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Abstract In this paper, we present a tracking-by-multiple
hypotheses framework to detect and track multiple
vehicles accurately and precisely. The tracking-by-
multiple hypotheses framework consists of obstacle
detection, vehicle recognition, visual tracking, global
position tracking, data association and particle filtering.
The multiple hypotheses are from obstacle detection,
vehicle recognition and visual tracking. The obstacle
detection detects all the obstacles on the road. The vehicle
recognition classifies the detected obstacles as vehicles or
non-vehicles. 3D feature-based visual tracking estimates
the current target state using the previous target state.
The multiple hypotheses should be linked to
corresponding tracks to update the target state. The
hierarchical data association method assigns multiple
tracks to the correct hypotheses with multiple similarity
functions. In the particle filter framework, the target state
is updated using the Gaussian motion model and the
observation model with associated multiple hypotheses.
The experimental results demonstrate that the proposed
method enhances the accuracy and precision of the region
of interest.
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1. Introduction

In order for vehicles to navigate automatically, it is very

important to external environment
accurately and reliably with object detection and tracking.
These factors require various expensive sensors such as
radar, lidar, cameras, and GPS to perceive the external
environment accurately. Actually, Team Tartan Racing’s
vehicle “Boss”, which was Carnegie Mellon University’s
winning entry in the 2007 DARPA Urban Challenge, is
equipped with 13 different perception sensors [1].
Various vehicle detection methods [2] for intelligent
vehicle fields have been introduced in recent decades,
and many algorithms and systems have been reported
and demonstrated to enhance the reliability and

robustness of these systems.

perceive the

Range sensors, such as lidar [3] and radar [4], have been
used as standard approaches for robust object detection
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and localization systems. However, these sensors give
only point information for the detected target and it is
very difficult to recognize the class of the detected object.
Camera-based perception methods have been proposed
to detect and recognize moving objects while localizing
the object’s position with prior perspective information
[5, 6]. Currently, many researchers have been working
toward stereo vision-based approaches in order to
provide systems with more reliable detection and
localization performance [7-11].

No state-of-the-art detection and recognition algorithms
[2, 12] can detect and recognize all the objects on the road
without false alarms. Recently, several multiple object
tracking methods have integrated object detectors and
visual trackers to provide reliable object detection and
localization output [13-15]. In [13], an integrated system, a
WaldBoost detector [16] and tracking-learning-detection
(TLD) [17], is proposed to detect and track vehicles in
real-time using a single camera. However, the method
has a delay in confirming a target object, because the
detector runs every three frames and three consecutive
right detections are required. The tracking-by-detection
framework utilizes the output of an object detector as an
observation model of a Bayesian filter [15]. The
framework reduces the number of false detections while
enhancing the detection probability. The tracking-by-
detection framework reduces false detections during
track initialization due to the sparse occurrence of false
alarms. The framework can also increase the detection
probability while estimating the target object state with a
visual tracker, such as a Kanade-Lucas-Tomasi (KLT) [14]
and a particle filter [15] when the detector misses an
object in the current frame. A tracking method using a
particle filter was proposed to re-initialize the tracking
algorithm automatically whenever the performance
severely deteriorates [18]. In [15], the framework consists
of an object-specific detector, a visual tracker and data
association for tracking multiple objects. The region of
interest (ROI) is updated by the particle filter with a
motion model and observation model. A constant
velocity model is used for the motion model and
associated detection output and an online classifier are
used for an output observation model. However, the
updated ROI is mainly dependent on the output of the
associated detection because the motion model in an
image plane is inaccurate due to the nonlinearity of the
target’'s movement. Only a very small number of works
[7, 14] have introduced a stereo-based tracking-by-
detection framework for detecting and tracking multiple
vehicles.

Stereo-based multiple object tracking methods have an
advantage in that they can localize objects not only in the
2D image plane but also in 3D global coordinates. A
method using an occupancy grid and interacting multiple
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model (IMM) filter [11], and methods [8-10] that combine
depth and motion information have been proposed to
detect and track multiple vehicles or pedestrians using
3D information. The state of a target vehicle, including its
position, orientation, velocity, acceleration and yaw rate,
is estimated while tracking a 3-D point cloud in global
coordinates [9]. The method can automatically detect the
target object by using a fusion method with vision and
radar. In [11], the researchers reconstructed 3D points
using a depth image and mapped them onto an
occupancy grid using an inverse sensor model. Clustered
and segmented objects are associated with tracks and
served as an input of the IMM filter. The method extracts
obstacles on a road using an occupancy grid and it does
not classify specific target objects such as pedestrians or
vehicles.

