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ABSTRACT

One of the malfunctions that can happen in the operating quadrotor is the actuator fault.
The fault signal appears in the form of motor power degradation or complete loss. It can
have catastrophic consequences, such as a crash, for the operating quadrotor. So, fault
signal detection and fault-tolerant control are needed when a faulty situation occurs. In
this regard, it is necessary to find out which actuator has failed first.

This thesis describes how to detect fault signals in actuators based on the dynamic
model of quadrotors. There are two dynamic models of quadrotors used in this thesis. One
is a model that assumes the quadrotor dynamics in an ideal environment. It represents
the quadrotor dynamics relatively straightforward, so it is commonly used in most studies
using quadrotors. The other is a model that considers the effect of aerodynamic properties
generated by the rotation of propellers. Linear state equations are obtained for each two
quadrotor models when the quadrotor hovers to apply the fault detection method.

The fault detection method used in this thesis is called a geometric approach, using
the subspaces of the error system expressed as the estimation error of the linear system.
We use the characteristics of the subspaces of the error system to design suitable filters
for actuator fault detection.

To analyze the performance of the designed fault detection filter, a simulation based on
MATLAB Simulink was used. We verified the performance of the designed fault detection
filters and checked the effects of aerodynamic properties by the rotation of propellers on
fault detection performance.

Key words :Fault Detection, Geometric approach, Unobservable Subspace, Quadro-
tor, Actuator, Aerodynamic Effect
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1 Introduction

Drones are used in various fields, such as aerial surveillance [1], search and rescue, geolog-
ical surveying, infrastructure monitoring [2], agricultural services [3] and limited delivery
missions in recent years. Quadrotor is mainly used for this kind of drones, which has a
simple design with four actuator rotors and highly reliable and maneuverable [4]. As re-
search activities and application fields using quadrotor have increased, quadrotor is tested
in harsh and hostile environments. Under these conditions, the quadrotor is exposed to
the risk of faults. There are several types of faults that can occur in quadrotor which
are known as sensor faults [5, 6], actuator faults [7–9] and propeller damages [10]. These
faults interrupt the maneuver and make it difficult to accomplish their mission. In this
thesis, we only handle the actuator faults, which are mostly due to motor degradation or
complete loss. The occurrence of actuator fault has a critical effect on the performance
of path tracking and attitude control that can lead to the crash. To avoid these faults,
many studies have been contributed to fault detection and identification (FDI) methods
in-flight quadrotor systems.

FDI process can be separated into two main categories. Figure 1.1 shows the whole
block diagram of FDI. The first category is residue generation, which means designing fault
detection filters, and the second category is to make proper decisions by using residues. In
this thesis, we only deal with residue generation steps by using a geometric approach [11],
which is based on linear algebraic backgrounds and the subspaces algorithms.

To use a fault detection method, we need a sophisticated model to describe the ac-
tual dynamics of the quadrotor. However, many existing studies use a classical quadrotor
model. In these cases, the aerodynamic characteristics that may appear in the real envi-
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2 1.1. Motivation

ronment can cause the wrong fault alert even though there is no fault. In this regard, this
thesis shows why the sophisticated quadrotor model is needed in fault detection using a
geometric approach.

Figure 1.1: Block diagram of FDI.

1.1 Motivation

There are previous works to detect actuator faults of rotary-wing UAVs in linear [12,13],
or nonlinear cases [14, 15]. Reference [15] uses RPM controller of each motor to detect
actuator faults. This approach is valid when only dealing with actuator faults, but abrupt
changes in motor speed can make false alarms in fault detection. To avoid this, reference 1
uses the currents of the motor as input data as well. However, these works do not include
environmental disturbances such as wind gust and the aerodynamic effect of propellers.
A few works [16, 17] introduce the sophisticated model considering the wind effect on
the control of the quadrotor recently. For this reason, FDI of quadrotor actuator in the
presence of aerodynamic effect and wind is currently underway. As one of the approaches
for FDI of quadrotor actuator, the disturbance decoupling is to design a residue that can
decouple the fault from the input signal. Various methods, such as geometric approach
[18–20], unknown input observer [21] have been proposed. In particular, the geometric



Chapter 1. Introduction 3

approach can easily make residues when we can characterize solvability by using some
algebraic properties and observability as reference [22] says.

Reference [20] uses a nonlinear geometric approach (NLGA) in quadrotor actuator fault
detection with a restrictive wind effect. A detailed description of NLGA is fully introduced
in [23]. In [20], only the z-axis direction of the wind effect is considered because the wind
model is based on Blade Element Theory (BET), which divides a rotating propeller into
infinitesimally small elements. In this case, the x-axis and y-axis direction of wind effect
and aerodynamic properties that can affect rotating propellers are not considered. To
improve the model in reference [20], we use a new wind model based on Blade Element
Momentum Theory (BEMT) [17], which can describe the wind effect and aerodynamic
effect more precisely than BET. We expect the detailed quadrotor model described by
BEMT to distinguish whether the quadrotor is affected by a fault or aerodynamic effect.

1.2 Existing literature

Previous fault detection methods with a geometric approach are based on the classical
quadrotor model or restricted model. Reference [19] introduced the sensor and actuator
fault detection based on NLGA in classical quadrotor model. Reference [20] shows the
actuator fault detection based on NLGA in a restrictive quadrotor model that can ex-
press only the z-axis direction of the wind. However, both references [19] and [20] are
not considering the aerodynamic effect of propellers. In actual quadrotor operation, the
aerodynamic effect can affect fault detection performance, and therefore a detailed model
considering the aerodynamic effect is required.

1.3 Contribution

In this thesis, we compare the actuator fault detection performance of two different
quadrotor models. One is the classical model without the aerodynamic effect and the
other is the detailed model where the aerodynamic effect is taken into account. First, we
design fault detection filters suitable for the classical model. Second, we show these filters
do not work properly on the detailed quadrotor model due to the aerodynamic effect.
Finally, we redesign the fault detection filters for the detailed model. The whole steps are



4 1.4. Thesis outline

the main contribution of this thesis. Note that the effect of external wind is not taken into
account in this thesis. Because when the unknown wind effect is considered, we cannot
obtain the exact elements of the linear state equation of quadrotor. Also, the existing
literature [19,20] are working on NLGA, but it requires more skillful mathematical back-
grounds and tricks, so we use the geometric approach in the linear case as a prior study
first. And then, we apply the geometric approach in the nonlinear case under the limited
situation.

1.4 Thesis outline

The outline of this thesis is as follows: Chapter 2 introduces linear algebraic backgrounds
to understand the concept of a geometric approach. Definitions of (C,A)-invariant sub-
spaces and unobservable subspaces which are the core of the geometric approach are also
included. Chapter 3 shows two types of quadrotor dynamics, one is a classical model
and the other is a detailed model that takes into account the aerodynamic properties of
propellers and external wind effect. Chapter 4 describes the algorithm to design fault de-
tection filters. Simulation results are proposed in Chapter 5, and conclusions are shown in
Chapter 6. The matrices of the linearized model in Chapter 3 are introduced in Appendix
A. Additionally in Appendix B, we introduce the fault detection process in Tennessee
Eastman process control system (TE-PCS) to explain the detail of the fault detection
process using the geometric approach.



2 Mathematical Preliminaries

In this chapter, we describe the mathematical preliminaries required to understand the
fault detection process using a geometric approach. Here, the additional theorems and
lemmas relating to the mathematical backgrounds are omitted because these backgrounds
are not the main contents of this thesis and unnecessary proofing processes may make
this chapter messy. There are various Theorems, Lemmas, and Propositions related to
the geometric approach in [11,22], only the minimum mathematical concepts required for
fault detection filter design problem are described here.

In Section 2.1, we define the notations used in this thesis and review some linear alge-
braic concepts mainly used in the geometric approach. Then (C,A)-invariant subspaces
and unobservable subspaces which are the core of the geometric approach to the fault
detection filter design problem will be introduced in Section 2.2 and Section 2.3, respec-
tively. The detailed process of calculating each subspace is further covered in Chapter
4.

2.1 Notations and backgrounds

All notations and basic mathematical backgrounds are introduced in this section. When
k is a positive integer, k means the set {1, 2, . . . , k}. The capital bold letters A, B, C,
. . . denote the matrices or the vectors. Script letter X , Y , S, . . . denote the vector spaces
with the elements x, y, s, . . .. The zero vector or the zero space is expressed by 0. The
dimension of the vector space X is expressed by d(X ).

If S and T are both vector spaces, S ⊆ T means that S is a subspace of T . When S

5



6 2.1. Notations and backgrounds

and T are subspaces of X , then S + T and S ∩ T are denoted as

S + T = {s+ t : s ∈ S, t ∈ T },

S ∩ T = {x : x ∈ S and x ∈ T }.
(2.1)

S + T means the smallest subspace contained in both S and T . S ∩ T means the largest
subspace containing both S and T . Two subspaces S and T are called independent when
S ∩ T = 0.

Let X and Y are called linear spaces above the field of the real number R, then
C : X → Y means that map C is a linear transformation from X to Y where the vector
space X is called the domain of C, and Y is the codomain. The kernel of C (or nullspace
of C) is the subspace as follows

kerC = {x : x ∈ X and Cx = 0} ⊆ X . (2.2)

The image of C is the subspace

ImC = {y : y ∈ Y , ∃x ∈ X and y = Cx} ⊆ Y . (2.3)

When C ∈ Rp×n, p ≤ n, if C is a full column rank, it means the rank of C is p and
kerC = 0.

