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A B S T R A C T   

This study aimed to design a deep neural network for electroencephalography (EEG)-based drowsiness detection 
in multiple consciousness states, i.e., “awake,” “sleep,” and “drowsiness.” Few studies have seriously considered 
the optimal input vector size or labeling method in classifying multiple consciousness states, which may affect 
classification performance. To determine the optimal input vector length, i.e., window length, three neural 
network models (long short-term memory [LSTM], convolutional neural network [CNN], and combined LSTM 
and CNN) and four feature-based models were tested with six different levels of window length. The EEG dataset 
was acquired from 19 participants with randomly assigned auditory stimuli and button responses. The EEG data 
were labeled into three classes (awake, sleep, and drowsiness) based on the defined button response pattern 
corresponding to the stimuli. The results demonstrated that when the input vector size exceeded 8 sec, the 
performance of the neural network models dropped rapidly; however, when the window size was less than 8 sec, 
the performance change according to the window size was small. In contrast, the performance of feature-based 
models increased continuously as the window size increased. The LSTM model yielded the best accuracy (86%) 
for a 1 sec window length, and the LSTM-CNN model yielded the best kappa index (0.77) for a 4 sec window 
length. In addition, the proposed model was applied to the binary classification of normal consciousness (awake) 
and low consciousness (drowsiness and sleep) states to determine whether this model works appropriately in 
actual applications such as drowsiness detection in a driving environment. For binary classification, the LSTM- 
CNN model resulted in 0.95 F1 scores in 4000-ms. When a short input data (500 msec) is used, the LSTM-CNN 
model resulted in an average accuracy of 85.6% and a kappa index of 0.77 for the three-class classification 
problem and 0.94 F1 scores for the binary classification problem. In conclusion, we demonstrated that the 
proposed model could effectively detect drowsiness. Furthermore, a significant correlation was found between 
reaction time and drowsiness. However, using the reaction time as an index for labeling drowsiness was chal
lenging because of the high false-negative ratio.   

1. Introduction 

Drowsiness can be defined as a progressive loss of cortical processing 
efficiency (Slater, 2008). This inefficiency leads to a gradual loss of 
cognitive function. According to a previous study, 56 % of night-shift 
nurses reported sleep deprivation (Johnson, Brown, & Weaver, 2010), 
resulting in a significantly higher probability of patient care errors 
(Johnson, Jung, Brown, Weaver, & Richards, 2014). Another study that 
analyzed industrial injury incidents reported 1.23 times higher injury 
risk on the night-shift than on the morning-shift under a three-shift 
system (Smith, Folkard, & Poole, 1994). 

Electroencephalography (EEG) is a method used to record brain ac
tivity by measuring voltage fluctuations resulting from ionic currents 
within the brain’s neuron (Henry, 2006). Owing to the EEG patterns that 
appear according to sleep stages (Rodenbeck, Binder, Geisler, Danker- 
Hopfe, Lund, Raschke, Weeß, & Schulz, 2006), EEG has been adopted 
in drowsiness detection systems in several studies. 

In a previous study by Yeo, Li, Shen, and Wilder-Smith (2009), EEG 
signals were recorded for one hour from 20 subjects during a driving 
simulation (Yeo et al., 2009). The recorded data were manually labeled 
as “alert” or “drowsy” with specific rules based on eye blink frequency 
and EEG activity, segmented into 10-s epochs. For each epoch, delta, 
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theta, alpha, beta, and gamma frequency band powers (BPs) were 
calculated for the feature space and classified at 99.30 % accuracy with a 
support vector machine (SVM). 

Zhao, Zheng, Zhao, Tu, and Liu (2011) calculated a multivariate 
autoregressive (MVAR) model to extract EEG features (Zhao et al., 
2011). EEG signals were recorded for 150 min from 13 subjects during a 
driving simulation. The coefficients of the third-order MVAR model 
were used as EEG features. These features were tested using various 
classification strategies. Linear principal component analysis and kernel 
principal component analysis (KPCA) were adopted as feature reduction 
algorithms, and the radial basis function (RBF) network and SVM were 
selected for classification. The combination of KPCA and SVM per
formed best (81.64 %), with 25 features. 

Budak, Bajaj, Akbulut, Atila, and Sengur (2019) combined three long 
short-term memory (LSTM) networks to detect drowsiness (Budak et al., 
2019). An expert observer labeled data from the Massachusetts Institute 
of Technology-Beth Israel Polysomnographic EEG database into awake 
and multiple sleep stages, and EEG signal and data with “alert” and 
“sleep stage 1” were used. We assumed that “sleep stage 1” was drowsy. 
The following input data were fed for each LSTM network: the histogram 
of zero-crossing rate, energy, spectral entropy, an instantaneous fre
quency for the first LSTM network, output data of AlexNet and VGG16 
with spectrogram image input for the second LSTM network, and co
efficients of the tunable-Q wavelet transformed for the third LSTM 
network. Each LSTM network contained a fully-connected node for bi
nary classification, and the final classification conducted by majority 
voting was 94.31 %. 