In the field of intelligent vehicles, most stereo-based
multiple object tracking methods have been concerned
with object detection and localization problems in 3D
global coordinates [8-11]. There has been a lack of efforts
to increase the accuracy and precision of the ROI in the
image plane. In order to enhance the precision as well as
the accuracy of the ROI, we propose a tracking-by-
multiple hypotheses framework based on the Bayesian
probability model. The proposed method wuses a
hierarchical data association method, 3D feature-based
visual tracking and a particle filter using associated
multiple hypotheses. The particle filter updates a target
state with not only vehicle recognition outputs, but also
obstacle detection and visual tracking outputs.

This paper is structured as follows. Our stereo-vision
system and tracking-by-multiple hypotheses framework
are introduced in Section 2. In Section 3, the proposed
multiple vehicle tracking approach using tracking-by-
multiple hypotheses is described. This framework
consists of a global position tracking, 3D feature-based
tracking, hierarchical data association and a particle filter.
A qualitative detailed, and
experimental results and analysis are presented in Section
4. Finally, Section 5 provides the conclusion and insight
for future works.

evaluation metric is

2. System overview
2.1 Stereo vision system for intelligent vehicles

Our stereo vision system consists of stereo matching,
obstacle detection, vehicle recognition and multiple object
tracking modules, as shown in Fig. 1. The stereo matching
module, based on the belief propagation algorithm [19], is
implemented on the embedded platform with FPGA for
real-time processing. The stereo matching module offers
two grey images (left and right images) and a depth
image to the software platform with VGA @15fps. The
dense depth image has 128 disparity levels.
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The obstacle detection module extracts the road
information using the v-disparity method [20] and then
detects all the obstacles on the road using a disparity
histogram [21]. The vehicle recognition module classifies
the obstacles as vehicle or non-vehicle using the cascaded
AdaBoost algorithm [22]. Searching regions are restricted
according to the region determined from the obstacle
detection module [23]. This approach not only removes
false positive alarms, but also reduces the computation
time for vehicle detection. The number of false positive

Figure 1. Architecture of stereo vision system

alarms can be drastically reduced in the recognition
module. On the other hand, vehicle detection probability
is slightly decreased by the errors of obstacle detection
and vehicle recognition. The multiple vehicle tracking
module updates the state (global position and velocity,
ROI position and size) of a vehicle and minimizes the
number of false alarms caused by the imperfect obstacle
detection and vehicle recognition algorithms. One of the
advantages of the stereo vision system is that the global
position and motion of the target object can be estimated
accurately and reliably; also, this system is very helpful
for distinguishing between the target object and other
objects [14].

2.2 Tracking-by-multiple hypotheses framework

The tracking-by-multiple hypotheses framework consists
of obstacle detection, vehicle recognition, global position
tracking, visual tracking, data association and a particle
filter, as shown in Fig. 2.
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Obstacle Vehicle
detection recognition Motion
prediction
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Position ; I—
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Figure 2. Block diagram of tracking-by-multiple hypotheses

In global position tracking, the accurate sub-pixel
disparity of the object can be calculated using the stripe-
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based accurate disparity (S-BAD) estimation method; the
global 3D position and velocity of an object can be
updated using the inverse perspective mapping-based
extended Kalman filter (IPM-based EKF) [24].

Feature-based visual tracking enables the ROI of the
current target object to be estimated from the previous
ROIL In feature-based tracking, one of the difficult
problems is to find corresponding feature pairs in the
current image. Another important point is removing the
outlier features corresponding to other objects or to the
background. The (KLT) [25]
feature tracker has been widely used to deal with real-
time tracking problems due to its fast computation and
generality [26-27]. However, the KLT is vulnerable to
severe illumination change or abrupt object movement.
Also, it easily fails to track a target when there are many
outlier features in a cluttered environment. Our 3D
feature-based tracking method is proposed so as to
overcome these problems.

Kanade-Lucas-Tomosi

All the existing tracks are connected to correct
observations in order to update the target states (global
position and velocity, ROI position and size) in a multiple
object tracking problem. A hierarchical data association
approach deals with the track-to-multiple hypotheses
assignment problem. The hierarchical data association
utilizes the sub-pixel disparity and global position of the
global position tracking module [24], outputs of the
visual tracking module, outputs of obstacle detection
module [21], and outputs of the vehicle recognition
module [23] to assign multiple hypotheses to multiple
tracks. In [14], the association cost is calculated by
considering the similarity of the sub-pixel disparity and
the longitudinal and lateral distance. In this work, we
improve the robustness of data association by adding the
criteria of the local distance and appearance similarity.

The ROI wupdate module utilizes three types of
hypotheses from the following respective modules:
obstacle detection, vehicle recognition, and visual
tracking modules. They are designated as general
hypothesis (GH), object-specific hypothesis (OSH), and
target-specific hypothesis (TSH), respectively. GH gives a
very high detection probability, but provides poor ROI
precision and a high false positive alarm rate. OSH has
the advantage of removing many false positive alarms
from GH and improving the ROI precision. The number
of false negative alarms increases slightly and GH often
provides noisy and unstable ROI outputs. The ROI of
TSH is very dependent on the ROI states of the tracking
object and the track drifting problem often occurs when
tracking a target for a long time without GH or TSH. The
particle filter using Bayesian probability updates the
current ROI with the associated multiple hypotheses in
order to enhance the ROI precision and accuracy.

