to alleviate the load of other daemons.

MDS daemon is required when CephFS, Ceph’s file storage service, is used. Each of these

daemons can be installed on multiple servers to maintain a storage service even in a situation

of single or several server failures in the cluster.

– 5 –

Figure II.1: Architecture of RADOS Storage Cluster

– 6 –

2.3 Ceph File System

CephFS is a file storage service that runs on top of RADOS cluster. CephFS stores file’s

metadata and data to OSDs in RADOS cluster. In the case of metadata, clients send a metadata

request to MDS daemon. MDS daemon handles metadata operations received from clients

and stores/retrieves metadata from OSDs. Then, it sends metadata to the clients. In the case of

data, after clients got metadata from MDS, they directly access to OSDs to read/write file’s data.

CephFS distributes metadata to multiple MDS daemons in the cluster. It supports each MDS to

migrate the management of metadata to other MDSs to distribute metadata traffic evenly.

MDS takes charge of processing metadata in certain areas of a directory tree. This area is

determined by the algorithm called dynamic subtree partitioning [2]. Dynamic subtree parti-

tioning basically uses directory-based distribution. But it relieves the disadvantage of directory-

based distribution by dynamically migrate metadata. Dynamic subtree partitioning checks the

metadata load of each MDS daemon and adjusts the imbalance by migrating the management

of metadata to other MDS. Specifically, when a branch of the directory tree takes more meta-

data load than other branches, the MDS daemon that manages the branch handles more requests

than the other, causing overhead in scalability. Thus, CephFS detects such branches and mi-

grates the branches to another MDS daemon. By doing so, it distributes metadata traffic evenly

to MDS servers and helps improve the metadata service scalability of CephFS.

To reduce unnecessary requests to RADOS cluster, CephFS allows each client and MDS

to cache file’s data and metadata [2]. However, caching is more complex than a local file

system due to the existence of multiple clients. In a multi-client environment, CephFS should

consider cache coherence throughout clients. Because of this, when a client access files that are

already cached in another client, MDS should ask the client for eviction of cache and return the

– 7 –

modified version of metadata. By doing so, CephFS can ensure clients access to an up-to-date

version of file’s data and metadata.

Figure II.2: Architecture of Ceph File System

– 8 –

III. Motivation

To examine CephFS metadata service overhead, we did several performance experiments

about CephFS. Experiments were conducted about 3 kinds of metadata operations that are

create, remove, and stat. Each operation represents metadata create, metadata remove, metadata

read. As a benchmark tool, mdtest [9] was used for generating metadata requests. Mdtest

supports benchmark about various types of file operations over millions of files. 1 million files

were used for every experiment.

3.1 Limited Performance Scalability of CephFS

To benchmark the scalability of MDS, we measured each metadata operation’s throughput

by increasing the number of MDS servers from 1 to 16.

Figure III.1 represents throughput for file create, file remove and file stat with varying

number of MDS. In Figure III.1, all metadata operations throughput showed insufficient scala-

bility. Create and remove operation throughput is improved only 108.2%, 46.6%, and 243.8%

even if the number of MDS increased from 1 to 16. This means that adding additional MDS

daemons doesn’t improve the performance of CephFS metadata operations linearly. Further-

more, in some cases, performance was decreased when we added more MDS daemons to the

cluster.

The performance of CephFS also does not scale with the number of clients. We measured

file stat throughput by increasing the number of clients from 1 to 7. Figure III.2 shows file stat

performance of CephFS when adding clients. When the number of clients exceeds two, the

performance of file stat drops 98% which is a significant problem in reading files in a multi-

– 9 –

client environment.

All of these results mean that there is a critical problem in several metadata operations in

terms of scalability. Because of this, among many DFSs, CephFS shows the lowest scalability.

To compare GlusterFS and Lustre with CephFS, CephFS showed about 90% lower performance

scalability than other file systems in file create, file remove, directory create and directory

remove operations [5].

– 10 –

(a) Create Operation (b) Remove Operation

(c) Stat Operation

Figure III.1: Metadata Performance of CephFS with varying number of MDS

Figure III.2: Metadata Performance of CephFS with varying number of Clients

– 11 –

3.2 Low Single MDS Performance

Not only scalability but also single MDS of CephFS shows poor performance compared

to other file systems. To speculate it, we compared CephFS which has one MDS daemon to

Ext4 local file system and NFS.