Before this study, we implemented a drowsiness detection system 
using LSTM (Lee, Choi, & An, 2021). EEG signals were acquired using a 
button response to a randomly given auditory stimulus. The acquired 
EEG signal was segmented with a 4-second window and a second shift 
and labeled with one of three cognitive states, including “sleep, awak
eness, and drowsiness”. The cognitive states of “awakeness” and “sleep” 
were labeled according to the subject’s response. As a transition of 
cognitive states, “drowsiness” was labeled when “awakeness” and 
“sleep” occurred sequentially. The labeled segments were classified 
using the LSTM neural network model, resulting in 81.1 % with every 
channel and 79.8 % with three channels in the right hemisphere of the 
premotor cortex. 

However, the previous study had two limitations. First, the window 
length of 4 sec was not optimal. The segmented data were labeled ac
cording to the last timestamp of the data. Thus, the window length 
represents the length of past data for classification. If the window length 
is too short, insufficient data are fed into a classifier. If the window is too 
long, a large proportion of the data will not contribute to classification 
and will interfere in the worst case. Therefore, the optimal window 
length must be determined. Second, additional classification methods 
should be tested to verify the performance of the proposed neural 
network. The performance of drowsiness detection systems depends on 
the experimental process and labeling method. Balandong, Ahmad, 
Mohamad Saad, and Malik (2018) compared several studies that 
implement drowsiness detection systems, and the accuracies of drows
iness detection systems using SVM ranged from 81.64 % to 98.00 % 
(Balandong et al., 2018). Despite the differences in kernel type or other 
hyperparameters of the classifier, the influence of the difference be
tween the experimental process and the labeling method should be 
considered. Therefore, examining the proposed neural network model’s 
performance is necessary. An identical dataset was tested for convolu
tional neural network (CNN), LSTM, feature-based SVM, and linear 
discriminant analysis (LDA). This study uses classification results from 
LDA, SVM, CNN, LSTM, and LSTM-CNN models, and six levels of win
dow length (500, 1000, 2000, 4000, 8000, and 16000 ms) were 
compared. 

The remainder of this paper is organized as follows. Section 2 de
scribes the methods used to acquire the data. Section 3 explains the 
signal processing method and structure that classifies the collected data. 

The experimental results are discussed in Section 4, and the conclusions 
and direction for future work are provided in Section 5. 

2. Materials 

2.1. Data acquisition 

2.1.1. Experimental procedure 
This study aimed to detect and classify the moments of transition 

from an awake to a sleep state. Therefore, continuous measurement of 
the subject’s consciousness states (awake, sleep, drowsiness) was 
required. This study assumes that the physiological response to physical 
stimuli such as sound and vibration will change according to a con
sciousness state. The experimental procedure was designed to mark the 
three conscious states by recording the corresponding physical response 
(button press) when auditory stimuli were repeatedly presented. 

The participants rested in an armchair in a dark room with their eyes 
covered with a black blindfold to induce sleep naturally. The partici
pants wore stereo earphones. Two buttons were closed to the index 
fingers of their left and right hands (Fig. 1). The earphones and buttons 
were connected to a computer through a sound card and a digital input/ 
output interface (USB-6211, NATIONAL INSTRUMENTS Corp.). Eigh
teen EEG electrodes were used for EEG signal measurement. The EEG 
electrodes are located in the frontal lobe (Fig. 1). This study focused on 
the frontal lobe to measure consciousness-related brain activity. The 
frontal lobe plays an essential role in the control of consciousness (Miller 
& Cohen, 2003). It has been reported that frontal theta activity reflects 
mental fatigue (Wascher et al., 2014). Channels on the occipital lobe 
were excluded because the head was reclined on a chair to investigate 
the natural transition from awake to sleep. The accurate coordinates of 
the EEG electrodes measured by the 3D digitizer were converted to the 
MNI coordinate system using the standard MNI coordinate values pro
vided by the NIRS-SPM MATLAB software package (Ye, Tak, Jang, Jung, 
& Jang, 2009). The MNI coordinates of the EEG electrodes were pro
jected onto the cortical surface marked with the Brodmann area and 
displayed in Fig. 1. At the start of the experiment, auditory stimuli were 
provided through the left or right side of the earphone, and subjects 
were instructed to respond by pushing the button on the corresponding 
side. Auditory stimuli were given at random intervals of 12 to 22 s; the 
side of the auditory stimuli was randomly selected. The experiment 
ended when the subject fell into a deep sleep and later awakened. The 
average experimental time was 74.4 min. The shortest experiment took 
43.9 minutes, and the most extended experiment took 102.5 minutes. 

2.1.2. Ethic statement 
This study was approved by the Institutional Review Board (IRB) of 

DGIST (DGIST-171011-HR-035–01). All subjects understood the pur
pose of the study, and informed consent was accepted from all individual 
participants. The methods used in this study were performed under the 
guidelines approved by the mentioned IRB. 