Young-Chul Lim, Jonghwan Kim, Chung-Hee Lee and Minho Lee:

Stereo-Based Tracking-by-Multiple Hypotheses Framework for Multiple Vehicle Detection and Tracking



3. Multiple vehicle tracking using tracking-
by-multiple hypotheses framework

3.1 Global position tracking with IPM-based EKF

Global position tracking estimates the position and
velocity of a target object on the road using a stereo vision
system. The accuracy of longitudinal distance mainly
depends on the accuracy of disparity; accurate disparity
estimation is very important in estimating the distance
accurately and precisely. In [24], we proposed the S-BAD
estimation method to accurately and reliably estimate
sub-pixel disparity. The experimental results show that
the proposed method can estimate the sub-pixel disparity
with about 0.1 pixel error as well as a distance of less than
50 m with approximately 2% error.

The IPM-based EKF method reduces the error covariance
of the position and velocity of the target. In the prediction
step of EKF, a system equation, a state transition matrix
(F/x_1) with a constant velocity model, and a state vector
(x; ) of i" track with position and velocity are defined by

=E X+ Wi

X 1 dt 0 0 Xi,k—l
X 0 1 0 0 X,
= +W,,
Z, | |0 0 1 dt|z,,
Z 0 0 0 1 Zi’k_l
(Oer)/
)’Zi_,kz k/k— l)A(i+k 17
P =Fo 1P1+k 1F k1 T Qi @)
nxzdt4 ﬂxzdtS . .
4 2
21,3
ﬁ de? 0 0
2
Q=
24,4 21,3
dt dt
0 0o L L2
4 2
21,3
dt
0 0 z dt?
L 2 J

where w, and Q, are the process noise and the process
noise covariance, respectively. 7, and 7, are standard
deviations of acceleration noise in the Ilateral and
longitudinal direction, and they are set to 1 and 5 in our
experlment respectively. dt is the update time, s K and
P+ are, respectively, a priori and posterior error
covariance matrixes of the ih track, f(ik and Q;k denote a
priori and posterior state vectors of the i track,
respectively. The state vector does not consider the Y
direction because only obstacles on the road are considered
in this work. In the observation step, the observation
equation becomes complicated due to the many variables
in the IPM model. The equation is simplified by
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considering the primary variables such as the sub-pixel
disparity and the horizontal position of the image.

z, =h(x )+ vy,

)
v, ~N(O,R,),
R - 0'3 0
« 0 Gé '
T
Zj,k :[Xdl dacc] 4 (2)

7, =h(X,) =[h, h,1",

=(bacosf-y,sind) /X, (3),
h, =[2a%, (1) / {(Y; +h)sin6 + X; 1 (3)cosO} +h,]1/2,
Xg1 =X =X Xgy = Xg1 = Y g =Y =Yoo
where h(x) is a nonlinear measurement function and R« is
the measurement noise covariance. o, and o, denote
standard deviations of measurement noise and they are
set to 1 and 0.5, respectively. d, b, and h are the disparity,
baseline and the height of the camera, respectively. &
denotes the angle between the Z direction and the optical
axis of the cameras, and « is the focal length expressed in
units of pixel length. Yy is the Y position of the object in
global coordinates, and x» and yu indicate the object
position in the left image coordinates. xo and y» denote the
optical centre of the camera. X, (n) denotes the n'
element of the state vector. xa and dac are the horizontal
position on the left image and the sub-pixel disparity,
respectively. The observation matrix (H) is represented by
a Taylor series of a nonlinear function; the higher-order
terms in the expansion can be ignored. The first-order
approximation coefficients are calculated using a Jacobian
matrix [24].

oh, oh, ch, oh,
H, = {hll h;, hy h14} _ i1 04 (2) Xk (3)  Ox; (4
o hy hy, hy  hy, oh,y oh, h, oh,
X, () 0%, (2) 0%, (3) 0%, (4)
h,=a/ {(Yg +h)sin@ +x;, (3)cos b},
hy; =(-cos8)/ {(Yg +h)sing + x;k(3)c050}2 B
hyy =-(bacosf-y,sind)/x;,(3),
hjp =hy, =hy =hy =hy, =0,

’

)

where z;, denotes the ;" measurement vector that
contains x4 and dae. A measurement corresponding to the
track is selected in the data association step. In the update
step, a posterior state vector (X{, ) of the i track is
recursively updated with the associated j" corresponding
measurement ( Ziy )-