If we consider the following linear time-invariant (LTI) system,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(2.4)

with the maps A : X → X , B : U → X , and C : X → Y (d(X ) = n, d(U) = k,
d(Y) = p), we can say that the pair of maps (C,A) is observable if

n⋂
i=1

ker(CAi−1) = 0. (2.5)
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Let us derive (2.5) from the definition of observability. By definition, the system with an
initial state x(t0) is observable if and only if the value of the initial state can be determined
from the system output y(t) that has been observed through the time interval t0 < t < tf .



y(t0)
ẏ(t0)
ÿ(t0)

...
yn−1(t0)


=



C

CA

CA2

...
CAn−1


x(t0) = Ox(t0). (2.6)

In order to find x(t0), the observability matrix O in (2.6) should be full rank. As⋂n
i=1 ker(CAi−1) represents kerO, when kerO is zero, the system is observable, i.e., (2.5)

is satisfied.

2.2 (C,A)-invariant subspaces

The fundamental idea of geometric approach is to use the characteristics of subspaces to
solve the fault detection problems. Our practical goal is to design an observer. Thus, it
is essential to characterize the invariant subspaces, so the concept of a (C,A)-invariant
subspace is introduced.

Definition 2.1 ((C,A)-invariant subspaces). Let A: X → X and C: X → Y . We say a
subspace W ⊆ X is (C,A)-invariant if there exists an output injection map G: Y → X
such that

(A+GC)W ⊆W . (2.7)

The family of G that satisfy (2.7) are denoted by G(W). To obtain the elements of
G(W), it is necessary to find G that satisfies the following condition.

Let W : W → X be the insertion map and P be a solution of maximum rank of
PW = 0. Then G is a solution of

P (A+GC)W = 0. (2.8)
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Condition (2.8) will be used as a design condition for fault detection filters in Chapter 4.

2.3 Unobservable subspaces

From (2.5), the unobservable subspace is introduced from following definition.

Definition 2.2 (Unobservable subspaces). Unobservable subspace of (C,A), N ⊂ X is
defined as

N =
n⋂

i=1
ker(CAi−1). (2.9)

If we deal with ths system (HC,A +GC) instead of the system (C,A), where the
matrices G: Y → X and H : Y → Y are the design factors of fault detection filter, the
unobservable subspace also changes as follows

S =
n⋂

i=1
ker(HC(A+GC)i−1). (2.10)

It is obvious that unobservable subspace S is (A+GC)-invariant from (2.10), thus it is a
(C,A)-invariant subspace. S also satisfies the design condition (2.8), i.e., P (A+GC)S =
0, where S = ImS. We denote the class of unobservable subspace containing subspace L
as S(L). From this notation, we can express the class of all unobservable subspaces of X
as S(0).

We can eliminate the presence of H in (2.10) by using the Propositions introduced
in [11]. Let S ⊂ X . Then S ∈ S(0) if and only if there exists a map G : Y → X such
that

S =
n⋂

i=1

{
(A+GC)−(i−1)(kerC + S)

}
. (2.11)

Also, if S ∈ S(0), then (2.11) applies to every map G ∈ G(S). This proposition will be
used later in Chapter 4.



3 Quadrotor dynamics

In this thesis, we propose to detect the actuator fault of the quadrotor by using a geometric
approach. To use this fault detection method, we need an observable LTI system with
actuator fault inputs from the dynamic model of the quadrotor. Therefore, this thesis
begins with finding the proper quadrotor model for fault detection.

In this chapter, we introduce two different quadrotor dynamics that can be used for
fault detection. One is the classical quadrotor model, which is widely accepted in [4,12,13].
This classical dynamic model can relatively simply describe the quadrotor dynamics under
ideal conditions, so it is used in most studies using quadrotor. The other is the quadrotor
model that considers the external wind aerodynamic effects on the rotating propellers.
These effects can be derived based on the Blade Element Momentum Theory (BEMT),
which is normally used in helicopter dynamics. The model based on BEMT can express
the precise dynamics of the propeller because it considers the structural properties of
propeller blade and airflow around the propeller.

We linearize each model to apply the geometric approach for fault detection and see
the fault detection performance differences between the two models.

First, we derive the widely accepted quadrotor dynamics in Section 3.1. In Section 3.2,
we introduce a detailed quadrotor model which considers the aerodynamics on a rotating
propeller. The force and the torque on a rotating propeller based on BEMT is described in
Section 3.3. Finally, we discuss the Jacobian linearization and controller design in Section
3.4.

9



10 3.1. Classical quadrotor model

3.1 Classical quadrotor model

Figure 3.1: Coordinates and control inputs of the quadrotor.

Coordinates and control inputs of the quadrotor are shown in Figure 3.1. Basis of the
inertial frame is the standard vector e1 = [1 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T and the
basis of the body frame is the vector R1, R2, R3. Rotational speed of each propeller is
denoted by wi, i = 1, 2, 3, 4, respectively. The force of the quadrotor is denoted by f which
is in the direction of R3 and torques along the axis Ri is denoted by τj for j = 1, 2, 3.
Unlike classical quadrotor model widely used in [4], additional force vector fD ∈ R3 and
torque vector τD ∈ R3 which include the effect of wind and aerodynamic drag lead to the
following equations:

mẍ = −mge3 +R(fe3 + fD),

Ṙ = RΩ̂,

IΩ̇ = (IΩ)×Ω + (τ + τD).

(3.1)

Here, x = [x1 x2 x3]T is the position of the quadrotor in inertial frame, R ∈ R3×3 is the
rotation matrix that changes the coordinates of the quadrotor from body frame to inertial
frame, i.e., R = [R1 R2 R3], τ = [τ1 τ2 τ3]T is the torque of the quadrotor, m is the mass
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of the quadrotor, g is the gravitational acceleration, I ∈ R3×3 is the moment of inertia
matrix, Ω = [Ω1 Ω2 Ω3]T is the angular velocity vector, and Ω̂, the hat map of Ω, is the
skew symmetric matrix given by

Ω̂ =


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (3.2)

Control input f and τ can be expressed by thrust of each propeller through the following
equation


f

τ1

τ2

τ3

 =


1 1 1 1
0 l 0 −l
−l 0 l 0
km −km km −km




T1

T2

T3

T4

 (3.3)

where Ti is the thrust of i-th propeller for i = 1, 2, 3, 4, l is the length from motor to center
of the quadrotor, and km is a positive constant. In classical quadrotor model, the effect
of wind is not considered (fD = 0, τD = 0), thrust Ti is simply described as Ti = kwwi

2

where kw is a positive constant.

3.2 Aerodynamic effect of propellers

According to BEMT, when the quadrotor is moving in the wind, the thrust Ti is expressed
in a more complex equation than T = kwwi

2 which is used in classical model. Let the
wind be represented by W ∈ R3×3 in inertial frame. Then, the relative velocity of the
quadrotor center of mass in inertial frame can be expressed as W − ẋ. Define Vr as the
relative velocity in the body frame, i.e.,

Vr = RT (W − ẋ) (3.4)

Assume that Vr is the same at all four propeller. This assumption is reasonable since the
spinning propeller can be regarded as a flat disk. Generally, classical quadrotor model
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does not take into account the relative velocity by wind effect. This is the main difference
between the classical model and detailed model. Taking into account the relative velocity
Vr, the relative velocity experienced by the i-th propeller, denoted by Vi is given by

V1 = −lΩ̂e1 + Vr
V2 = −lΩ̂e2 + Vr
V3 = lΩ̂e1 + Vr
V4 = lΩ̂e2 + Vr

(3.5)

For simple notation, let the j-th component of the vector Vi by Vi,j, i.e.,

Vi,j = Vi
Tej (3.6)

for i = 1, 2, 3, 4 and j = 1, 2, 3.
Assume that the first propeller moving in the air shown in Figure 3.2. Relative velocity

Vi can be separated into two vectors, Vz,i and Vh,i. Vz,i is in the direction of R3 and Vh,i
is in the plane generated by R1 and R2,

Vz,i =


0
0
Vi,3

 ,

Vh,i =


Vi,1

Vi,2

0

 .
(3.7)

In Figure 3.2, the radius of the rotating propeller considered as a disk is denoted by r,
and the distance between the disk and the plane defined by R1 and R1 passing through
the center of mass of the quadrotor is denoted by d. Also, the induced velocity is denoted
by vi. We assume that

vi =


0
0
vi,3

 , (3.8)
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Figure 3.2: Detailed coordinate representation of the first propeller.

with a scalar vi,3. This is a possible assumption because the airflow in the direction of R3

is much more dominant and the airflow in the other direction is negligible [24].
According to BEMT, total thrust of the quadrotor is generated in two directions, where

the scalar Ti represents the thrust in the direction of Vz,i and the vector Hi represents the
thrust in the direction of Vh,i. The amount of thrust Ti generated by a rotating propeller
with angular velocity wi [rad/sec] is given by

Ti = c1

c2

1 + 3
2µi

2

−λi

wi
2, (3.9)

where c1 and c2 are positive constants. The advanced ratio µi and the inflow ratio λi are
given by

µi = ‖Vh,i‖
rwi

,

λi = −Vi,3 + vi,3

rwi

.

(3.10)

Now, considering the component of induced velocity vi,3 is a complicated task. In this
thesis, we use the approach of [24], where vi,3 is approximated by a linear combination
of wi and Vi,3. This approximation is based on experiment data in [17]. Then vi can be
written as
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vi,3 = awi + bVi,3, (3.11)

where a and b are positive constants.
Using (3.9), (3.10), and (3.11), we can denote Ti as follows

Ti = kwwi
2 + kzV

T
z,ie3wi + kh ‖Vh,i‖2 . (3.12)

where kw, kz, and kh are positive constants. The total thrust T is the sum of the thrust
of each propeller Ti, i.e., T = ∑4

i=1 Ti.
The horizontal thrust Hi means the effect of aerodynamic drag such as blade flapping,

induced drag, etc. If the state of quadrotor changes slowly, Hi can be denoted by

Hi = cTiVh,i, (3.13)

where the constant c is positive. The estimation of all constant in (3.3), (3.12), and (3.13)
is deeply discussed in [17].