2.1.3. Participants 
Twenty subjects participated in this experiment; however, the 

dataset from one participant was discarded because of a technical 
problem. Therefore, a dataset acquired from 19 participants was used in 
this study. Among the 19 subjects, 13 were men, six were women, and 
the average age was 27.6. The participants were asked about their 
medication status and sleep conditions; two participants reported taking 
painkillers or cold medicines in the previous week, and none had sleep 
disorders or drank alcohol or caffeinated drinks. 

2.1.4. Apparatus 
The Biosemi ActiveTwo system was used to acquire data. It has 18 

EEG electrodes, and 8-bit event channels were digitized at a 512 Hz 
sampling rate. The location of the EEG channels was mapped using a 
Fastrak 3D digitizer. At the start and end of the experiment, a negative 
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edge occurred at the event channel at the start of the left/right audio 
stimuli and left/right button responses. The timestamps of the audio 
stimulus and the button response time were collected based on the event 
channel data. 

2.2. Preprocessing 

The EEG signals were filtered using a finite impulse response band- 
pass filter with a frequency band from 0.1 to 50 Hz. The EEG signal 
was segmented with six different levels of window length. The shift time 
of the window is fixed to 1 s. The window length was determined as two 
seconds (1/2, 1, 2, 4, 8, and 16 s). The segmented data were labeled 
according to auditory stimuli and button responses. 

2.3. Ground truth definition 

For each auditory stimulus, a single-button or no-button response 
was assumed. Only the first button response was recorded if multiple 
button responses were recorded. Thus, the first button response was 
detected within 10 s from the stimulus, represented by “R.” If no button 
response was detected within 10 s from the stimulus, that stimulus was 
represented by “N.” Then, a series of auditory stimuli and button re
sponses were represented with a character string of “R” and “N.” From 
that character string, the patterns that contained three or more “R” were 
defined as awake, and three or more “N” were defined as sleep. When 
the “RRRNNN” pattern occurred, the transition range between “RN” was 
defined as drowsiness. The number of repetitions of “R” and “N” was 
determined considering mistakes by the subjects and the number of 
labeled data. If the number of repetitions is too large, the number of 
labeled data is too small for training. Conversely, if the number of rep
etitions is too tiny, mistakenly missed auditory stimulus will be counted 
as sleep. Table 1 presents the maximum number of repetitions selected 
in the trainable number range of labeled data. 

After defining the consciousness state of each time range, the 
segmented data were labeled according to the time range to which the 

last timestamp of the segmented data belongs. As only the last time
stamp of the segmented data was used for the labeling process, the 
segmented data used for classification could be regarded as past data. 

The data would be labeled as awake or sleep when a subject 
repeatedly responded or did not respond to auditory stimulus n times. 
The data would be labeled as drowsiness when the subject responded n 
time and not responded n times in succession. This table shows the total 
time of awake, sleep, and drowsiness data labeled according to repeti
tion number n. 

This table shows the time distribution of labeled data for each subject 
when the repetition number n is 3. When the subject fails to press the 
button more than three times, he/she is considered asleep. If the subject 
has never been asleep, the sleep and drowsiness times are zero. 

3. Methods 

3.1. Data manipulation 

The raw data collected from the EEG device included motion artifacts 
when subjects tossed and turned. Motion artifacts were manually 
marked based on the accelerometer and gyroscope signals. In the sub
sequent analysis, windows containing motion artifacts were excluded. 

The labeled data were allocated to five groups to measure classifier 
performance using the cross-validation method. In the process of 
grouping the data, each label was considered separately to prevent 
deterioration of the data imbalance by the probabilistic factor. A 
grouped dataset was created once and applied equally to multiple 
classifiers under the same conditions. 

Table 2 shows the time distribution of labeled data for each subject. 
It shows a considerable difference in the data between the three classes 
for each subject. In some subjects, there is no sleep and drowsiness data. 
Therefore, cross-validation was conducted in a subject-independent 
manner. 

Finally, since the sampling rate is 512 Hz and the number of channels 
is 18, the shape of the input vector is (512w, 18), where w is the window 

Fig. 1. Experimental setup. left. A subject is seated in an armchair wearing a blindfold and earphones. Buttons are installed on the left and right armrests of the 
armchair (red circles). right. Brodmann areas and the location of the EEG channel are shown. Brodmann areas in which the EEG channels are distributed are colored 
according to their numbers. (The reader can be referred to this article’s web version to interpret the color references in this figure.) 

Table 1 
Total time of labeled data for the number of repetitions.   

Time of labeled data for the number of repetitions (min) 

Repetition (n) 2 3 4 5 6 7 8 9 10 

Awake  1159.70  1114.93  1081.36  1054.57  962.81  882.64  842.63  829.35  808.69 
Sleep  342.26  324.12  287.45  266.04  254.54  247.31  239.22  234.11  228.81 
Drowsiness  77.86  50.00  24.74  13.18  13.18  8.28  5.16  3.53  3.53  
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length in seconds. 