Kik= P HY (H P HY +R,) 7
hy (33)) “4)

X =X+ K (2 -

P = (=K, H; )P,

where Kix denotes the Kalman gain of the i* track.
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3.2 3D feature-based tracking

The 3D feature-based visual tracking module consists of
feature extraction, feature tracking, feature selection, 3D
feature clustering, model selection and ROI estimation, as
shown in Fig. 3. A feature from an accelerated segment
test (FAST) detector [28] is used to extract distinctive
features due to its speed and high repeatability. The
FAST detector classifies a point as a corner feature if n
contiguous pixels exist in the circle of the feature. The n
pixels should all be brighter or all darker than the
intensity of the point. Each of the 16 neighbourhood
pixels in the circle have one of three states in the circle.
The states are represented by darker (d), brighter (b), and
(s) pixels. The KLT tracker localizes the
correspondences of the features extracted from the

similar

previous image. A feature selection procedure is essential
in removing the erroneous corresponding features pairs
Incorrectly
matched features are removed using the 2D and 3D
feature matching schemes. The census transform and
Hamming distance are used to measure the similarity of
feature pairs [29]. Census transform is determined by the

in illumination and appearance changes.

relative order of the local intensity; a binary pattern is
measured using the Hamming distance. Therefore, the
method is much more robust than the NCC matching
method near object boundaries [29]. The matching
algorithm is executed in both a 2D grey image and a 3D
depth image to remove wrongly estimated feature pairs.

Feature Feature Feature
extraction tracking selectlon
ROI Model 30 Feature
estimation selection clustering

Figure 3. Block diagram of 3D feature-based visual tracking

if(Dy(T.(F ), T.(£)) > 7), the feature is selected,
else, the feature is rejected,

where T«(x) denotes the census transform function of a
feature x, and Dru(a,b) indicates the Hamming distance
between the a and b vectors. f ; and denote the it
feature in the t-1 image and the corresponding feature in
the t image, respectively. y is a fixed threshold value for
accepting the features. The feature selection is executed in
a grey image and a depth image.

One of the problems of using a feature-based tracker is
that it is very difficult to select only the features
corresponding to the target object. When an object is
estimated by a misaligned ROI, there are many more
outlier features that correspond to the background or to
other objects (Fig. 4). Consequently, the outlier features

www.intechopen.com

cause the model parameters to be incorrectly estimated.
The 3D feature clustering method deals with the problem
while minimizing the number of these outlier features.
The features are clustered in 3D global position and
motion spaces using the iterative scheme. In 3D global
position clustering, the features are projected into 3D
global coordinates using the IPM model [24].

-

Figure 4. Many outlier features in misaligned ROI

(a1 + %) {(Yy + D)sin @ + Z, cos 0]
Xg 20
PE — Y, |- by, cosf + :1:b sind—-d, h ®)
7 int
8 b(acosf -y, sind)
L Clin‘c |

where P# denotes the 3D global position of the i feature.
Xg, Yg, and Zg are feature positions in global coordinates.
dint indicates the integer disparity of the feature. The
Mahalanobis distance (dw) is used to reject the outliers.

the feature is removed,

if(d,, (P?) > Tp),
else, the feature is selected, 7)
d,,(P8) = (P8 —P5)" X! (PE —PE),
where P and X, denote the mean and covariance of
the features in 3D global position, respectively. Ty is a
threshold value to reject the outlier features. For 3D
global motion clustering, we calculate the displacement of
selected features in global coordinates.

M), the feature is removed,

{if(dm(Mi) >T

else, the feature is selected,
dp (M) = (M; =M, ) X (M, - M,), ®)
M» — P»t _ Pt*l

where M; indicates the motion vector of the i* feature in
3D global coordinates, M, and 2, are the mean and
covariance of motion vectors in the 3D global coordinates,
respectively, and Twm is a threshold value related to the
motion vector. The mean and covariance of features are
updated with the selected features in each iteration. The
features are iteratively selected and rejected until the
means of the position and motion of the 3D features
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converge. The finally selected features are used to
estimate the warping matrix with the RANSAC scheme.
The current ROI can be estimated by the transformation
matrix and the previous ROL

3.3 Hierarchical data association

Data association problems were originally addressed
using the multiple object tracking problem in radar
systems. In recent decades, data association methods
have been applied to intelligent vehicles [14] and
surveillance fields [15, 26] for multiple object tracking. To
solve the assignment problem, an association cost matrix
(C) should be calculated using the similarity function. In
[14], the similarity function of global distance and the
sub-pixel disparity are used to calculate an association
cost. Even though, according to the experimental results,
track identity switching error is not known to have
occurred, a few tracks often link to false detections such
as guard rails or side walls. In this study, we enhance the
discriminating power while using local position distance
and appearance similarity as well as 3D global distance.

c(ti,h].) = wcfc(tirhj)"'waL(ti'hj) +a)AfA(ti,h].) , (9

where c(t;, hj) indicates the association cost value of the i
track and j" hypothesis, and fo(ti, hj), fu(ti, hj) and fa(ti, h)
represent the functions of global distance, local distance,
and appearance distance, respectively, of the i" track and
j™ hypothesis. @, o, and o, denote fixed weighting
factors and are set at 0.5, 0.3, and 0.2, respectively.

