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Abstract: In smart environments, target tracking is an essential service used by numerous
applications from activity recognition to personalized infotaintment. The target tracking
relies on sensors with known locations to estimate and keep track of the path taken by the
target, and hence, it is crucial to have an accurate map of such sensors. However, the need
for manually entering their locations after deployment and expecting them to remain fixed,
significantly limits the usability of target tracking. To remedy this drawback, we present
a self-configuring and device-free localization protocol based on genetic algorithms that
autonomously identifies the geographic topology of a network of ultrasonic range sensors
as well as automatically detects any change in the established network structure in less than
a minute and generates a new map within seconds. The proposed protocol significantly
reduces hardware and deployment costs thanks to the use of low-cost off-the-shelf sensors
with no manual configuration. Experiments on two real testbeds of different sizes show
that the proposed protocol achieves an error of 7.16∼17.53 cm in topology mapping, while
also tracking a mobile target with an average error of 11.71∼18.43 cm and detecting
displacements of 1.41∼3.16 m in approximately 30 s.
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1. Introduction

Target tracking is a process of continuously recording the locations of a target, e.g., a human, in time.
In smart environments, this is an essential service because most of the user interactions are through
location-aware activities [1]. Health-care systems report the location of a user to medical professionals
in the event of an emergency; activity recognition systems use the rooms that a user has occupied and the
objects s/he has used at a certain point of time in order to infer the context; and infotainment systems use
similar information to provide a user with personal feeds as s/he moves inside the environment. These
interaction models, tightly coupled with location awareness, mean that the smart space experience is
shaped by the existence and accuracy of a target tracking system.

Target tracking solutions can be broadly categorized into either intrusive or non-intrusive systems.
The former uses a dedicated device (target) carried by a user to send messages, e.g., Wi-Fi signals, to
the system, while the latter or a device-free system tries to solve the problem without relying on such a
device [2]. The identity of a user is readily available in the intrusive system since this device can contain
a unique identifier. By contrast, in the non-intrusive system, a user is identified by analyzing sensor
readings such as weight and/or height measurements, or by face recognition at certain checkpoints in
the environment [3]. Once the user is identified, the system may start sampling the location of the user
regularly in order to construct a track.

Whether intrusive or not, the target should be located based on its distance to some reference points
that have known locations. Therefore, the system also needs to preconfigure or determine the locations
of the reference points, i.e., landmarks; this process can be rehashed into a sensor localization problem
that determines relative or absolute locations of sensor nodes in a sensor network [4]. However, the
problem is not trivial when applied to the smart environments since GPS devices cannot be used indoors
and also the walls and furniture cause interference and multipath effects, hindering the accuracy of
distance measurements [5]. Moreover, smart home sensor localization solutions [6–8] generally depend
on manual mapping of landmarks, but manually defining their locations is undesirable as it complicates
the deployment and makes the system fragile. For example, if somehow one sensor is displaced after
mapping, the system will fail to operate and will require manual reconfiguration.

Motivated by these limitations, we aim to design the tracking system to work out of the box as
illustrated in the following deployment scenario. A user simply ‘puts’ sensors at convenient locations
and turns them on. Then the sensors cooperatively pass through a self-configuration phase, in which
they collect data on users’ movements across their field-of-view for a short period of time and
transform themselves into landmarks for target tracking by having their relative locations calculated
and memorized. The system then switches to a tracking phase, in which the landmarks calculate the
locations of users in real-time as well as monitor their surroundings to detect any sensor displacements
and fix the sensor topology if detecting changes.

To realize this scenario, we propose a self-configuring and low-cost localization protocol for smart
environments using cheap off-the-shelf distance sensors such as ultrasonic rangers [9]. The proposed
protocol is capable of facilitating device-free indoor tracking of users with zero prior knowledge of
the geographic topology while also allowing hassle-free deployment without the need for manual
configuration. As opposed to traditional localization protocols that rely on estimated distances between
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sensor nodes, the proposed protocol works on concurrent distance measurements to a mobile target or a
user. The key idea of the proposed protocol is to exploit the mobility of the user for accurate localization
and tracking. To do so, our protocol applies a Genetic Algorithm (GA) for identifying the locations
of sensors on a 2-dimensional space, which yields sufficiently accurate results compared to outdoor
environments. The located sensors are then used as landmarks for indoor target tracking. Moreover, our
protocol effectively handles the events of sensor displacement, which is common in our user-friendly
deployment scenario, by employing a lightweight scheme for detecting such events in real time and
recovering from changes to sensor locations. Our experiments on two real testbeds of different sizes,
i.e., 2× 3 m2 and 4× 6 m2, indicate that the proposed protocol can achieve an error of 7.16 to 17.53 cm
in identifying landmark locations while also tracking a mobile target with an average error of 11.71
to 18.43 cm. Moreover, we observe the proposed protocol is capable of detecting and handling
displacements of magnitude, 1.41∼3.16 m in approximately 30 s.