3.2. Feature-based machine learning models 

3.2.1. Feature extraction 
The use of EEG for drowsiness detection requires proper pre- 

processing and a feature extraction process to reveal the intended in
formation from signals containing noise caused by motion artifacts 
(Symeonidou, Nordin, Hairston, & Ferris, 2018), electromagnetic field 
interferences (Anderer et al., 1999), or other mechanical defects(Uri
güen & Garcia-Zapirain, 2015). This study performed feature extraction 
using sub-band wave energy and an MVAR. 

Generally, EEG signals are divided into several sub-bands: delta 
(0.5–4 Hz), theta (4–7 Hz), alpha (7–15 Hz), beta (15–30 Hz), and 
gamma (30–50 Hz). It has been reported that EEG sub-bands contain 
information about consciousness states. The EEG alpha, theta, and 
gamma BP change according to sleep phase changes, and this phe
nomenon is used to determine the sleep stage (Boostani, Karimzadeh, & 
Nami, 2017). When an anesthetic artificially induced the change in 
consciousness, the EEG BP showed a significant difference (Maksimow 
et al., 2006). Assuming that these sub-bands include information related 
to the drowsiness level, the wave energy of the sub-bands was used as 
the EEG feature. For data of a specified length, the signal of each channel 
was separated into the delta, theta, alpha, beta, and gamma bands by an 
infinite impulse response Butterworth band-pass filter. The wave energy 
was defined as the sum of the squared magnitudes of each signal 
component. The BP was calculated for 18 channels and five EEG sub- 
bands, and 90 features were used for machine learning. 

The MVAR model is an extended form of the univariate autore
gressive model (Anderson, Stolz, & Shamsunder, 1998). The use of 
MVAR is intended for research on the synchronization of brain struc
tures, degree of coupling between channels, estimation of phase delays, 
and eventually, the direction of spreading brain activity (Franaszczuk, 
Blinowska, & Kowalczyk, 1985; Neumaier & Schneider, 2001). The EEG 
features were extracted using Zhao et al.’s approach (Zhao et al., 2011). 
For the given EEG signal v, the coefficient matrix A and constant matrix 
C were determined by minimizing the sum of squares of ERR as follows: 

ERRn = vn −

(
∑n

i=1
Aivn− i +C

)

,

where the order of MVAR is p, the dimensionality of the signal is m, the 
shape of the coefficient matrix A and constant matrix C is m by m, and 
the number of estimated coefficient matrices is p. In this study, 

concatenation of the flattened coefficient matrix A was used as the 
MVAR feature, and the number of features was pm2. The EEG channels 
were merged into five groups according to the regions of the channels to 
create a noise-tolerant feature set. Each group consists of several chan
nels, such as Group 1: CH1, CH2, and CH3; Group 2: CH4, CH7, and 
CH8; Group 3: CH6, CH10, and CH11; Group 4: CH12, CH13, and CH14, 
and Group 5: CH16, CH17, and CH18. The numbers corresponding to the 
EEG channel numbers of the brain montage are shown on the right of 
Fig. 1. The order of the MVAR was set to three; thus, the number of 
MVAR features was 75. 

3.2.2. Model implementation 
The two feature sets extracted above were adopted for LDA and SVM 

(Fig. 2). Therefore, four combinations of feature sets and classifiers were 
tested. The implementation of LDA is LIBLINEAR, and that of SVM is 
LIBSVM. A radial basis kernel was used for SVM classification, the 
gamma value was 1/3, and the cost was 1. The weight of each label was 
set to the inverse of the data imbalance ratio for compensating the data 
imbalance. 

3.3. Deep neural network models 

3.3.1. Network architecture 
In this study, a CNN and LSTM were adopted for classification. In the 

proposed model, three output layers are present. In Fig. 3, output layers 
1, 2, and 3 classify the labels based on the CNN, LSTM, and LSTM-CNN 
models. The structure of the CNN-based model refers to the residual 
term proposed by ResNet (He, Zhang, Ren, & Sun, 2016). In the CNN- 
based model, two one-dimensional convolution layers, a batch 
normalization layer, and a rectified linear unit activation layer 
comprised one residual block. Six blocks were stacked in the proposed 
network. For each block, the number of filters gradually increased, and 
the signal length gradually decreased. The kernel size was 9 for the first 
two residual blocks and seven for the others. The stride of all blocks was 
2, except the last block’s stride was set so that the signal length of the 
output vector was 1. For the last block, the number of filters was set to 
2048, and the signal length was 1. 

The LSTM-based model is expected to detect periodic brain wave 
patterns. The structure of the LSTM-based model contains four serially 
stacked LSTM layers. After each LSTM layer, a dropout layer was 
adopted, and the batch was normalized after four LSTM layers to alle
viate the overfitting problem and improve performance (Ioffe & Szeg
edy, 2015; Srivastava, Hinton, Krizhevsky, & Salakhutdinov, 2014). The 
number of nodes in each LSTM layer is 32, and the dropout probability is 
0.3. These parameters were determined experimentally by the size and 
complexity of the EEG data. 