Figure III.3 shows file create throughput comparison among CephFS, Ext4 and NFS. In

Figure III.3, CephFS using single MDS showed only 2375 ops/s in file creation when Ext4 is

measured as 83328 ops/s. Due to the CephFS’s disadvantage in network latency compared to

the local file system, there is a huge performance gap between local file system and CephFS.

However, NFS also showed higher performance than CephFS although both file systems are

accessed remotely by clients through the network. Therefore, CephFS is behind other DFS

in terms of scalability and is behind other non-distributed file systems in terms of throughput,

requiring much more resources than other file systems.

(a) Comparing CephFS to Ext4 (b) Comparing CephFS to NFS

Figure III.3: Performance Comparison of Single MDS CephFS, Ext4 and NFS

– 12 –

IV. Performance Analysis

By doing a series of experiments, we discovered two causes of CephFS performance over-

head that are related to CephFS’s internal problems. In this section, we analyzed each experi-

ment result and cause of the metadata performance overhead in CephFS.

4.1 Experiment Environment

The experiments were conducted using servers that have different specifications and usage.

There are Monitor, OSD, MDS, Client servers with the following specifications.

Monitor OSD MDS Client

CPU
Xeon E5-2690

x2

Xeon E5-2630 v2

x2

Xeon E3-1240 v3

x1

Xeon E5-2630 v3

x2

Memory 64GB 80GB 32GB 256GB

Storage 480GB SSD
6TB HDD * 12

1TB SSD * 2
480GB SSD 240GB SSD

Network 10GbE 40GbE 1GbE 10GbE

table IV.1: Server Specification

For experiments, Monitor server is configured with 2 Xeon E5-2690 CPUs, 64GB of mem-

ory, 480GB of SSD, and 10Gb ethernet network. We always used a single Monitor server. OSD

server, which stores data, is configured with 2 Xeon E5-2630 v2 CPUs, 80GB of memory, 72TB

storage capacity of HDD, 2TB storage capacity of NVMe SSD, and 40Gb ethernet network.

HDD stores the object of CephFS persistently, while SSD is used for write-ahead logging for

Ceph. The network is set to 40Gb to fully utilize the bandwidth of NVMe SSD. We used 4

OSD servers and performed 3-copy replication for data objects of CephFS. MDS server con-

– 13 –

sists of one E3-1240 v3 CPU, 32GB of memory, 480GB of SSD, and 1Gb Ethernet network.

There are 16 MDS servers in our cluster but we adjusted the number of MDS servers in each

experiment to make environments that correspond to the purpose of the experiment. Client

server is configured with 2 Xeon E5-2630 v3 CPUs, 256GB of memory, 240GB of SSD, and

10Gb ethernet network. It has the most powerful computation power among the other servers

in order to send a large number of metadata requests to the CephFS cluster. There are 7 client

servers that are used for experiments. Similar to MDS servers, we adjusted the number of client

servers according to the purpose of the experiments.

We used Ubuntu 18.04 as an operating system for every server. Ceph version 15.2.8(Oc-

topus) is used for CephFS cluster deployment. For benchmark, we used mdtest [9] which is a

tool for measuring the throughput of metadata operations such as directory create, directory re-

move, file create, file remove, and file metadata read. Mdtest supports OpenMPI which enables

to control of multiple client servers to send metadata requests to CephFS concurrently.

4.2 Decoupled Metadata Service

RADOS cluster has 4 different types of services that compose the system. Monitor, Man-

ager, OSD services are the main services of the RADOS. MDS service is an additional ser-

vice that is needed to run CephFS on RADOS. MDS processes metadata requests from clients

and sends metadata objects to OSDs. Storing metadata objects is conducted by OSD service.