3.3 Modeling of the drag force and drag torque

In (3.1), drag force fD is expressed by Hi, i = 1, 2, 3, 4 in (3.13) as fD = ∑4
i=1 Hi. By

using (3.12) and (3.13), we can express fD as

fD = cT


Vr

Te1

Vr
Te2

0

+ clΩ3


T2 − T4

T3 − T1

0

 . (3.14)

Also, drag torque τD,i produced by each propeller is as follows
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τD,1 =


l

0
d

×H1,

τD,2 =


0
l

d

×H2,

τD,3 =


−l
0
d

×H3,

τD,4 =


0
−l
d

×H4,

(3.15)

Then, the total drag torque τD in (3.1) can be written as

τD = τD,1 + τD,2 + τD,3 + τD,4

= dcT


−VrTe2

Vr
Te1

0

+ dclΩ3


T1 − T3

T2 − T4

0

+ cl


0
0

T1V1,2 − T2V2,1 − T3V3,2 + T4V4,1


(3.16)

Completely, we explained the quadrotor dynamics in a wind field by (3.1), (3.3), (3.4),
(3.5), (3.7), (3.12), (3.14), and (3.16). Note that the wind W is not the only difference
between the classical quadrotor model and the detailed quadrotor model using BEMT. In
detailed model, although the wind W is zero, the thrust Ti in (3.12) does not change as
Ti = kwwi

2. Also, fD and τD is not equal to zero as well. This is because the detailed model
considers the aerodynamics of the propeller and the air which depends on the dynamics
and attitude of the quadrotor as well as the wind W . This can be proved by Vr, V1, V2,
V3, and V4 in (3.4), (3.5). These terms depend on R, ẋ, and Ω as well as the wind W .
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3.4 Linearization and controller design

We need a linearized model to apply the fault detection method which is called geometric
approach to the quadrotor.For this, combine the quadrotor dynamics in (3.1), (3.12),
(3.14), and (3.16) as

ẋ = F (x,u,W ). (3.17)

Here, x ∈ R12 is state vector and u ∈ R4 is input vector as follows

x = [x3 ẋ3 x1 ẋ1 θ Ω2 x2 ẋ2 φ Ω1 ψ Ω3]T ,

u = [w1
2 w2

2 w3
2 w4

2]T ,
(3.18)

where φ, θ, ψ are roll, pitch, yaw angles, respectively. When we consider the hovering
situation, the operating point x∗ and u∗ can be expressed by

x∗ = [x3
∗ 0 0 0 0 0 0 0 0 0 0 0]T ,

u∗ = [mg4kw

mg

4kw

mg

4kw

mg

4kw

]T .
(3.19)

Then, the state matrix A and input matrix B of the linear model are denoted by

A = ∂F (x,u,W )
∂x

∣∣∣∣∣
x=x∗,u=u∗

∈ R12×12,

B = ∂F (x,u,W )
∂u

∣∣∣∣∣
x=x∗,u=u∗

∈ R12×4,

(3.20)

and the linear state equation can be written as

ẋ = Ax+Bu

= (A0 + Ā)x+ (B0 + B̄)u,
(3.21)

where the matrix A0 and B0 are irrelevant to W , compared to the elements of the matrix
Ā and B̄ are related to W . When W is zero, Ā and B̄ equal to zero. All matrices in
(3.21) are detailed in Appendix A.
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In this thesis, we assume that there is no effect derived by the external wind W ,
i.e., Ā = 0 and B̄ = 0. We need a precise linear model to adopt a geometric approach,
which means we should have all elements of the matrices in (3.21). This means that we
have to know the exact size of W to detect fault through a geometric approach in wind
conditions. However, it is hard work and if the size of W changes in real time, it is almost
impossible to redesign the linear model accordingly.

Now, around the hovering position, we use a LQR controller for controllable matrix
pair (A0,B0) such that

u = −K(x− x∗). (3.22)

Since the designing controller is not the subject covered in this thesis, see [17] for more
information. LQR parameters P for x and Q for u is given as

P = diag(106, 103, 106, 103, 106, 103, 106, 103, 106, 103, 106, 103),

Q = diag(10−8, 10−8, 10−8, 10−8).
(3.23)
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4 Fault Detection Problems

In Chapter 3, we discussed two different types of the quadrotor model. One is the classical
model and the other is the detailed model where the wind effect and aerodynamic drag
are considered. In addition, the process of obtaining a linear model through Jacobian
linearization to apply fault detection through geometric approach was also described. We
have confirmed that the linear state equation of the classical quadrotor model and the
detailed quadrotor model are different. Now, we can now follow the fault detection process
with two given linear models.

The main contributions of this thesis are included in this chapter. We shall formulate
and solve the fault detection problem with a linear state equation of the quadrotor ob-
tained in Chapter 3. We use a geometric approach as the fault detection method which
is mainly covered in [11].

In Section 4.1, we introduce how fault detection using geometric approach is done in
the linear model. Specific procedures are listed in subsections. First, we start with how
to obtain (C,A)-invariant subspaces and unobservable subspaces from each linear state
equation. Through the recursive algorithm in [11], we can get each subspace. The process
of obtaining the observer gainGi and the filter matrixHi will be followed. The special case
that can simplify the process of designing fault detection filter is covered in Section 4.2.
Section 4.3 and 4.4 will show in detail the process of generating four residues with linear
state equation of classic quadrotor model and detailed quadrotor model, respectively.

19
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4.1 Fault detection problems

Let us consider an observable LTI system with k actuator inputs:

ẋ(t) = Ax(t) +Bu(t) +
k∑

i=1
Limi(t),

y(t) = Cx(t).
(4.1)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rk is the input vector, and y(t) ∈ Rp is the
output vector. Dimension of the matrix in state space form is A ∈ Rn×n, B ∈ Rn×k, and
C ∈ Rp×n. Li is the i-th column of the input matrix B, and the term Limi(t) represents
a fault of the i-th actuator. We assume the functions mi(t) are completely unknown.
However, when there is no error in i-th actuator, mi(t) = 0 by definition. Also, we only
deal with actuator faults in this thesis, we assume our sensors are perfectly reliable.

Consider that we design a full-order observer with the following structure for the
system in (4.1).

˙̂x(t) = Ax̂(t) +Bu(t)−Gi(y(t)−Cx̂(t)),

ŷ(t) = Cx̂(t)
(4.2)

In (4.2), x̂(t) ∈ Rn is the estimated state vector, ŷ(t) ∈ Rp is a pseudo measurement.
If there is no fault signal and the observer is stable, there would be no prediction error
between y(t) and ŷ(t). However, if the i-th actuator fails, i.e., mi(t) 6= 0, the observer
continues to predict the nominal output of the system while the actual system makes
the faulty output. Afterward, we use the directional properties of the prediction error to
identify the actuator fault. Let us define k different linear transformations, r1(t), r2(t),
. . . , rk(t), as follows

r1(t) = H1(y(t)− ŷ(t)),

r2(t) = H2(y(t)− ŷ(t)),
...

rk(t) = Hk(y(t)− ŷ(t)).

(4.3)
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If we can design the proper matrices Gi, H1, H2, . . . , and Hk such that the fault of the
i-th actuator only shows up in ri(t), fault detection problem will be solved easily. When
we define e(t) = x(t)−x̂(t), these matrices can be designed by using subspace properties
of the following system,

ė(t) = (A+GiC)e(t) +
k∑

i=1
Limi(t),

r1(t) = H1Ce(t),

r2(t) = H2Ce(t),
...

rk(t) = HkCe(t).

(4.4)

In (4.4), suppose we have two actuators, i.e., k = 2. If we want to make first residue r1(t)
detect only the fault of first actuator, for a nonzero m2(t) not to affect r1(t), the image of
L2 should be in the unobservable subspace of the system (H1C,A +G1C). Also for a
nonzero m1(t) to show up in r1(t), the image of L1 should not intersect the unobservable
subspace of the system (H1C,A+G1C). This concept applies equally to second residue
r2(t).

In this case, we can customize the observability properties the system (4.4) by designing
proper matricesG1,G2,H1, andH2. Obviously, the unobservable subspace of (H1C,A+
G1C) is the subspace spanned by eigenvectors of A +G1C which are in the null space
of H1C. Also, the column vector L2 should be expressed as a linear combination of
these eigenvectors because the second actuator fault should not show up in the first
residue. Thus, fault detection problem in this thesis is to use the freedom in assigning the
eigenvectors of A+G1C that satisfies the fault detection conditions.

On the other hand, in geometric approach, our goal is to find the existence of subspaces
S1 and S2 which contain the images of L2 and L1, respectively. This approach is easier
than obtaining the matrices G1, G2, H1, and H2 directly because if such subspaces S1

and S2 exist and can be obtained from the matrices A, B, and C, then we can easily
find the matrices G1, G2, H1, and H2 from S1 and S2. This is the main concept of the
fault detection by using geometric approach. The following subsections introduce how to
obtain the subspaces and matrices that are required for fault detection filter design by
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step by step.