3.3.2. Model implementation and training 
For classification, three neural network models were used in this 

study: a CNN-based model (CNN model), an LSTM-based model (LSTM 
model), and a model with the concatenation of each output of the CNN 
and LSTM models (LSTM-CNN model). In the CNN- and LSTM-based 
models, the fully connected layer with a SoftMax activation function 
and three units were attached directly to the flattened layer for the 
three-class classification. For the LSTM-CNN model, flattened layers of 
two branches were concatenated and then connected to a fully con
nected layer with a Softmax activation function and three units. By 
setting the shapes of the flattened vectors of the two models to be 
identical, the LSTM-CNN model was intended to balance the possibility 
of the contribution of each model. 

The neural network models were optimized to minimize the cate
gorical cross-entropy loss function using the Adam optimizer, with a 
learning rate of 0.001. The maximum number of epochs was set to 200 
but stopped before reaching the maximum number of epochs if the loss 
was saturated. When the validation loss was not improved even for ten 
epochs, the training was stopped, and the best model was selected. The 

Table 2 
Time distribution of labeled data for each subject.   

Time of labeled data (min) 

Subject ID Awake Sleep Drowsiness 

1  52.15 29.12 4.83 
2  26.39 26.17 4.98 
3  84.29 16.15 6.87 
4  89.58 19.10 5.22 
5  117.15 6.49 1.45 
6  36.95 50.22 8.46 
7  40.85 47.96 1.49 
8  76.89 10.96 1.61 
9  109.93 0 0 
10  21.12 33.24 0 
11  21.65 19.58 3.23 
12  60.73 21.60 3.16 
13  23.72 18.06 1.69 
14  53.23 7.51 1.99 
15  58.33 0 0 
16  47.87 0 0 
17  56.61 12.09 5.03 
18  63.23 5.88 0 
19  74.27 0 0  
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weights of the CNN and LSTM models were initialized using the method 
presented by Glorot (Glorot & Bengio, 2010). The LSTM-CNN model was 
set to the initial weights from those trained results of CNN and LSTM 
models. 10 % of the training data were assigned as the validation data to 
determine the early stop point. Therefore, because the training and test 
data were determined by 5-fold cross-validation, the ratio between the 
training, validation, and test data was 3.9:0.1:1. 

The confusion matrices for the 3-classes classification results with 
500 msec window length are shown in percent. Each row represents the 
ground truth, and each column represents a predicted label. For 
example, the second column of the first row is the ratio of samples 
labeled as “awake” and predicted as “sleep” to the number of samples 
with the ground truth of awake. Refer to the Supplementary material for 
more detailed information. 

4. Results and discussions 

4.1. Response time 

To label drowsiness data, Lin et al. (2014) proposed an approach that 
measures the response time for a randomly given event (Lin et al., 2014). 
However, since the relationship between response time and drowsiness 
level was not revealed, we investigated the correlation between 
response time and the period before falling asleep. Our basic assumption 
is that the level of drowsiness increases as the point of falling asleep gets 
closer. Based on this assumption, the correlation between response time 
and the period before falling asleep was examined to reveal the rela
tionship between response time and drowsiness level. Fig. 4 shows the 
distribution of responses where the x-axis is the period before falling 
asleep in minutes and the y-axis is the response time in seconds. In this 
case, “falling asleep” is defined as the first timestamp of three 

consecutive auditory stimuli without any response. As expected, the 
response time in seconds and the period before falling asleep in minutes 
had a negative correlation coefficient (− 0.27), and the p-value was less 
than 0.01. However, in the case of responses in the range of 0 to 30 s 
before falling asleep, the ratio of fast responses (response time < 2 s) was 
still high (62.2 %). Therefore, despite the significant negative correla
tion between response time and the period before falling asleep, using 
response time as the ground truth of the drowsiness state is not rec
ommended. Therefore, our proposed approach defines drowsiness as a 
transitional state from awake to sleep. It is expected that this approach 
will be able to cope with the problems mentioned above. 

4.2. Three classes classification 

The average accuracy and kappa index were investigated for each 
combination of neural network models and window length with classi
fication problems that classified the three classes: awake, drowsiness, 
and sleep. The accuracy averaged the accuracies of each of the three 
classes (Fig. 5) because the number of classes was three, and the data for 
each class were imbalanced. The feature set of the wave energy of the 
sub-bands is expressed as BP. The average accuracy was the lowest for 
each neural network model when a 16-second window length was used, 
whereas the window length that showed the highest performance was 
not unified. The CNN-based model showed the highest performance 
(82.5 %) when the window length was 500 msec, 1000 msec for the 
LSTM-based model (86.2 %), and 500 msec for the LSTM-CNN model 
(85.6 %). However, for feature-based classifiers, the overall accuracies 
were improved with increased window length. The performance of the 
feature-based classifier was maximized when the window length was 16 
seconds. In contrast, neural network models performed worst under the 
same conditions. However, the neural network models showed better 

Raw EEG Data
Epoch EEG Data

(n-seconds window,
1 second shift)

5-fold Cross-Validation Data

CV1 CV2 CV3 CV4 CV5

Feature Extraction

Multivariate
Autoregressive Model

(MVAR)