Therefore, storing part and processing part of the metadata service run in a separated machine

in CephFS. Each part has to communicate with the other through the network. However, other

DFSs have simpler steps to process and store metadata. In other DFSs, such as Lustre or

Gluster, storing and processing metadata are combined as a single service. Thus, if a file is

newly created by a client, other DFSs usually process and store the file’s metadata in a sin-

– 14 –

gle physical server without communicating to other servers. However, CephFS requires more

than one server to communicate with each other for handling metadata requests. This incurs

performance degradation due to the latency of transferring data through a network.

To verify performance degradation from decoupled metadata service, we conducted the

following experiments with different cluster setup same as figure IV.1.

Figure IV.1: Structure Setups of CephFS Cluster

We made cluster A that is configured with 1 client server, 1 MDS server, and 3 OSD

servers connected to each other through the network. This cluster stores metadata objects with

3-copy replication. Each copy is stored in a different OSD server for service availability and

data reliability. Cluster B is configured with 1 client server, 1 MDS server, and 1 OSD server.

This cluster stores data with just one copy. Last cluster C is also configured with 1 client server,

1 MDS server, and 1 OSD server. But this cluster uses MDS and OSD that is installed in the

same physical server for reducing additional network overhead between MDS and OSD.

In Figure IV.2, the experiment result showed that cluster A and cluster B have no perfor-

mance difference in every metadata operation while cluster C showed up to 4x performance

improvement. It means that network latency between MDS and OSD is a major overhead for

CephFS than data replication.

– 15 –

Figure IV.2: Performance Comparison in Different CephFS Cluster Configuration

– 16 –

4.3 Strict Client Cache Policy

Cache policy is another cause of performance overhead in CephFS. Due to its strict cache

policy, CephFS suffers from performance degradation while processing metadata read opera-

tions. When a client accesses metadata, CephFS caches it into the client’s cache. It helps to

reduce the effort to read metadata from the CephFS cluster every time. However, when another

client accesses the metadata in the same directory, the client, which has cached the metadata,

evicts it and returns the modified metadata to MDS. Therefore, if metadata objects in a single

directory are accessed by multiple clients concurrently, clients can’t cache the metadata. To

check this, we conducted the following experiment.

We compared CephFS metadata read performance when clients access the same directory

and when clients access different directories. In the first experiment, all clients accessed a single

directory and performed file metadata read in that directory. Each client reads different file’s

metadata in the same directory. In the second experiment, clients accessed different directories

and performed file metadata read in those directories. In both experiments, we used a single

MDS server and varied the number of clients from 1 to 7 to observe whether performance scales

as the client increases.

Figure IV.3 represents file stat performance when each client accesses the same directory

or different directories. In Figure IV.3, when clients access the same directory, it showed signif-

icant performance degradation if there are more than 2 clients accessing the directory. Metadata

read throughput dropped over 90% when the number of clients increased from 1 to 2. However,

when clients read metadata from different directories, CephFS showed no performance degra-

dation and the throughput increased linearly as adding more clients. Therefore, a strict cache

policy of CephFS can be a severe problem especially when clients access the same directory.

– 17 –

Figure IV.3: Performance Comparison when Clients Access Same/Different Directory

– 18 –

V. Discussion

5.1 Solutions for Metadata Service Overheads

In this section, we discuss the solutions of CephFS overheads and their impact. To im-

prove the low performance of single MDS, we need to merge a decoupled metadata service of

MDS and OSD into a single service. Considering that CephFS is one of the services of RADOS

and MDS is an auxiliary component for supporting CephFS, modifying OSD for CephFS ser-

vice isn’t appropriate as a solution. To constrain the impact of modification within CephFS, we

need to make changes within MDS service. By adding metadata storing functionality to MDS

service, we can prevent additional network overhead between MDS and OSD service. How-

ever, maintaining the same level of service availability and data reliability in metadata storing

functionality requires considerable engineering effort for CephFS. Therefore, we must use the

existing metadata storing service of OSD for high availability and reliability while utilizing the

metadata storing functionality in MDS for a faster response of metadata operations.