4.1.1 Algorithm for (C,A)-invariant subspaces

The recursive algorithm for obtaining (C,A)-invariant subspaces is presented in [11]. This
algorithm is called CAISA which is literally short for (C,A)-invariant subspace algorithm.
Note that this thesis does not explain how the algorithm is induced. This algorithm is
induced using the characteristics of (C,A)-invariant subspaces and the detailed induction
process is described in [11]. Through CAISA, we can find an infimal element of (C,A)-
invariant subspaces that includes L, which is the image of L. We denote the family of
(C,A)-invariant subspaces contained in L as W(L).

Theorem 4.1. [11] [(C,A)-invariant subspace algorithm] Let L ∈ X and W∗ = inf
W(L). Then W∗ = limk→∞Wk where Wk satisfies the following recursion

Wk+1 = L+A(Wk ∩ kerC),

W0 = 0.
(4.5)

CAISA can be described in terms of matrices. Let ImL = L and P k
W is a projection

matrix that satisfies P k
WW

k = 0 with maximum rank. When the initial condition is
W 0 = 0, we can solve the following equation recursively.

 P k
W

C

T kW = 0,

W k+1 =
[
L AT kW

]
.

(4.6)

When Rank W k+1 = Rank W k, CAISA is stopped. Then, (C,A)-invariant subspaces is
the image of W k, i.e., W∗ = ImW k. Clearly, the algorithm should converge for k ≤ n.

4.1.2 Algorithm for unobservable subspaces

(C,A)-invariant subspaces, we obtained in 4.1.1, is used to calculate unobservable sub-
spaces. This algorithm is called UOSA for short. As in CAISA, this thesis does not explain
how UOSA is induced. Through UOSA, we can find an infimal element of unobservable
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subspaces that includes L. We denote the family of unobservable subspaces contained in
L as S(L).

Theorem 4.2. [11] [Unobservable subspace algorithm] Let L ∈ X ,W∗ = infW(L), and
S∗ = inf S(L). Then S∗ = limk→∞ Sk where Sk satisfies the following recursion

Sk+1 =W∗ + (A−1Sk) ∩ kerC,

S0 = X .
(4.7)

UOSA can also be expressed in terms of matrices. Let ImW ∗ = W∗ and P k
S is a

projection matrix that satisfies P k
SS

k = 0 with maximum rank. When the initial condition
is S0 = In×n, we can solve the following equation recursively.

 P k
SA

C

T kS = 0,

Sk+1 =
[
W ∗ T kS

]
.

(4.8)

When Rank Sk+1 = Rank Sk, UOSA is stopped. Then, unobservable subspaces is the
image of Sk, i.e., S∗ = ImSk. Also, the algorithm should converge for k ≤ n.

4.1.3 Solvability condition

As mentioned in Section 4.1, we can obtain unobservable subspace through CAISA and
UOSA. However, before designing G and H, we need to check the solvability condition of
unobservable subspace that we obtained. Let us denote the infimal unobservable subspace
that includes all Lj, (j = 1, 2, . . . , k) except j 6= i, (i ≤ k) as S∗i . Also, the infimal (C,A)-
invariant subspace that is included in S∗i is denoted as W∗i .

Suppose we deal with two actuators, i.e., k = 2 in (4.4). This means we can obtain
two unobservable subspaces from the algorithms above. One is the infimal unobservable
subspace that includes L2, i.e., S∗1 , and the other is the infimal unobservable subspace
that includes L1, i.e., S∗2 . To solve the fault detection problem, S∗1 should not have a
intersection with L1. Also, there should be no intersection between S∗2 and L2.
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Theorem 4.3. [11] [Solvability condition] To solve the fault detection problem, the
infimal unobservable subspace S∗i = inf S(Li) should satisfy the following condition

S∗i ∩ Li = 0. (4.9)

All elements of unobservable subspace S∗i will not appear in residue ri(t), if the solv-
ability condition is not satisfied, we cannot design residue ri(t) that can detect the i-th
actuator fault signal.

4.1.4 Design condition of the observer gain Gi

If the unobservable subspace S∗i satisfies the solvability condition, now we move on to
designing the observer gain Gi. Based on (2.8), map Gi has to satisfy the following
design condition,

Pi(A+GiC)Si = 0 (4.10)

where S∗i = ImSi and Pi is a projection matrix that satisfies PiSi = 0 with maximum
rank. In (4.10), matrices A and C are given in (4.1) and we already know Pi and Si
from UOSA. Thus, we can obtain Gi that satisfies (4.10). Note that not all elements
of Gi participate in the above design conditions. Some of the elements of Gi can have
degrees of freedom, which is used to satisfy another design condition. In (4.4), when the
residue detects the fault signal, A+GiC must be Hurwitz or at least marginally stable.
If not, the residue will fly away. Therefore, the process of designing Gi is to first define
the elements of Gi that satisfy the design condition (4.10), and then use the degrees of
freedom to satisfy the stability condition.

4.1.5 Design condition of the filter matrix Hi

In Chapter 2, the filter matrix Hi is needed to obtain the unobservable subspaces of
system (HiC,A +GiC). However, from (2.10) and (2.11) in Chapter 2, we can get the
relationship between S∗i and Hi as follows

kerHiC = kerC + S∗i . (4.11)
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The condition (4.11) means that the filter matrix Hi can be obtained from the kernel
of the matrix C and unobservable subspace S∗i . Since the matrix Hi is used in residue
ri(t) = HiCe(t), Hi is expressed as one row vector to obtain one residue signal.

4.2 Speicial case when C is full rank

In general case, we have to find the infimal (C,A)-invariant subspace W∗i and infimal
unobservable subspace S∗i through CAISA and UOSA introduced in Section 4.1. However,
when C is full rank, we can easily solve the infimality problem. In CAISA, kerC = 0
and W∗i is simply obtained as a set of Lj, (j = 1, 2, . . . , k) except j 6= i, (i ≤ k). Thus,
S∗i is also same as W∗i in UOSA. In fact, it is uncommon that C is full rank in actual
case. However, for the convenience of calculation, we used C as an identity matrix in the
linear model of quadrotor. For the case where C is not full rank, we describe the fault
detection process in a system called Tennessee-Eastman process control system (TE-PCS)
in Appendix B.

4.3 Designing fault detection filters in classical quadrotor model

In this section, we describe how to design the observer gain Gi and the filter matrix Hi

in the linear state equation of classical quadrotor model. Since the quadrotor has four
motors, four actuator fault detection filters are needed.

First, we design G1 and H1 to build the residue r1(t) that can detect only the fault of
the first actuator. As we assume that C is full rank, S1 can be obtained as [L2 L3 L4].
We already know the specific values of each element in S1, which are expressed in (4.12).
Note that all elements of S1 are expressed in rounded form to the fourth decimal place.
From S1, we can derive the projection matrix P1 that satisfies P1S1 = 0. Since the three
columns of S1 are linearly independent, P1 has nine rows to be a maximum rank in (4.13).
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S1 = 10−5 ×



0 0 0
0.0145 0.0145 0.0145

0 0 0
0 0 0
0 0 0
0 0.3277 0
0 0 0
0 0 0
0 0 0

0.3259 0 −0.3259
0 0 0

−0.6987 0.6987 −0.6987



, (4.12)

P1 =



0 0.6987 0 0 0 −0.0619 0 0 0 0 0 0.0145
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0



. (4.13)

Now, we can design G1 that satisfies (4.10). Let the elements of G1 in i-th row and j-th
column as g1(i, j), (i ∈ 12, j ∈ 12). The elements of G1 that are needed to satisfy the
design condition are selected in (4.14). The elements whose values are not determined
yet mean the degrees of freedom of G1. These degrees of freedom are used to make that
(A+G1C) is Hurwitz. Finally,G1 with all elements are determined is expressed in (4.15).
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g1(1, 2) = −1, g1(1, 6) = 0, g1(1, 10) = 0, g1(1, 12) = 0,

g1(2, 2) = −12, g1(2, 6) = 0.5979, g1(2, 10) = 0, g1(2, 12) = 0,

g1(3, 2) = 0, g1(3, 6) = 0, g1(3, 10) = 0, g1(3, 12) = 0,

g1(4, 2) = 0, g1(4, 6) = 0, g1(4, 10) = 0, g1(4, 12) = 0,

g1(5, 2) = 0, g1(5, 6) = 0, g1(5, 10) = 0, g1(5, 12) = 0,

g1(6, 2) = 0, g1(6, 6) = 0, g1(6, 10) = 0, g1(6, 12) = 0.4690,

g1(7, 2) = 0, g1(7, 6) = 0, g1(7, 10) = 0, g1(7, 12) = 0,

g1(8, 2) = 0, g1(8, 6) = 0, g1(8, 10) = 0, g1(8, 12) = 0,

g1(9, 2) = 0, g1(9, 6) = −1, g1(9, 10) = −1, g1(9, 12) = 0,

g1(11, 2) = 0, g1(11, 6) = 0, g1(11, 10) = 0, g1(11, 12) = −1,

g1(12, 2) = 0, g1(12, 6) = −24.5177, g1(12, 10) = 0, g1(12, 12) = −10.

(4.14)

G1 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −12 0 0 0 0.5979 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 −11 0 0 0 0 0 0.4690
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 0 0 0 0 0 0 0 0 −8 0 0
0 0 0 0 0 0 0 0 0 0 −9 −1
0 0 0 0 0 −24.5177 0 0 0 0 0 −10



.