Global distance function is represented by the global and
disparity distance between the track’s prediction and the
measurement.

fo(thy) = exp[f\/(tfl —hJF‘)Z +(t —h}‘)z +((t7 =h{)/ tf)z} 7 (10)

where tiCl , t, and t denote disparity, lateral distance, and
longitudinal distance of the i* track’s prediction, and h? , h}‘
, and hjZ represent disparity, lateral distance, and
longitudinal distance of the j** hypothesis, respectively. The
difference rate of the longitudinal distance is used instead of
the longitudinal distance difference because distance errors
increase exponentially as the distance increases.

Local distance is computed using the overlap ratio (J, ) and
normalized distance of the centre point between the ROIs.

2 2
_—uh‘) +(Vt —Vh)
) 1 )
-1,

(2
fu(t,hy) =exp| &, -

R, NnRy

S =——-—>
o

Rti uRh]
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where u, and v, denote the centre of the predicted ROI
of the i*" track; uh‘v and v, denote the centre of the ROI
of the j* hypothes]is. w, and h, denote the width and
height of the predicted‘ ROI of i track. R, and th
indicate the regions of the i track and j" hypothesis,
respectively. Local distance helps to prevent a tracking
vehicle from connecting to false detections or other
vehicles around the target vehicle.

The histogram of gradient (HOG) [30] for the appearance

similarity function distinguishes a correct hypothesis
from an incorrect hypothesis.

fa(t hy) = exP[—/lch (ti,hjﬂ

ch(ti'h]’) = \/l—r:Z_;Hti (u)th (u)

, 12)

where 1 denotes a constant value, and H, (u) and
H, (u) indicate the HOGs of the i track and the "
hy}éothesis. dg,(p,q) represents the Bhattacharyya
distance between p and g; m is the number of histogram
bins [31]. Actually, the HOG does not discriminate
between the target vehicle and other vehicles very
accurately because all of the vehicles have similar HOG
appearances. However, the HOG model is efficient at
distinguishing the target vehicle from false detections
such as walls and guard rails.

The hierarchical data association method assigns existing
current tracks to multiple hypotheses. This method has
three stages, which are the track-to-OSH, track-to-GH,
and track-to-TSH association. In the track-to-OSH stage,
all the existing tracks are assigned to OSH using the GNN
data association algorithm. The optimal assignment
matrix (A) for one-to-one mapping is determined by

A =argmaxZ:cijaij , (13)
A

where ¢;j indicates the distance between the i track and
the j* hypothesis, and a;j is the assignment value, which
becomes 1 or 0. If the i track and j* hypothesis are
associated, the value becomes 1; otherwise, it becomes 0.
These values should be mutually exclusive for one-to-one
mapping. If the association cost is higher than the
validation gate threshold, even when the assignment
value is 1, the assignment value becomes 0. The
validation gate scheme removes unlikely track-to-OSH
pairs. In the track-to-GH association, the unassigned
tracks determine their corresponding GH using the
nearest neighbourhood method. A strict validation gate
using the overlap ratio and the global distance are used to
remove the unlikely track-to-GH pairs in this stage. In the
Track-to-TSH stage, the remaining tracks link to the TSH,
which should exist in the validation gate calculated using
the global distance function.
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3.4 Particle filter using multiple hypotheses

The Bayesian-based object tracking framework consists of
a motion model and an observation model; the target
states are estimated by maximum a posteriori (MAP)
probability.

\ |
X, =argmaxp(X, 1Z,) :—p(x k Xk*l)p(zk Xk)
X Pz Z, 1)

o« P(X i Xk—l)p(zk |Xk)P(Xk71 le—l)'
Xy =[xg Xq oo Xo ] Zy =2 24 oo 2, ]

P(qu le—l)’
k

(14)

where xx and zx indicate a state vector and an observation
vector, respectively. In this work, the state vector and the
observation vector consist of the horizontal and vertical
centres (1, v) and the width (w) and height (1) of the ROI.
The uncertainty of the motion is very high in the image
plane due to the ego-motion and nonlinear projection. As
a result, the Gaussian motion model based on the
previous posterior state is used to estimate the prior state
of the target. A priori probability of the j* sample (XL) is
calculated by

(XL - kal)T Ez:nl (XL - kal)  (15)

p(X{( |Xk—l) = k/zl 1/2 exp| -

(27)" [Za|
where x,_; indicates the previous posterior state vector,
and X and k denote the covariance matrix of the
Gaussian motion model and the dimension of the state

vector, respectively.