Another problem is a strict cache policy which incurs low scalability of CephFS according

to the number of clients. There are many solutions for solving this problem. One of the solu-

tions is conducting cache eviction for single file metadata throughout clients only when other

clients update the metadata. The two kinds of problems of strict cache policy are that cache

eviction is caused by reading metadata and is caused by accessing other metadata objects in

the same directory. By restricting the impact of cache eviction to a single file’s metadata that is

being updated, we can solve the performance scalability overhead. However, the implemented

solution can cause another overhead because we have to alarm all clients for every cache evic-

tion if we don’t know the list of clients that are caching an older version of metadata. Therefore,

– 19 –

it is expected that CephFS will need an additional data structure for each metadata to manage a

list of clients that are caching the metadata.

– 20 –

VI. Related Works

Although not specific to CephFS, studies on the degradation of metadata performance of

other DFS including CephFS have been actively conducted in the past [10, 11, 5]. They found

the causes of metadata performance degradation in DFS and suggested new techniques for

performance improvement.

GIGA+ is a concept for supporting scalable directories in terms of the number of files in

DFS. DFS shows good performance when managing a small number of huge files. However, it

is not good at managing a large number of files in a single directory. This kind of weakness can

be also found in our experiment about cache policy in CephFS. To overcome such weakness,

the authors proposed to divide a directory of DFS into multiple partitions that can be spread to

multiple servers. By comparing GIGA+ and CephFS, the authors showed that GIGA+ performs

over 3x better than CephFS in terms of file creation performance scalability.

IndexFS adopted GIGA+ techniques to make a fully functional file system that runs as

middleware on other DFS without any modification of DFS. IndexFS uses metadata distribu-

tion and caching technique of GIGA+ for scalability. And it uses LevelDB to store metadata

objects together as a large file in a DFS. Together with GIGA+ technique and LevelDB back-

end, IndexFS achieved scalability over twice of GIGA+ with showing almost linear scalability.

LocoFS proposed loosely-coupled metadata service to reduce a performance gap between

metadata service and key-value store in a file system such as IndexFS. The authors designed

three different techniques. They decoupled file metadata service and directory metadata service

for better metadata traversal latency. Also, they made metadata objects to be placed on a flat

space by eliminating dependencies about directory inode for improved throughput. And they

– 21 –

divided a metadata object into access part and content part to store metadata object in a key-

value store friendly way. Consequently, LocoFS achieved better scalability by showing over 3x

performance than IndexFS in terms of file creation.

– 22 –

VII. Conclusions

Although CephFS is a widely adopted DFS, it shows low performance and scalability

when processing metadata operations about a large number of files. These characteristics of

CephFS hinder CephFS cluster to operate efficiently when handling a large number of clients

and files. Therefore, we analyzed reasons for metadata operation performance overhead in

CephFS by conducting a series of experiments.

We verified that there are two causes of metadata performance overhead in CephFS. The

first cause is metadata service that is separated into two parts, processing part and storing part.

This decoupled service incurs extra network overhead between two parts. We showed that

the metadata performance of CephFS can be improved at most 4x when we removed the extra

network overhead. The second cause is a strict client cache policy in a multi-client environment.

When clients access metadata in the same directory, CephFS doesn’t allow clients to cache

metadata due to its strict cache policy. To verify this problem, we measured the performance of

CephFS when each client access the same directory or different directories. Then we showed

metadata read operation is faster when each of the clients accesses different directories.

We expect that the causes of CephFS metadata service overhead we found will be used for

future CephFS improvements and help increase the efficiency of CephFS metadata service.

– 23 –

References

[1] J. Blomer, “A survey on distributed file system technology,” in Journal of Physics: Con-

ference Series, vol. 608, no. 1. IOP Publishing, 2015, p. 012039.

[2] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph: A scal-

able, high-performance distributed file system,” in Proceedings of the 7th symposium on

Operating systems design and implementation, 2006, pp. 307–320.

[3] “Ceph user survey 2021,” accessed on: 2021-06-21. [Online]. Available: https:

//ceph.io/wp-content/uploads/2021/05/Ceph-User-Survey-2021.pdf

[4] M. Pillai, “Exploring the performance limits of cephfs in nautilus,” May 2019, accessed

on: 2021-06-21. [Online]. Available: https://youtu.be/UtJvAWRsj9I

[5] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “Locofs: A loosely-coupled metadata service

for distributed file systems,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2017, pp. 1–12.