(4.15)

When G1 is designed as above, the eigenvalues of (A + G1C) are all negative which
means Hurwitz. Note that G1 in (4.15) is not the only the matrix that satisfies the design
condition. The system designer can change the values if the design conditions are not
broken.
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We can also design H1 that satisfies (4.11). Since kerC = 0, we design H1 satisfying
kerH1 = S∗1 as follows

H1 =
[

0 0.6987 0 0 0 −0.0619 0 0 0 0 0 0.0145
]
, (4.16)

which is same as the first row vector of P1. The other row vectors of P1 also satisfy the
design condition but the values do not appear in the residue r1(t). This means the only
H1 in (4.16) can be used. Now, with G1 and H1, we can make a fault detection filter
of the first actuator. The process of designing fault detection filters for the remaining
actuators is equivalent to the above.

Moving on to the next, we design a residue r2(t) that can detect the fault of the second
actuator. In this case, represent the observer gain and the filter matrix are denoted by
G2 and H2. Since S2 is expressed as [L1 L3 L4] in (4.17), the projection matrix P2 that
satisfies P2S2 = 0 can be derived as follows

S2 = 10−5 ×



0 0 0
0.0145 0.0145 0.0145

0 0 0
0 0 0
0 0 0

−0.3277 0.3277 0
0 0 0
0 0 0
0 0 0
0 0 −0.3259
0 0 0

0.6987 0.6987 −0.6987



, (4.17)
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P2 =



0 0.6987 0 0 0 0 0 0 0 0.0622 0 −0.0145
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0



. (4.18)

After that, we determine the elements ofG2 which is needed to satisfy the design condition
in (4.19). The elements of G2 in i-th row and j-th column are denoted by g2(i, j), (i ∈
12, j ∈ 12). The degrees of freedom of G2 are chosen to make (A+G2C) has no positive
eigenvalues. In this condition, G2 can be expressed as (4.20).

g2(1, 2) = −1, g2(1, 6) = 0, g2(1, 10) = 0, g2(1, 12) = 0,

g2(2, 2) = −9.9170, g2(2, 6) = 0, g2(2, 10) = −0.8835, g2(2, 12) = 0.2060,

g2(3, 2) = 0, g2(3, 6) = 0, g2(3, 10) = 0, g2(3, 12) = 0,

g2(4, 2) = 0, g2(4, 6) = 0, g2(4, 10) = 0, g2(4, 12) = 0,

g2(5, 2) = 0, g2(5, 6) = −1, g2(5, 10) = 0, g2(5, 12) = 0,

g2(7, 2) = 0, g2(7, 6) = 0, g2(7, 10) = 0, g2(7, 12) = 0,

g2(8, 2) = 0, g2(8, 6) = 0, g2(8, 10) = 0, g2(8, 12) = 0,

g2(9, 2) = 0, g2(9, 6) = 0, g2(9, 10) = −1, g2(9, 12) = 0,

g2(10, 2) = 47.2570, g2(10, 6) = 0, g2(10, 10) = 4.2099, g2(10, 12) = −0.9816,

g2(11, 2) = 0, g2(11, 6) = 0, g2(11, 10) = 0, g2(11, 12) = −1,

g2(12, 2) = 0.2060, g2(12, 6) = 0, g2(12, 10) = 0.0184, g2(12, 12) = −0.0043.
(4.19)
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G2 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −9.9170 0 0 0 0 0 0 0 −0.8835 0 0.2060
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 −5 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 0 0 0
0 0 0 0 0 0 0 −7 0 0 0 0
0 0 0 0 0 0 0 0 −8 −1 0 0
0 47.2570 0 0 0 0 0 0 0 4.2099 0 −0.9816
0 0 0 0 0 0 0 0 0 0 −9 −1
0 0.2060 0 0 0 0 0 0 0 0.0184 0 −0.0043



.

(4.20)

In this case, all eigenvalues of (A +G2C) are not positive but some of the eigenvalues
are zero which means marginally stable.

We can also design H2 that satisfies (4.11). Since kerC = 0, we design H2 satisfying
kerH2 = S∗2 as follows

H2 =
[

0 0.6987 0 0 0 0 0 0 0 0.0622 0 −0.0145
]
, (4.21)

which is same as the first row vector of P2. The other row vectors of P2 also satisfy the
design condition but the values do not appear in the residue r2(t). This means the only
H2 in (4.21) can be used.

Now, let us design a residue r3(t) that can detect the fault of the third actuator this
time. The observer gain and the filter matrix are denoted by G3 and H3. Since S3 is
expressed as [L1 L2 L4] in (4.22), the projection matrix P3 that satisfies P3S3 = 0 can
be derived as follows
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S3 = 10−5 ×



0 0 0
0.0145 0.0145 0.0145

0 0 0
0 0 0
0 0 0

−0.3277 0 0
0 0 0
0 0 0
0 0 0
0 0.3259 −0.3259
0 0 0

0.6987 −0.6987 −0.6987



, (4.22)

P3 =



0 0.6987 0 0 0 0.0619 0 0 0 0 0 0.0145
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0



. (4.23)

And then, we select the elements of G3 which is needed to satisfy the design condition
in (4.24). The elements of G3 in i-th row and j-th column are denoted by g3(i, j), (i ∈
12, j ∈ 12). The degrees of freedom of G3 are chosen to make (A+G3C) has no positive
eigenvalues. Then, G3 can be expressed as (4.25).
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g3(1, 2) = −1, g3(1, 6) = 0, g3(1, 10) = 0, g3(1, 12) = 0,

g3(2, 2) = −9.9170, g3(2, 6) = 0, g3(2, 10) = −0.8835, g3(2, 12) = 0.2060,

g3(3, 2) = 0, g3(3, 6) = 0, g3(3, 10) = 0, g3(3, 12) = 0,

g3(4, 2) = 0, g3(4, 6) = 0, g3(4, 10) = 0, g3(4, 12) = 0,

g3(5, 2) = 0, g3(5, 6) = −1, g3(5, 10) = 0, g3(5, 12) = 0,

g3(6, 2) = 47.2570, g3(6, 6) = 0, g3(6, 10) = 4.2099, g3(6, 12) = −0.9816,

g3(7, 2) = 0, g3(7, 6) = 0, g3(7, 10) = 0, g3(7, 12) = 0,

g3(8, 2) = 0, g3(8, 6) = 0, g3(8, 10) = 0, g3(8, 12) = 0,

g3(9, 2) = 0, g3(9, 6) = 0, g3(9, 10) = −1, g3(9, 12) = 0,

g3(11, 2) = 0, g3(11, 6) = 0, g3(11, 10) = 0, g3(11, 12) = −1,

g3(12, 2) = 0.2060, g3(12, 6) = 0, g3(12, 10) = 0.0184, g3(12, 12) = −0.0043.
(4.24)

G3 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −9.9179 0 0 0 −0.8785 0 0 0 0 0 −0.2060
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 −0.8785 0 0 0 −0.0778 0 0 0 0 0 −0.0182
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 0 0 0 0 0 0 0 0 −8 0 0
0 0 0 0 0 0 0 0 0 0 −9 −1
0 −0.2060 0 0 0 −0.0182 0 0 0 0 0 −0.0043



.

(4.25)

In (4.25), all eigenvalues of (A +G3C) are not positive but some of the eigenvalues are
zero which means marginally stable.
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We can also design H3 that satisfies (4.11). Since kerC = 0, we design H3 satisfying
kerH3 = S∗3 as follows

H3 =
[

0 0.6987 0 0 0 0.0619 0 0 0 0 0 0.0145
]
, (4.26)

which is same as the first row vector of P3. The other row vectors of P3 also satisfy the
design condition but the values do not appear in the residue r3(t). This means the only
H3 in (4.26) can be used.

Lastly, we design a residue r4(t) that can only detect the fault of the fourth actuator.
The observer gain and the filter matrix are denoted by G4 and H4. Since S4 is expressed
as [L1 L2 L3] in (4.27), the projection matrix P4 that satisfies P4S4 = 0 can be derived
as follows

S4 = 10−5 ×



0 0 0
0.0145 0.0145 0.0145

0 0 0
0 0 0
0 0 0

−0.3277 0 0.3277
0 0 0
0 0 0
0 0 0
0 0.3259 0
0 0 0

0.6987 −0.6987 0.6987



, (4.27)
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P4 =



0 0.6987 0 0 0 0 0 0 0 −0.0622 0 −0.0145
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0



. (4.28)

Then, we select the elements ofG4 which is needed to satisfy the design condition in (4.29).
The elements of G4 in i-th row and j-th column are denoted by g4(i, j), (i ∈ 12, j ∈ 12).
The degrees of freedom of G4 are chosen to make (A+G4C) has no positive eigenvalues.
Then, G4 can be expressed as (4.30).

g4(1, 2) = −1, g4(1, 6) = 0, g4(1, 10) = 0, g4(1, 12) = 0,

g4(2, 2) = −0.0992, g4(2, 6) = 0, g4(2, 10) = 0.0088, g4(2, 12) = 0.0020,

g4(3, 2) = 0, g4(3, 6) = 0, g4(3, 10) = 0, g4(3, 12) = 0,

g4(4, 2) = 0, g4(4, 6) = 0, g4(4, 10) = 0, g4(4, 12) = 0,

g4(5, 2) = 0, g4(5, 6) = −1, g4(5, 10) = 0, g4(5, 12) = 0,

g4(6, 2) = 0, g4(6, 6) = 0, g4(6, 10) = 0, g4(6, 12) = 0,

g4(7, 2) = 0, g4(7, 6) = 0, g4(7, 10) = 0, g4(7, 12) = 0,

g4(8, 2) = 0, g4(8, 6) = 0, g4(8, 10) = 0, g4(8, 12) = 0,

g4(9, 2) = 0, g4(9, 6) = 0, g4(9, 10) = −1, g4(9, 12) = 0,

g4(10, 2) = 112.2619, g4(10, 6) = 0, g4(10, 10) = −10.0007, g4(10, 12) = −2.3320,

g4(11, 2) = 0, g4(11, 6) = 0, g4(11, 10) = 0, g4(11, 12) = −1,

g4(12, 2) = 0.0020, g4(12, 6) = 0, g4(12, 10) = −0.0002, g4(12, 12) = 0.
(4.29)
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G4 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −0.0992 0 0 0 0 0 0 0 0.0088 0 0.0020
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 112.2619 0 0 0 0 0 0 0 −10.0007 0 −2.3320
0 0 0 0 0 0 0 0 0 0 −8 −1
0 0.0020 0 0 0 0 0 0 0 −0.0002 0 0



.