Wave Energy
(Band Power, BP)

Classification

Linear Discriminant 
Analysis (LDA)

Supportive Vector 
Machine (SVM)

Result

MVAR-LDA

BP-LDA

MVAR-SVM

BP-SVM

Fig. 2. Flowchart of feature-based classification. A brief illustration of how raw EEG data processed to be fed into classifiers.  
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accuracy for every window length than any feature-based classifier. 
Confusion matrices were created when the window length was 500- 

ms (Table 3) to compare the difference between the models. When 
compared under the shortest window condition, the LSTM-CNN model 
had the highest performance (85.60 %). To compare proposed models 
with well-known models, we tested the EEGNet-4,2. The tested model 
implements EEGNet-4,2 used by Lawhern et al. (2018). In the study of 
Lawhern et al., EEGNet-4,2 had fewer trainable parameters, so the 
possibility of overfitting was low, and the performance was similar to 
other models. The EEGNet-4,2 model accurately classified awake data as 
awake (94.24 %). However, 41.56 % of sleep data and 73.53 % of 
drowsiness data were classified as awake, so the overall accuracy was 
50.86 %. It seems that the EEGNet-4,2 model was affected by the amount 
of data. The data in use is extensive in the order of awake, sleep, and 
drowsiness and is similar to the classification accuracy of EEGNet-4,2. 
The proposed model parameters were adjusted considering data 
imbalance, but EEGNet-4,2 was not. As a result, the parameters of the 
EEGNet-4,2 model did not correctly reflect the sleep and drowsiness 

data, where the amount of data is relatively small. Confusion matrices in 
other window conditions are attached in the “Supplementary Material.” 

As mentioned above, the time position of the label was the most 
current time position of the input vector. Therefore, an increase in the 
window size represents an increase in the difference between the 
average time of the input vector and labeling time. In neural network 
models, this difference apparently decreases accuracy as the window 
length increases. In contrast, in the case of feature-based models, the 
increase in accuracy appears to be affected by the increased amount of 
information as the number of data increases. A trend similar to neural 
network models is expected if a sufficient number of features are 
extracted, and appropriate feature selection techniques are applied. 

For a detailed comparison, Cohen’s kappa index was calculated 
(Cohen, 1960). Cohen’s kappa index measures the classifier perfor
mance in a multiclass classification problem (Carletta, 1996). According 
to Carletta, the kappa index measures the agreement among a set of 
coders making category judgments. For the range of the kappa index of 
reliable classifier, Carletta reported that a kappa index over 0.8 
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represents “good reliability,” and the range between 0.67 and 0.8 rep
resents “tentative conclusions to be drawn.” Similarly, (Landis & Koch, 
1977) reported that a kappa statistic between 0.61 and 0.8 represents 
“substantial” strength of agreement and almost perfect agreement for a 
kappa statistic over 0.81. In this study, the kappa index of each neural 
network model was 0.69, 0.72, and 0.76 for CNN, LSTM, and LSTM- 
CNN, respectively, when averaging the kappa index across the win
dow length from 500 ms to 8000 ms (Fig. 6). With the combination of 
the LSTM-CNN model and 4000 ms window length, the highest kappa 
index (0.77) was observed. In the case of feature-based classifiers, the 
kappa index increased with the window length. When the window 
length was 16 s, the kappa index of the LDA classifiers was 0.67, while 
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Fig. 4. Response time corresponding to period before falling asleep. Each button response was plotted with response time(y-axis) in seconds and the period 
before falling asleep(x-axis) in minutes. In the shorter period before falling asleep, subjects tend to react slowly. 

Fig. 5. Average accuracy of three-classes classification. Average accuracy is 
the mean of classification accuracies of three classes. The accuracies of the 
proposed models were compared with SVM and LDA (a) and EEGNet-4,2 (b). 
The x-axis is the window length in milliseconds and is expressed as a log scale. 

Table 3 
Confusion matrix of 3-classes classification problem.  

True Labels \ Predicted Labels Awake Sleep Drowsiness Accuracy 

MVAR, LDA Awake  99.71 %  0.17 %  0.12 % 42.77 % 
Sleep  71.77 %  28.21 %  0.02 % 
Drowsiness  98.14 %  1.49 %  0.37 % 

MVAR, SVM Awake  94.89 %  5.09 %  0.01 % 56.24 % 
Sleep  26.13 %  73.84 %  0.03 % 
Drowsiness  82.90 %  17.10 %  0.00 % 

BP, LDA Awake  99.71 %  0.17 %  0.12 % 42.70 % 
Sleep  71.96 %  28.02 %  0.02 % 
Drowsiness  98.51 %  1.12 %  0.37 % 

BP, SVM Awake  93.74 %  6.26 %  0.00 % 56.25 % 
Sleep  24.98 %  75.02 %  0.00 % 
Drowsiness  83.64 %  16.36 %  0.00 % 

CNN Awake  88.12 %  3.95 %  7.94 % 82.46 % 
Sleep  3.74 %  80.33 %  15.93 % 
Drowsiness  7.73 %  13.34 %  78.92 % 