[6] “Ceph architecture,” accessed on: 2021-06-21. [Online]. Available: https://docs.ceph.

com/en/latest/architecture/

[7] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: a scalable, reliable stor-

age service for petabyte-scale storage clusters,” in Proceedings of the 2nd international

workshop on Petascale data storage: held in conjunction with Supercomputing’07, 2007,

pp. 35–44.

– 24 –

https://ceph.io/wp-content/uploads/2021/05/Ceph-User-Survey-2021.pdf
https://ceph.io/wp-content/uploads/2021/05/Ceph-User-Survey-2021.pdf
https://youtu.be/UtJvAWRsj9I
https://docs.ceph.com/en/latest/architecture/
https://docs.ceph.com/en/latest/architecture/

[8] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush: Controlled, scalable, de-

centralized placement of replicated data,” in SC’06: Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing. IEEE, 2006, pp. 31–31.

[9] “Hpc io benchmark repository (ior),” accessed on: 2021-06-21. [Online]. Available:

https://github.com/hpc/ior

[10] S. Patil and G. A. Gibson, “Scale and concurrency of giga+: File system directories with

millions of files.” in FAST, vol. 11, 2011, pp. 13–13.

[11] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Indexfs: Scaling file system metadata perfor-

mance with stateless caching and bulk insertion,” in SC’14: Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage and Analysis.

IEEE, 2014, pp. 237–248.

– 25 –

https://github.com/hpc/ior

요약문

Ceph파일시스템의메타데이터성능오버헤드의원인에대한분석

최근 고성능 컴퓨팅과 같은 분야에서 페타바이트 크기의 파일 시스템을 요구

하면서분산파일시스템은고성능컴퓨팅분야에서널리쓰이는파일시스템이

되었다. 그중에서도 Ceph파일시스템은서비스가용성과데이터안정성덕분

에가장널리쓰이는분산파일시스템중하나이다. 하지만 Ceph파일시스템은

고성능 컴퓨팅 환경에서의 많은 수의 파일에 대한 요청을 처리함에 있어 심각

한성능저하가발생한다는문제점이있다. 이는 Ceph파일시스템에존재하는

메타데이터서비스오버헤드에의한성능저하이며이논문에서는메타데이터

성능실험을통해 Ceph파일시스템의성능측면과확장성측면에서메타데이터

서비스오버헤드가존재함을발견하였다.또한추가적인실험을통해이오버헤

드들의원인을분석하였으며분리된메타데이터서비스와다중클라이언트환

경에서의엄격한클라이언트캐시정책이오버헤드의원인인것으로나타났다.

우리는 Ceph파일시스템에서오버헤드의원인들을제거했을때성능이기존의

Ceph파일시스템보다크게개선됨을보여줌으로써오버헤드의원인을증명하

였으며 이 논문의 결과가 추후에 Ceph 파일 시스템의 성능 저하를 개선하는데

있어도움이될것이라기대한다.

핵심어: 분산파일시스템, Ceph파일시스템

– 26 –

	I. Introduction
	II. Background
	2.1 Distributed File Systems
	2.2 RADOS Storage Cluster
	2.3 Ceph File System

	III. Motivation
	3.1 Limited Performance Scalability of CephFS
	3.2 Low Single MDS Performance

	IV. Performance Analysis
	4.1 Experiment Environment
	4.2 Decoupled Metadata Service
	4.3 Strict Client Cache Policy

	V. Discussion
	5.1 Solutions for Metadata Service Overheads

	VI. Related Works
	VII. Conclusions
	References
	요약문

<startpage>12
I. Introduction 1
II. Background 4
 2.1 Distributed File Systems 4
 2.2 RADOS Storage Cluster 5
 2.3 Ceph File System 7
III. Motivation 9
 3.1 Limited Performance Scalability of CephFS 9
 3.2 Low Single MDS Performance 12
IV. Performance Analysis 13
 4.1 Experiment Environment 13
 4.2 Decoupled Metadata Service 14
 4.3 Strict Client Cache Policy 17
V. Discussion 19
 5.1 Solutions for Metadata Service Overheads 19
VI. Related Works 21
VII. Conclusions 23
References 24
요약문 26
</body>