(4.30)

In (4.30), all eigenvalues of (A +G4C) are not positive but some of the eigenvalues are
zero which means marginally stable.

We can also design H4 that satisfies (4.11). Since kerC = 0, we design H4 satisfying
kerH4 = S∗4 as follows

H4 =
[

0 0.6987 0 0 0 0 0 0 0 −0.0622 0 −0.0145
]
, (4.31)

which is same as the first row vector of P4. The other row vectors of P4 also satisfy the
design condition but the values do not appear in the residue r4(t). This means the only
H4 in (4.31) can be used.

4.4 Designing fault detection filters in detailed quadrotor model

As we did in the previous section, we find the observer gain Gi and the filter matrix Hi in
the linear state equation of detailed quadrotor model. To distinguish previously designed
matrices, Gi and Hi start with G5 and H5.

Matrices G5 and H5 are to build the residue r5(t) that can detect only the first
actuator fault signal in the detailed model. From the linearization, S5 still remained as
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[L2 L3 L4]. So, the projection matrix P5 is same as P1. When we expressed the value in
i-th row and j-th column of G5 as g5(i, j), (i ∈ 12, j ∈ 12), the elements of G5 that are
needed to satisfy the design condition are denoted in (4.32).

g5(1, 2) = −1, g5(1, 6) = 0, g5(1, 10) = 0, g5(1, 12) = 0,

g5(2, 2) = −3, g5(2, 6) = 0, g5(2, 10) = 0, g5(2, 12) = 0,

g5(3, 2) = 0, g5(3, 6) = 0, g5(3, 10) = 0, g5(3, 12) = 0,

g5(4, 2) = 0, g5(4, 6) = 0, g5(4, 10) = 0, g5(4, 12) = 0,

g5(5, 2) = 0, g5(5, 6) = −1, g5(5, 10) = 0, g5(5, 12) = 0,

g5(6, 2) = 0, g5(6, 6) = −3, g5(6, 10) = 0, g5(6, 12) = −0.2170,

g5(7, 2) = 0, g5(7, 6) = 0, g5(7, 10) = 0, g5(7, 12) = 0,

g5(8, 2) = 0, g5(8, 6) = 0, g5(8, 10) = 0, g5(8, 12) = 0,

g5(9, 2) = 0, g5(9, 6) = 0, g5(9, 10) = −1, g5(9, 12) = 0,

g5(11, 2) = 0, g5(11, 6) = 0, g5(11, 10) = 0, g5(11, 12) = −1,

g5(12, 2) = 0, g5(12, 6) = −3.7520, g5(12, 10) = 0, g5(12, 12) = −3.

(4.32)

The elements whose values are not determined in (4.32) mean the degrees of freedom of
G5. These degrees of freedom are used to make that (A+G5C) is Hurwitz.

G5 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 −0.2170
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −8 −1
0 0 0 0 0 −3.7520 0 0 0 0 0 −3



. (4.33)
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Finally, G5 with all elements are determined is expressed in (4.33). Since S5 is same as
S1, the filter matrix H5 is also same as H1 due to (4.11).

Let us move on to the step of designing the residue r6(t), which is only for the second
actuator fault in the detailed model. Since S6 still remained as [L1 L3 L4], the projection
matrix P6 is same as P2. When we expressed the value in i-th row and j-th column of
G6 as g6(i, j), (i ∈ 12, j ∈ 12), the elements of G6 that are needed to satisfy the design
condition are denoted in (4.34).

g6(1, 2) = −1, g6(1, 6) = 0, g6(1, 10) = 0, g6(1, 12) = 0,

g6(2, 2) = −3, g6(2, 6) = 0, g6(2, 10) = 0, g6(2, 12) = 0,

g6(3, 2) = 0, g6(3, 6) = 0, g6(3, 10) = 0, g6(3, 12) = 0,

g6(4, 2) = 0, g6(4, 6) = 0, g6(4, 10) = 0, g6(4, 12) = 0,

g6(5, 2) = 0, g6(5, 6) = −1, g6(5, 10) = 0, g6(5, 12) = 0,

g6(7, 2) = 0, g6(7, 6) = 0, g6(7, 10) = 0, g6(7, 12) = 0,

g6(8, 2) = 0, g6(8, 6) = 0, g6(8, 10) = 0, g6(8, 12) = 0,

g6(9, 2) = 0, g6(9, 6) = 0, g6(9, 10) = −1, g6(9, 12) = 0,

g6(10, 2) = 0, g6(10, 6) = −0.8749, g6(10, 10) = −2.1306, g6(10, 12) = −0.2158,

g6(11, 2) = 0, g6(11, 6) = 0, g6(11, 10) = 0, g6(11, 12) = −1,

g6(12, 2) = 0, g6(12, 6) = −3.7520, g6(12, 10) = 0, g6(12, 12) = −3.
(4.34)

The elements whose values are not determined in (4.34) mean the degrees of freedom of
G6. These degrees of freedom are used to make that (A+G6C) is Hurwitz. Finally, G6

with all elements are determined is expressed in (4.35).
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G6 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 −0.2170
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 0 0 0 0 −0.8749 0 0 0 −2.1306 0 −0.2158
0 0 0 0 0 0 0 0 0 0 −8 −1
0 0 0 0 0 −3.7520 0 0 0 0 0 −3



.

(4.35)

Since S6 is same as S2, the filter matrix H6 is also same as H2 due to (4.11).

Next, let us design r7(t), which is only for the third actuator fault in the detailed model.
Since S7 still remained as [L1 L2 L4], the projection matrix P7 is same as P3. When we
expressed the value in i-th row and j-th column of G7 as g7(i, j), (i ∈ 12, j ∈ 12), the
elements of G7 that are needed to satisfy the design condition are denoted in (4.36).
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g7(1, 2) = −1, g7(1, 6) = 0, g7(1, 10) = 0, g7(1, 12) = 0,

g7(2, 2) = 0, g7(2, 6) = 0, g7(2, 10) = 0, g7(2, 12) = 0,

g7(3, 2) = 0, g7(3, 6) = 0, g7(3, 10) = 0, g7(3, 12) = 0,

g7(4, 2) = 0, g7(4, 6) = 0, g7(4, 10) = 0, g7(4, 12) = 0,

g7(5, 2) = 0, g7(5, 6) = −1, g7(5, 10) = 0, g7(5, 12) = 0,

g7(6, 2) = −10.4480, g7(6, 6) = 0, g7(6, 10) = 0, g7(6, 12) = 0,

g7(7, 2) = 0, g7(7, 6) = 0, g7(7, 10) = 0, g7(7, 12) = 0,

g7(8, 2) = 0, g7(8, 6) = 0, g7(8, 10) = 0, g7(8, 12) = 0,

g7(9, 2) = 0, g7(9, 6) = 0, g7(9, 10) = −1, g7(9, 12) = 0,

g7(11, 2) = 0, g7(11, 6) = 0, g7(11, 10) = 0, g7(11, 12) = −1,

g7(12, 2) = 0, g7(12, 6) = −0.1939, g7(12, 10) = 0, g7(12, 12) = 0.

(4.36)

The elements whose values are not determined in (4.36) mean the degrees of freedom of
G7. These degrees of freedom are used to make that (A+G7C) is Hurwitz. Finally, G7

with all elements are determined is expressed in (4.37).

G7 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 −10.4480 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −5 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 −7 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −8 −1
0 0 0 0 0 −0.1939 0 0 0 0 0 0



.

(4.37)

Since S7 is same as S3, the filter matrix H7 is also same as H3 due to (4.11).
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The last, let us design r8(t), which is only for the fourth actuator fault in the detailed
model. Since S8 still remained as [L1 L2 L3], the projection matrix P8 is same as P4.
When we expressed the value in i-th row and j-th column of G8 as g8(i, j), (i ∈ 12, j ∈
12), the elements of G8 that are needed to satisfy the design condition are denoted in
(4.38).

g8(1, 2) = −1, g8(1, 6) = 0, g8(1, 10) = 0, g8(1, 12) = 0,

g8(2, 2) = −0.9254, g8(2, 6) = 0, g8(2, 10) = 0, g8(2, 12) = 0,

g8(3, 2) = 0, g8(3, 6) = 0, g8(3, 10) = 0, g8(3, 12) = 0,

g8(4, 2) = 0, g8(4, 6) = 0, g8(4, 10) = 0, g8(4, 12) = 0,

g8(5, 2) = 0, g8(5, 6) = −1, g8(5, 10) = 0, g8(5, 12) = 0,

g8(7, 2) = 0, g8(7, 6) = 0, g8(7, 10) = 0, g8(7, 12) = 0,

g8(8, 2) = 0, g8(8, 6) = 0, g8(8, 10) = 0, g8(8, 12) = 0,

g8(9, 2) = 0, g8(9, 6) = 0, g8(9, 10) = −1, g8(9, 12) = 0,

g8(10, 2) = −1, g8(10, 6) = 0, g8(10, 10) = 0, g8(10, 12) = 0,

g8(11, 2) = 0, g8(11, 6) = 0, g8(11, 10) = 0, g8(11, 12) = −1,

g8(12, 2) = 4.2886, g8(12, 6) = 0, g8(12, 10) = −0.2402, g8(12, 12) = 0.