LSTM Awake  86.64 %  5.06 %  8.30 % 84.02 % 
Sleep  2.52 %  85.31 %  12.18 % 
Drowsiness  5.79 %  14.08 %  80.13 % 

LSTM-CNN Awake  89.47 %  4.92 %  5.61 % 85.60 % 
Sleep  2.24 %  89.43 %  8.32 % 
Drowsiness  4.55 %  17.57 %  77.88 % 

EEGNet-4,2 Awake  94.24 %  4.31 %  1.46 % 50.86 % 
Sleep  41.56 %  54.03 %  4.42 % 
Drowsiness  73.53 %  22.17 %  4.30 %  
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SVM with MVAR reported 0.78 and SVM with BP reported 0.74. Ac
cording to Landis, three neural network models resulted from “sub
stantial” strength of agreement, and the LSTM-CNN model showed the 
best performance among the three models, while the LDA model showed 
less than “good reliability.” The kappa index of the SVM classifier 
showed “good reliability” for every window length level. In the case of 
the EEGNet-4,2 model, the kappa index was low due to the poor per
formance of the drowsiness data. 

As expected, the values and patterns of the kappa index were similar 
to those of average accuracy. However, despite a low average accuracy 
compared to that of the neural network models, the kappa index of the 
SVM classifier was similar to that of the neural network models. The 
imbalanced data and performance caused a mismatch between the 
averaged accuracy and the kappa index of the SVM classifier. In the case 
of the SVM classifier, the true positive ratio for drowsiness was 0.03 %, 
whereas that for awake was 97.36 %. 

The performances of BP-LDA and MVAR-LDA were nearly the same, 
and those of BP-SVM and MVAR-SVM were nearly the same. The dif
ference in accuracy between the same classifiers was less than 1 %, and 
the difference in the kappa index was below 0.05. It implies that the BP 
and MVAR features share much information. 

Overall, there was little difference in performance when the window 
length was less than 8 s in the deep-learning models. It is advantageous 
to have a small window length when the detection accuracy is the same, 
considering the reaction speed of the drowsiness detection system. 
Therefore, among the tested methods, the LSTM-CNN model with a 
window of 500 ms is most suitable for the drowsiness detection system. 

4.3. Binary classification 

One of the goals of drowsiness detection systems is to prevent 
problems caused by drowsiness in real life. However, the proposed 
three-class classification problem does not fit real-world applications. 
For example, classifying drowsiness and sleep does not require drowsi
ness detection in real applications. Therefore, we re-labeled the awake 
state as the normal state and the drowsiness state and the sleep state as 
the abnormal states and evaluated the binary classification performance. 
This labeling assumes an environment where it is crucial to detect a 
decline in cognitive ability. For example, in long-distance driving situ
ations, all abnormal cognitive states, such as drowsiness and sleep, can 
be fatal to the driver. However, because drowsiness and sleep are 
different states, it is necessary to test whether they can be combined into 
one label. When we evaluated the classification performance between 
each state, the proposed neural network model tended to distinguish 
awake-drowsiness better than awake-sleep difference in F1 scores was 
approximately 0.013 (Fig. 7). To evaluate the performance of the 
normal-abnormal binary classifier, canonical recall, precision, F1 score, 
receiver operating characteristic (ROC) curves were used. 

In binary classification, recall and precision can be represented by 
the number of true positives, false positives, and false negatives. In this 
study, a true positive represents the correct classification of awake, a 
false positive represents labeled as not awake but classified as awake, 
and a false negative represents labeled as awake but classified as not 
awake. Therefore, recall represents the ratio of the number of correctly 
classified awakes to the number of real awakes. Furthermore, precision 
represents the ratio between the number of correctly classified awakes 
and the number of data classified as awake. 

The LSTM and LSTM-CNN models showed the highest recall for every 
window length level among the three neural network models. The recall 
value of LSTM was the highest (0.99) with an 8-second window length, 

Fig. 6. Kappa index of three-classes classification. The Cohen’s kappa index 
of each classification result. The kappa indexes of the proposed neural network 
models were compared with the SVM and the LDA (a) and were compared with 
those of EEGNet-4,2 (b). The x-axis is the window length in milliseconds and is 
expressed as a log scale. 

Fig. 7. F1 scores of awake-drowsiness and awake-sleep binary classifica
tion. The F1 score for awake-drowsiness and awake-sleep binary classification. 
The x-axis represents the window length. The unit is milliseconds and is 
expressed on a log scale. 
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and LSTM-CNN (0.98) showed a similar recall (Fig. 8a). However, in 
terms of precision, the LSTM-CNN model showed the best performance 
across every level of window length among the three neural network 
models (Fig. 8b). Unlike neural network models, feature-based models 
have low recall and high precision values. Because feature-based models 
hardly classify data as awake, the ratio of data correctly classified as 
awake was relatively high. Therefore, the F1 score and harmonic mean 
of the precision and recall were measured for comprehensive scoring of 
binary classification performance. The overall performance of LSTM- 
CNN was highest for every level of window length except 16 s and 
showed the best performance (F1 score = 0.95) with a 4000-ms window 
length (Fig. 8c). Similar to the three-class classification result, the F1 
scores of the feature-based classifiers increased with the window length. 
With a 16-second window length and the MVAR feature set, the SVM 
classifier resulted in the best F1 score in the binary classification test. In 
the case of the EEGNet-4,2 model, the recall rate was relatively high 
(Fig. 8d), but the precision rate (Fig. 8e) and F1 score (Fig. 8f) were low 
because there were many cases of misclassifying abnormal data as 
normal data. 