In our tracking-by-multiple hypotheses framework, several
measurements are used in the observation model; these
observations correspond to multiple hypotheses, such as
GH, OSH and TSH. All the tracks are initialized from a few
of the consecutive associated OSH; they are terminated by
a few of the unassociated OSH and GH. GH contains many
false detections and poor ROI precision, but provides high
detection probability, because the approach extracts all the
obstacles on the road regardless of their object class. The
state of the tracks that are not linked to the OSH is updated
with the associated GH, which allows the track to be
maintained for a longer time. TSH is mainly dependent on
the previous target state. TSH provides relatively good
results in general conditions, but is prone to failing to track
the target during abrupt motions or illumination changes.
The TSH enables a track to maintain a stable state in the
presence of abrupt variations of the GH and OSH.

In the observation model of the tracking-by-multiple
hypotheses framework, the likelihood term is calculated by
the weighted sum of these noisy multiple hypotheses.

www.intechopen.com

p(z, Ix,) = Zyi(zi< Ix,),
i=1

__P(z1x;) 16)

1 7

> P %)
i=1

_ i T _
p(z 1x;) =77, exp _(Xk_zk) Zzl(xk 7 ’

where ¥ denotes the covariance matrix of the residual
(X —ZL) and 7, is the normalization value. The
weighting factor () is calculated using the conditional
probability of each hypothesis given a priori state vector
(Xy )- The likelihood of the i** hypothesis (ZL ) given the j"
sample (XL ) is calculated by

(XL - ZL)T Z’l(x{( fz}()
2

77 XP| — (17)

S 1
Vx| =
P ) G

A posterior probability of each sample is calculated by
the product of the prior probability and the likelihood.
A sample with maximum probability is selected and
the current target state is updated using the sample
state.

Xy = argmaxiyip(x{( | xkfl)p(zi | xL)p(XLI |Zk—1) . (18)

j i=
X} i=1

The number (N) of samples per object is set to 1,000. They
are used to estimate the optimal target state in a particle
filter. The posterior probability density is recursively
propagated using the probabilities of the samples at every
time step.

4. Experimental results
4.1 Experimental setup

Real-world stereo sequences are captured in various
scenarios from stereo cameras to test and verify the
performance of our method. All the images are 640 x
352 x 8 bpp at 15 fps from a stereo camera mounted on
a moving vehicle with a 0.3 m baseline (Fig. 5). Depth
images are obtained by a software program based on
the belief propagation algorithm. It
consuming process and the algorithm is implemented
in the FPGA system for real-time processing. Our
software platform includes obstacle detection, vehicle
recognition and multiple vehicle tracking modules

(Fig. 1).

is a time-
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Figure 5. Stereo vision system mounted on vehicle

Four different scenarios (Fig. 6) are selected for quantitative
evaluation;, many more test scenarios are used for
qualitative analysis. The four scenes are captured from the
following settings: urban roads in heavy traffic, cluttered
roads with severe illumination change, urban roads on
rainy days and highways with curves. Ground truths for
each scenario are manually annotated. The tracking
performance is evaluated using a metric that is widely
used in the multiple object tracking field [14-15, 26, 32].
Two ground truths are used to count the numbers of false
negative and false positive alarms while considering
limited distance and occlusion conditions. One is a
mandatory ground truth, which represents all the vehicles
with full appearance at less than 70 m and includes
tracking vehicles that are partially occluded at less than 70
m. The other is an optional ground truth, which includes
partially occluded vehicles being initialized, and vehicles at
more than 70 m. The vehicle recognition system fails to
classify partially occluded vehicles correctly; also, distant
vehicles are difficult to recognize due to their small size.
The number of false negative alarms is counted when a
vehicle with mandatory ground truth is not detected. The
number of false positive alarms is counted when the
estimated ROI fails to correspond to both the mandatory
and the optional ground truths.

Scenaria 1 Scenario 2 Scenario 3 Scenario 4

Number of frames 726 997 557 601
1185 114 1143

Number of vehicles 2531

Image

Figure 6. Test datasets for quantitative evaluation

The CLEAR MOT metric [32] gives both the multiple
object tracking precision (MOTP) score and the multiple
object tracking accuracy (MOTA) score. MOTP indicates a
measure for localization precision of the estimated ROI. It
is calculated using the intersection ratio over the union of
two bounding boxes.

Int. j. adv. robot. syst., 2013, Vol. 10, 293:2013

_ g e
MOTP = — T 100, (19)
g g e

where R is the region of the ground truth of the i*
vehicle at the k* frame and ng’i denotes the region of the
estimated ROI. N; indicates the total number of ground
truths. MOTA provides a measure for the localization
accuracy of the estimated ROL It is evaluated using the
sum of missed detections (Nu), false detections (Ny), and
track identity switches (Ns).