(4.38)

The elements whose values are not determined in (4.38) mean the degrees of freedom of
G8. These degrees of freedom are used to make that (A+G8C) is Hurwitz. Finally, G8

with all elements are determined is expressed in (4.39).
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G8 =



−1 −1 0 0 0 0 0 0 0 0 0 0
0 −0.9254 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −4 −1 0 0 0 0 0 0
0 0 0 0 0 −5 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 0 0 0
0 0 0 0 0 0 0 −7 0 0 0 0
0 0 0 0 0 0 0 0 −8 −1 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −9 −1
0 4.2886 0 0 0 0 0 0 0 −0.2402 0 0



.

(4.39)

Since S8 is same as S4, the filter matrix H8 is also same as H4 due to (4.11).
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5 Simulation

5.1 Simulation environment

The whole simulation environment is implemented through MATLAB Simulink. In this
simulation, two different quadrotor dynamics introduced in Chapter 3, LQR controller,
and four fault detection filters are implemented.

We set the operating point of the quadrotor at x∗ = [1 0 0 0 0 0 0 0 0 0 0 0]T

which means the quadrotor is hovering at a height of 1m in the e3 direction. All positive
constants in the quadrotor model that we used are obtained in [17]. The total simulation
time is 60 seconds, and we assume that one particular actuator has a fault signal when
20 seconds after the simulation starts. Also, we define a situation in which one actuator
has a 20% RPM power degradation as a fault.

5.2 Simulation result

The actuator fault detection results in linear state equation of the classical quadrotor
model are shown in Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4. In Figure 5.1, the
simulation result shows the reaction of each residue when the fault occurs only in first
actuator. Only the residue r1(t) shows a response to the fault signal and the rest of the
residues are not affected by the fault and keep remaining as zero.

In Figure 5.2, the simulation result shows the reaction of each residue when the fault
occurs only in second actuator. Only the residue r2(t) shows a response to the fault signal
and the rest of the residues are not affected by the fault and keep remaining as zero.
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In Figure 5.3, the simulation result shows the reaction of each residue when the fault
occurs only in third actuator. Only the residue r3(t) shows a response to the fault signal
and the rest of the residues are not affected by the fault and keep remaining as zero.

In Figure 5.4, the simulation result shows the reaction of each residue when the fault
occurs only in fourth actuator. Only the residue r4(t) shows a response to the fault signal
and the rest of the residues are not affected by the fault and keep remaining as zero.
These results indicate that the residues r1(t), r2(t), r3(t), and r4(t) are well designed as
expected.

Also, we apply these residues r1(t), r2(t), r3(t), and r4(t) to the linear state equation
of detailed quadrotor model. If these residues are work well, the detailed quadrotor model
will not necessary for fault detection. The simulation results are shown from Figure 5.5
to Figure 5.8. In this case, we can see that all residues react to all fault effects. For
example, residue r1(t) has a signal not only for the first actuator fault but also for the
second, third, and fourth actuator fault. In this case, the residue signal shown by the rest
of the actuators is small. However, the size of the residue signal depends on the size of
the fault, so if the fault occurs in another actuator with different sizes, it is hard to tell
which actuator fails. Figure 5.9 shows the example of this situation. The left side of Figure
5.9 shows the residue r1(t) when the first actuator has a 5% RPM power degradation.
The right side of Figure 5.9 shows the residue r1(t) when the fourth actuator stops the
operating. As you can see, when we only see r1(t), we may judge that the first actuator
has a fault. But, on the right side of Figure 5.9, it is actually caused by a fault of the
fourth actuator. To prevent this misjudgment, we need to apply the actual dynamics of
the quadrotor in the model.

Now, The actuator fault detection results in linear state equation of the detailed
quadrotor model are shown in Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13.
In Figure 5.10, only the residue r5(t) shows a response to the fault signal and the rest of
the residues are not affected by the fault and keep remaining as zero.

In Figure 5.11, only the residue r6(t) shows a response to the fault signal and the rest
of the residues are not affected by the fault and keep remaining as zero.

In Figure 5.12, only the residue r7(t) shows a response to the fault signal and the rest
of the residues are not affected by the fault and keep remaining as zero.

In Figure 5.13, only the residue r8(t) shows a response to the fault signal and the rest
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of the residues are not affected by the fault and keep remaining as zero.
Finally, we apply our fault detection filters to nonlinear quadrotor model described in

(3.1). Though our fault detection filters are suitable for the detailed linear model, Figure
5.14, Figure 5.15, Figure 5.16, and Figure 5.17 show that fault detection is possible under
the limited condition when the quadrotor is hovering on the nonlinear model.

(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.1: Residues when the first actuator fault occurs in the classical quadrotor model.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.2: Residues when the second actuator fault occurs in the classical quadrotor model.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.3: Residues when the third actuator fault occurs in the classical quadrotor model.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.4: Residues when the fourth actuator fault occurs in the classical quadrotor model.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.5: Model changes from classical to the detailed model in Figure 5.1.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.6: Model changes from classical to the detailed model in Figure 5.2.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.7: Model changes from classical to the detailed model in Figure 5.3.
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(a) residue r1(t) (b) residue r2(t)

(c) residue r3(t) (d) residue r4(t)

Figure 5.8: Model changes from classical to the detailed model in Figure 5.4.

(a) residue r1(t) when first actuator has a 5% RPM
power degradation

(b) residue r1(t) when the fourth actuator stops the op-
erating

Figure 5.9: Comparison of r1(t) in two faulty case
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.10: Residues when the first actuator fault occurs in the detailed quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.11: Residues when the second actuator fault occurs in the detailed quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.12: Residues when the third actuator fault occurs in the detailed quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.13: Residues when the fourth actuator fault occurs in the detailed quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.14: Residues when the first actuator fault occurs in the nonlinear quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.15: Residues when the second actuator fault occurs in the nonlinear quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.16: Residues when the third actuator fault occurs in the nonlinear quadrotor model.
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(a) residue r5(t) (b) residue r6(t)

(c) residue r7(t) (d) residue r8(t)

Figure 5.17: Residues when the fourth actuator fault occurs in the nonlinear quadrotor model.



6 Conclusion

In this thesis, to obtain the effect of aerodynamics induced by propellers on actuator
fault detection performance, we used two different quadrotor dynamic models. One is the
classical model that presents the quadrotor dynamics in an ideal environment. The other
is the detailed model that includes the aerodynamic effect of the propellers. We linearized
each of the two linear models to apply the fault detection method.

We use the geometric approach as a fault detection method that uses characteristics of
subspaces in observable LTI system. If we can find these subspaces with special algorithms
from the system, we can easily design fault detection filters by using the subspaces that
we obtained. In this thesis, the whole process of the algorithms and filter design are
introduced and we actually design eight fault detection filters with specific design factors.

To verify the performance of the designed fault detection filters, MATLAB Simulink
was used as a simulator. We confirm the performance of the fault detection filter suitable
for the classical quadrotor model. Also, we show the effect of aerodynamics has affected
fault detection performance, which means fault detection is not possible. And then, we
suggest new fault detection filters suitable for the quadrotor model with the aerodynamic
effect of propellers. We also confirm that our fault detection filters are valid in the non-
linear model when the quadrotor is hovering.

However, the fault detection filter designed in this thesis is only usable when the
quadrotor is hovering. Since the actual quadrotor moves in an outdoor environment, we
should consider fault detection in the full nonlinear system that takes into account various
situations. This will be left as future work.
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A Matrices in linearization

Here, matrices in (3.21) are fully expressed. We have two linear models, one is the classical
quadrotor model with fD = 0, τD = 0, and Ti = kwwi

2 in (3.1) and (3.3). The other is
the detailed quadrotor model using BEMT. To prevent confusion, the matrices in the
linear state equation of the classical model are expressed by Ac and Bc as follows

ẋ = Acx+Bcu,

y = Cx.
(A.1)

First, the matricesAc andBc are given by (A.2) and (A.3), respectively, where J2 = 1/I1,
J4 = 1/I2, J6 = 1/I3, and I = diag(I1, I2, I3). And then, the matrices A0 and B0 in
the linear state equation of the detailed model in (3.21) is derived in (A.4) . Note that
calculation of the matrices in (3.21) are not the contribution of this thesis. All the matrices
in (3.21) are calculated in [17].

We do not describe what Ā and B̄ are here because we do not consider the effect
of external wind W . Also in this thesis, B0 is equal to Bc because both linear model
deal with a same hovering situation. Only A0 = diag(A0,1,A0,2,A0,3A0,4), where each
sub-matrix A0,i is defined by (A.4).
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Ac =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 g 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −g 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



. (A.2)

Bc =



0 0 0 0
kw/m kw/m kw/m kw/m

0 0 0 0
0 0 0 0
0 0 0 0

−kwJ4l 0 kwJ4l 0
0 0 0 0
0 0 0 0
0 0 0 0
0 kwJ2l 0 −kwJ2l

0 0 0 0
J6kmkw −J6kmkw J6kmkw −J6kmkw



. (A.3)
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A0,1 =
 0 1

0 −4kzw
∗/m

 ,

A0,2 =


0 1 0 0
0 −4ckw(w∗)2/m 4kw(w∗)2/m 0
0 0 0 1
0 −4kwJ4cd(w∗)2 0 −2kzJ4l

2w∗

 ,

A0,3 =


0 1 0 0
0 −4ckw(w∗)2/m −4kw(w∗)2/m 0
0 0 0 1
0 4kwJ2cd(w∗)2 0 −2kzJ2l

2w∗

 ,

A0,4 =
 0 1

0 −4kwJ6cl
2(w∗)2

 .