The ROC curves and the area under the curve (AUC) were investi
gated to compare the classifiers in detail. The LSTM-CNN model with a 
0.5-second window length saturated rapidly as the false-positive rate 
increased (Fig. 9) compared to the feature-based classifiers with a 16 sec 
window length. In other words, the LSTM-CNN model achieved a higher 
true-positive rate with a low false-positive rate. These properties were 
quantified using the AUC (Fig. 10). Except for the 16000-ms window 
length, the LSTM and LSTM-CNN model ranked first and second in AUC 
values. Though the LSTM and LSTM-CNN classifiers showed no notable 
change in the window length between 0.5 and 8 s, the LSTM classifier 
showed the best AUC at 1 s and the LSTM-CNN classifier at 4 s. 
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Fig. 8. Recall rate, precision rate, and F1 score of binary classification. The recall rate was calculated as TP/(TP + FN) and the precision rate was calculated as 
TP/(TP + FP) where TP is the number of data labeled as awake and classified as awake, FN is the number of data labeled as awake but classified as not awake, and FP 
is the number of data labeled as not awake but classified as awake. The F1 score is the harmonic mean of precision and recall. The binary classification performance 
rates of the proposed neural network models were compared with those of the support vector machine, the linear discriminant analysis model (a, b, c), and were 
compared with those of EEGNet-4,2 (d, e, f). The x-axis is window length in milliseconds and is expressed as a log scale. 

Fig. 9. Receiver operating characteristic curve of binary classification. 
The red dash-dot line represents the random classifier. The LSTM-CNN, LSTM, 
and CNN models show the most significant area under the curve, followed by 
MVAR-SVM, BP-LDA, and EEGNet-4,2. (The reader can be referred to this ar
ticle’s web version to interpret the color references in this figure.) 
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5. Conclusions and future works 

This study aimed to implement a drowsiness detection system with a 
proper neural network model. In this study, the subjects’ states of con
sciousness were automatically collected by timestamping their re
sponses to auditory stimuli. The proposed approach predicts the labeled 
consciousness states, and the performance according to the input vector 
size was investigated. The LSTM-CNN hybrid model resulted in an 
average accuracy of 85.6 % and a kappa index of 0.77 for the three-class 
classification problem and 0.94 F1 scores for the binary classification 
problem with a short input data (500-ms). 

A few obstacles should be considered to apply the EEG-based 
drowsiness detection system in the real world. For instance, to mea
sure the EEG signal while driving, the number of attached electrodes 
should be reduced to minimize the effect of irritation caused by the 
measurement. It is crucial to find effective channels for drowsiness 
detection to minimize EEG channels. An approach to reduce the number 
of EEG channels according to the statistics or performance should be 
considered in future studies. In addition, the noise caused by motion 
artifacts and other ambient factors, such as artificially generated elec
tromagnetic fields, may be obstacles to real-world application. Because 
the signal-to-noise ratio of the EEG signal is relatively low, its quality is 
vulnerable to ambient factors. Other signals based on different dynamics 
should be considered to alleviate the above issue. Functional near- 
infrared spectroscopy (fNIRS) estimates cortical activation from con
centration changes in the oxygenated and deoxygenated hemoglobin of 
the cerebral cortices. Generally, fNIRS is known to be more robust to 

motion artifacts than to EEG signals (Lee, Lee, Jin, & An, 2018). 
Therefore, since the cortical metabolic features extracted from fNIRS 
signals can expand the feature space based on brain wave patterns ob
tained from EEG signals, the simultaneous use of EEG and fNIRS de
serves careful study. 

Because our proposed approach defines the drowsiness as a transi
tional state from awake to sleep, the amount of drowsiness data is 
inevitably low. In this study, the percentage of drowsiness data was 
approximately 3 %. One of the reasons why the feature-based classifier’s 
drowsiness classfication performance was low is related to this extreme 
data imbalance. Therefore, to alleviate this problem, a data augmenta
tion method should be considered. Generative adversarial networks 
(GANs) have been widely used to solve data imbalance problems (dos 
Tanaka, 2019). However, there are several obstacles to generating EEG 
signals using GANs. First, it isn’t easy to check whether the EEG signal 
generated through the GAN contains information in a human-generated 
EEG signal. In addition, ensuring that the GAN model of each class 
consistently generates unique features is not simple. If the EEG signal 
can be generated through a GAN by solving these obstacles, we expect 
that the classification performance can be improved. 
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