MOTA =| 1- N #Ne # N 150 (20)
Ng

4.2 Evaluation and analysis

We tested and analysed
qualitatively and quantitatively using several image
sequences captured
environments. Most walls, guardrails and trees around
roads are extracted from the obstacle detection
module, because the obstacle detection algorithm
detects all the obstacles on the road. The vehicle
recognition module
detections for vehicles due to erroneous vehicle
recognition algorithms (Fig. 7(a)). In the multiple
vehicle tracking, most false detections are removed
track initialization due to their sparse
occurrence (Fig. 7(b)). Vehicle detection misses a
partially occluded vehicle (first raw image), one of two
vehicles that are close together (second raw image),
and a vehicle in the far distance (third raw image), as
shown in Fig. 8(a). However, the visual tracking
module estimates the missed target ROI using the
previous ROI (Fig. 8(b)). The vehicle detection module
often gives an unstable ROI state such as a bigger ROI
(first raw image), smaller ROI (second raw image), or

the proposed method

from various real road

often mistakes these false

during

misaligned ROI (third raw image), as shown in Fig
9(a). The target states are smoothed even though the
ROI states are abruptly changed due to noisy vehicle
recognition (Fig. 9(b)). A track is terminated if the
track is not linked to the corresponding observations
for several consecutive frames. In Fig. 10, the tracks are
not associated with any vehicle recognition outputs
even though the obstacle detection module estimates
the ROI of the vehicle correctly. Errors in vehicle
recognition often occur in small ROI (first raw image),
ROI with a part of a vehicle (second raw image), and
ROI in dark lighting conditions (third raw image).
Unassigned tracks determine their corresponding GH
using hierarchical data association; the tracks can be
updated and maintained with the associated GH.

www.intechopen.com



Figure 7. False detection removal. (a) Vehicle detection results:
White boxes and black boxes represent results of obstacle
detection and vehicle recognition, respectively. Red circles
indicate false detections. (b) Results of multiple vehicle tracking:
Colour boxes denote the tracking vehicles and white box
indicates that the vehicles are being initialized, which are not
regarded as detected vehicles in this frame.

@) (b)
Figure 8. Recovery of the ROI of missed detection. (a) Vehicle

detection results: Red circles indicate missed detections.
(b) Results of multiple vehicle tracking: Black circles indicate
tracked ROlIs.

In scenario 1, there are many missed detections when
vehicles are close to or occluded by other vehicles for
several tens of frames, the track cannot be initialized
due to their sparse detection outputs and the number
of false negative alarms are increased in this period
(Fig. 11). In scenario 2, when the false detections (walls
and guard rails) are associated with incorrect tracks for

www.intechopen.com

a few consecutive frames, the false detections are
propagated using visual tracking, even though the
false detections are not detected in subsequent frames
(Fig. 12). In some scenarios, there are a few visual
tracking errors for far away vehicles in heavy traffic
(Fig. 13(a)), vehicles in bad illumination conditions
(Fig. 13(b)), and vehicles in noisy images due to
raindrops (Fig. 13(c)).

Table 1 shows the quantitative evaluation results for
four different real world Recall and
precision as well as MOTA and MOTP are reported to
indirectly compare with other methods. In the
tracking-by-multiple hypotheses framework, the target
state is estimated by the stochastic particle filter. We
executed the method ten times to determine the mean
and standard deviations. The experimental results
show that the scores of MOTA and MOTP in our
proposed method outperformed those in the vehicle
detection method in all the test scenarios. In scenario 1,
there were many missed detections due to close and
occluded vehicles. In scenario 2,
propagation errors occurred due to a few consecutive

scenarios.

false detection

false detections. In scenario 3, there were some errors
in the vehicle recognition module due to very noisy
images. The recall in the vehicle detection method is
very low. However, the obstacle detection module can
detect many vehicles, and the tracking-by-multiple
hypotheses framework can update and maintain the
target state with the GH (Fig. 14). In scenario 4, a track
was not initialized when vehicles were occluded by
other vehicles for dozens of frames, and most of the
false negative alarms occurred in this period. Our
videos for experimental results are available on
YouTube [33-36]. In our future research, we will adopt
a more advanced object detection method and will
show the effectiveness of the proposed approach using
the object recognition with the obstacle detection.