(A.4)
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B General case when C is not full rank with TE-PCS

Here, detailed process of UOSA and CAISA in geometric approach will be introduced.
We use Tennessee-Eastman process control system (TE-PCS) which is a typical industrial
process with four actuator inputs. In TE-PCS, the matrix C is not full rank, so we can
explain the whole process of UOSA and CAISA. From [25], we can obtain LTI system as
follows:

ẋ(t) = Ax(t) +Bu(t) +
4∑

i=1
Limi(t),

y(t) = Cx(t),
(B.1)

A =



−1.333 0 0 0 0 0 0 0
0 −11 −2.5 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 0 0 −0.8 0 0 0
0 0 0 0.5 −4.1 0 0 0
0 0 0 0 0 −20.1 −2 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1



, (B.2)
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B =



2 0 0 0
0 0 0 8
0 0 0 0

4.5 0 −1.125 0
12.75 0 −0.75 0

0 2 0 0
0 0 0 0
0 0 0 1



, (B.3)

C =


1.333 −4.25 0 0 0 0 0 0

0 0 0 0 8 0 0 0
0 0 0 0 0 −0.075 1.5 0
0 0 0 0 0 0 0 1

 . (B.4)

Consider that we design full order observer in (4.2), then we can obtain the error
system (4.4) with four residues. To design four fault detection filters, we have to calculate
the infimal (C,A)-invariant subspace W∗i and infimal unobservable subspace S∗i through
CAISA and UOSA.

First, we will show how to obtain (C,A)-invariant subspace W∗1 through CAISA.
In Theorem 4.1, when k = 0, as the initial condition is W 0

1 = 0, we can notice the
projection matrix P 0

W,1 is the nonzero arbitrary matrix which satisfies P 0
W,1W

0
1 = 0.

Then, T 0
W,1, which satisfies following condition for all possible P 0

W,1 is a zero matrix.

 P 0
W,1

C

T 0
W,1 = 0. (B.5)

Therefore, in W 1
1 = [L2 L3 L4 AT

0
W,1], the rank of W 1

1 is 3.
Now, move on the next step, when k = 1, we can obtain projection matrix P 1

W,1 that
satisfies P 1

W,1W
1
1 = 0 as follows:
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P 1
W,1 =



1 1 1 0.75 −1.125 0 1 −8
1 1 −1 0.75 −1.125 0 1 −8
1 1 1 0.75 −1.125 0 −1 −8
1 0 1 0.75 −1.125 0 1 0
1 1 1 0 0 0 1 −8


. (B.6)

Then, T 1
W,1, which satisfies following condition for all possible P 0

W,1 is a zero matrix
because the rank of [P 1

W,1, C]T is 8. Therefore, in W 2
1 = [L2 L3 L4 AT

1
W,1], the rank of

W 2
1 is 3. Now, CAISA is stopped due to Rank W 2

1 = Rank W 1
1 .

Then, (C,A)-invariant subspace W∗1 is the image of W 1
1 , i.e., W∗1 = ImW 1

1 =
Im[L2 L3 L4].

With W∗1 , we can obtain unobservable subspace S∗1 through UOSA. In Theorem 4.2,
when k = 0, as the initial condition is S0

1 = I8×8, we can notice the projection matrix P 0
S,1

is the zero matrix which satisfies P 0
S,1S

0
1 = 0. Then, T 0

S,1, which satisfies the following
condition can be expressed by four linearly independent column vectors.

 P 0
S,1A

C

T 0
S,1 = 0, (B.7)

T 0
S,1 =



4.25 0 0 0
1.333 0 0 0

0 1 1 0
0 0 1 1
0 0 0 0

1.5 0 0 1.5
0.075 0 0 0.075

0 0 0 0



. (B.8)

Therefore, in S1
1 = [W 1

1 T
0
S,1] = [L2 L3 L4 T

0
S,1], the rank of S1

1 is 7.
Move on the next step, when k = 1, we can obtain projection matrix P 1

S,1 that satisfies
P 1
S,1S

1
1 = 0 as follows:
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P 1
S,1 =

[
−0.3136 1 0 0 0 0 0 −8

]
. (B.9)

Then, T 1
S,1, which satisfies the following condition can be expressed by three linearly

independent column vectors.

 P 1
S,1A

C

T 1
S,1 = 0, (B.10)

T 1
S,1 =



4.25 0 0
1.333 0 0
−5.15443 0 0

0 1 0
0 0 0
0 0 1.5
0 0 0.075
0 0 0



. (B.11)

Therefore, in S2
1 = [W 1

1 T
1
S,1] = [L2 L3 L4 T

1
S,1], the rank of S2

1 is 6.
Move on the next step, when k = 2, we can obtain projection matrix P 2

S,1 that satisfies
P 2
S,1S

2
1 = 0 as follows:

P 2
S,1 =

 −0.3136 1 0 0 0 0 0 −8
0 1 0.2586 0 0 0 0 −8

 . (B.12)

Then, T 2
S,1, which satisfies the following condition can be expressed by two linearly

independent column vectors.

 P 2
S,1A

C

T 2
S,1 = 0, (B.13)
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T 2
S,1 =



0 0
0 0
0 0
1 0
0 0
0 1.5
0 0.075
0 0



. (B.14)

Therefore, in S3
1 = [W 1

1 T
2
S,1] = [L2 L3 L4 T

2
S,1], the rank of S3

1 is 5.
Move on the next step, when k = 3, we can obtain projection matrix P 3

S,1 that satisfies
P 3
S,1S

3
1 = 0 as follows:

P 3
S,1 =


0 1 0 0 0 0 0 −8
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 . (B.15)

Then, T 3
S,1, which satisfies the following condition can be expressed by two linearly

independent column vectors.

 P 3
S,1A

C

T 3
S,1 = 0, (B.16)

T 3
S,1 =



0 0
0 0
0 0
1 0
0 0
0 1.5
0 0.075
0 0



. (B.17)
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Therefore, in S4
1 = [W 1

1 T
3
S,1] = [L2 L3 L4 T

3
S,1], the rank of S4

1 is 5. Now, UOSA is
stopped due to Rank S4

1 = Rank S3
1 .

Then, unobservable subspace S∗1 is the image of S3
1 , i.e., S∗1 = ImS3

1 = Im[L2 L3 L4 T
2
S,1].

In the same process, we can obtain the unobservable subspaces S∗2 , S∗3 , and S∗4 that
are needed to design each fault detection filters. In this thesis, we do not describe all
processes but the calculation process is the same as above.
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요약문

프로펠러의 공기역학적 특성을 고려한 쿼드로터 액추에이터
고장 감지

운행중인 쿼드로터에 발생할 수 있는 오동작의 원인 중 하나로는 액추에이터에 발생하는

고장이 있다. 이때 고장 신호는 모터의 출력 저하 또는 완전 정지의 형태로 나타난다. 이러
한 고장은 운행중인 쿼드로터에게 추락과 같은 치명적인 결과를 야기할 수 있으므로, 고장
발생 시 이를 감지하고 대처할 수 있도록 하는 조치가 필요하다. 이를 위해서는 먼저, 어느
액추에이터에 고장이 발생했는지 찾아내는 과정이 필요하다.
이에 본 연구는 쿼드로터의 동역학 모델을 기반으로 액추에이터에 발생하는 고장 신

호를 감지하는 방법에 대해 서술한다. 본 연구에서 사용한 쿼드로터의 동역학 모델은 두
가지이다. 하나는 이상적인 환경에서의 동작을 가정한 모델이며, 쿼드로터의 움직임을 비
교적 간단하게 표현하므로 쿼드로터를 이용한 대부분의 연구에서 보편적으로 사용된다.
다른 하나는 프로펠러의 회전에 의해 발생하는 공기역학적 특성이 쿼드로터의 동역학에

미치는 영향을 고려한 모델이다. 본 연구에서는 고장 감지 기법을 적용하기 위해 두 가지
선형 모델 각각에 대해 쿼드로터가 제자리에서 비행하고 있는 상황에서의 선형화 모델을

수립하였다.
본 연구에서 사용한 고장 감지 기법은 선형 모델의 상태 추정 오차로 표현되는 오차

시스템의 선형부분공간을 이용한 기하학적 접근법이며, 선형화 모델과 오차 시스템의 관
측불가능한 선형부분공간의 특성을 통해 액추에이터 고장을 감지하는 데 적합한 필터들을

설계하였다.
설계한 고장 감지 필터의 성능을 분석하기 위해, MATLAB Simulink 기반의 시뮬레이

션을 사용하였다. 우선 이상적인 쿼드로터 선형 모델에 적합한 고장 감지 필터들을 시뮬
레이션으로 구현하고 성능을 확인하였다. 그리고, 이 필터들을 공기역학적 특성이 고려된
쿼드로터 선형 모델에 적용하여, 프로펠러의 회전에 의한 공기역학적 특성이 고장 감지 성
능에 미치는 영향을 확인하였다. 이후 공기역학적 특성이 고려된 쿼드로터 모델에 적합한
새로운고장감지필터들을시뮬레이션으로구현하고성능을확인하여실제쿼드로터운행

환경에 적합한 액추에이터 고장 감지 필터를 제시하였다.
주요어휘:고장감지,기하학적접근법,관측불가능한선형부분공간,쿼드로터,액추에이터,
공기역학적 특성
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