Recall Precision = MOTA MOTP
Vehicle 0 00 9720  687%  66.3%
s1 detection
P
roposed oo L 0.5% 99.0:0.5% 88.9:0.6% 67.1:0.6%
method
Vehicle ;o0 801%  585%  66.2%
detection
52 Proposed
P 95.240.5% 96.3:0.5% 91.5:0.9% 67.9+0.4%
method
hicl
Vehicle o039 044%  53.0%  684%
s3 detection
P d
TOPOSEd 99 4+0.8% 99.4+0.8% 98.8+1.6% 68.4+1.1%
method
Vehicl
e 6% 905%  711%  65.6%
1 detection
P d
TOPOSEd g7 340.1% 99.541.1% 96.7+1.1% 74.0+0.4%
method

Table 1. Quantitative evaluation results
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Figure 9. Smoothness of unstable ROI (a) Vehicle detection Figure 11. Track initialization failure. (a) Vehicle detection
results: Red circles indicate the misaligned ROI. (b) Results of results: Red circles indicate two consecutive vehicles are
multiple vehicle tracking: Black circles indicate updated ROIs. detected, but the vehicle is not detected in the third image. (b)
Results of multiple vehicle tracking : White box indicates a track-
initializing vehicle. Black circle indicates track initialization
failure due to deficiency of consecutive detections.

Figure 10. Track-to-GH association for track maintenance.
(a) Vehicle detection results: Red circles indicate the ROI of GH.
(b) Results of multiple vehicle tracking: Black circles indicate the

(a) (b)

track states are updated with the GH. Figure 12. False detection propagation error caused by visual
tracking. (a) Vehicle detection results: Red circles indicate false
detections. (b) Results of multiple vehicle tracking: Black circle
indicates false detection propagation error.
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All the software algorithms were implemented in Visual
C++ using OpenCV 2.2 on a PC platform with a quad core
2.83 GHz CPU. The values of the parameters used for the
experiments are summarized in Table 2. The frame rate of
all the software algorithms, such as obstacle detection,
vehicle recognition and multiple vehicle tracking, is about
10 to 15 frames per second. The frame rate of the multiple
vehicle tracking algorithm is about 15 to 19 frames per
second. The processing time for all the test scenes is
described in Table 3.

parameters values
7, 1 m/s?
. . . . . n 5 m/sz
Flgu.re 13. VISLfal tr.ackmg .erroré (a). Far awa.yA vehicle in hany Global position tracking z
traffic. (b) Vehicle in bad illumination condition (c) Vehicle in o, 1.0
noisy image due to raindrops. o, 05
e 0.7
Visual tracking Ty 9.0
Tm 9.0
oS 0.5
Data association (23 0.3
Wy 0.2
i . L . . Particle filter N 1,000
Figure 14. (a) Missed detection in vehicle recognition. (b) Updated
ROI with GH in tracking-by-multiple hypotheses framework. Table 2. Values of parameters used in our experiments
Longitudinal distance estimation Obstacle Vehicle Multiple Total
” ' | detection recognition  vehicle tracking
0 ; ,‘s*\v.-’v'\,\;’w‘:.\ 88.0+7.3
z ﬂ/-f\f‘-.,-\/"f S1  8.7+1.7ms 10.4+2.6 ms 68.9£5.7 ms ms
: " 77.145.1
g 52 8.3+1.2ms 12.3£2.3 ms 56.4+4.4 ms m+55
g
z 71244,
-‘% S3  7.8+0.8 ms 8.7+£1.9 ms 54.6%3.4 ms ms 6
. 345,
~ S4 7.6+0.8 ms 7.1+2.0 ms 53.6%3.6 ms 682185 ?

%50 400 50 500 550 600 650 700 750 800 850 900
Frame Number

Lateral distance estimation

r T T g

Y S A SN
0 400 450 500 550 600 650 700 750 800 850 900
Frame Number

Lateral distance (m)
in A [ A L = - N w =
i

o

Figure 15. Longitudinal and lateral distance estimation for two
target vehicles in scene 3.

Fig. 15 shows the vehicle trajectories of longitudinal
distance and lateral distance for scenario 3. The
experimental results verify that our method can
estimate the trajectories of target vehicles reliably even
though noisy stereo images were captured on a rainy
day.

www.intechopen.com

Table 3. Processing time per frame
5. Conclusions

In this paper, we proposed a tracking-by-multiple
hypotheses framework to improve multiple object tracking
accuracy and precision. Most false detections are removed
during track initialization; also, the number of missed
detections is minimized using 3D visual tracking. A
hierarchical data association method was proposed to
assign multiple tracks to multiple hypotheses. The particle
filter updates the target state using the motion model and
the observation model with the multiple associated
hypotheses. Experimental results using challenging test
scenarios demonstrate that the scores of both MOTA and
MOTP are remarkably improved when the results of
proposed method and those of the vehicle detection
method were compared. Irregular detections caused by
occluded vehicles prevent a track from being initialized;
false detections propagation errors occur due to visual
tracking when the track is initialized by consecutive false
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detections. We will work with the track management
method to solve these problems. Also, the software
algorithm will be optimized and the processing time will
be improved using a parallel programming scheme.
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