The rest of the paper is organized as follows. In Section 2 we go over the literature and give a
brief summary of the related work. In Section 3 we briefly go over the sensor hardware used in
our implementation and discuss its limitations. In Sections 4 and 5, we describe our self-configuring
localization and tracking algorithms in details. Based on the need for easy deployment of sensing
infrastructure, we design a self-configuring, device-free, and cost-effective localization protocol that
uses distance measurements to the target for accurate localization among landmark sensors, and
further extend the protocol to automatically identify the displacement of landmarks by reusing the
localization algorithm. We further develop a heuristic-based target tracking system based on the
genetic algorithm by employing the thus-designed self-configuring protocol, and show that our system
is robust to measurement errors in contrast to the existing algorithms, e.g., those based on mathematical
formulations, because it finds the best solution that fits the measurements. In Section 6 we present the
experimental setup and provide results of comprehensive experiments conducted on the real testbed.
We demonstrate that the protocol significantly reduces the system complexity and deployment cost as
well as achieves high level of accuracy in tracking targets over a broad range of network layouts. Finally,
we discuss possible future directions and conclude this paper in Section 7.

2. Related Work

Device-aided indoor tracking systems benefit from GPS devices, cell phones, or RFID tags [10–13].
For instance, the algorithm in [14] describes an anchor-free indoor localization technique based on the
strength of Wi-Fi signals. However, this algorithm relies on infrequent GPS checkpoints and requires
users to carry a Wi-Fi receiver. These systems typically use collaborating devices carried by the
users, and may be most suitable for in-building localization/tracking systems, while in a smart home
environment devices create significant inconvenience for the users. A method for locating humans within
a room using cameras has been proposed, but using cameras is undesirable in a smart home environment
due to privacy issues [15]. This is especially true for bedrooms and bathrooms where people feel an
invasion of privacy in the presence of visual sensors. SCPL is a device-free tracking system which uses
radio signals to track multiple people [16]. However, the system requires a known floor plan of the
environment and this considerably complicates the deployment process.



Sensors 2014, 14 18731

The use of GA for sensor network localization is not novel by itself. In fact, localization is an
interesting application of GA as shown in [8,17–20]. One of the previous GA-based algorithms, GA-Loc
assumes that distances between one-hop neighbors are known and tries to minimize the difference
between measured distances and those that are obtained by the estimated locations [19]. While this
algorithm does not necessitate nodes with known locations, it uses inter-node distances and obtaining
this information indoors requires complex hardware. Mark et al. [21] introduced a two-phase GA-based
algorithm using distances between one-hop neighbors. The first phase calculates locations of nodes that
have three immediate anchor neighbors via trilateration. The second phase includes all other nodes and
uses GA to minimize difference between known and estimated distances between nodes. The work on
the use of GA-based systems in target tracking is scarce in the literature. The main focus of existing
work is associating sensor readings with targets in multi-target tracking systems [22,23]. However, our
proposed system does not focus on multi-target tracking.

While none of these algorithms cannot simultaneously meet the requirements of anchor-free,
device-free, low-cost, and high-accuracy localization, our proposed algorithm successfully addresses
these requirements by associating GA with human mobility.

3. Sensor Hardware and Related Challenges

3.1. Sensor Hardware

We aim to realize a cost-effective localization solution by using off-the-shelf ultrasonic ping sensors
for distance measurement [2,24]. A ping sensor, having a transducer and a receiver, measures the distance
to an object by emitting a short ultrasonic 40 kHz burst and then calculating the time difference of arrival
(TDOA) of the reflected wave with respect to the original burst. Since the echo is reflected from the
object of interest, the distance can be calculated by considering the speed of sound and the TDOA. Note
that the speed of sound is affected by both temperature and humidity. While the latter (humidity) does
not significantly impact the sound propagation in environments with normal air pressure, the former
(temperature) must be considered in calculating the speed of sound [25,26]. This sensor has a 40◦ beam
angle, and can sense objects within a range of 2∼300 cm. One issue with this type of sensors is how to
determine if the reflecting surface is a part of the environment such as a wall or furniture, or a mobile
target. Another problem is their vulnerability to interference from other ultrasonic sources; for instance,
the receiver of one sensor may sense the signal from the transducer of another sensor when concurrent
readings are taken from different sensors. A similar problem occurs if a sensor picks up an echo of
a previous signal still residing in the room. In such cases the readings are meaningless and should be
discarded. One way to prevent these problems is to introduce a delay, ε, between subsequent sensor
readings [9]. In our implementation, two measurements are at least 0.2 s apart, i.e., ε = 0.2.

3.2. Formation of Input Database

The distance measurements are accumulated in the input database D, in which each entry dtk is the
distance of the target to sensor k at time t where k = 1, · · · , K. Note that a typical value of K is 4.
We define a row dt = {dt1 · · · dtK} of D to be a problem instance. If an actual geographic map of
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sensors is already known, we can use three valid (i.e., noise-free) elements in dt to calculate the location
of the target at time t using trilateration [27]. Solving a problem instance to get the location requires that
all elements in dt are measurements to the same reference point. However, since we consider a mobile
target as the point of reference, the sensing delay ε between consecutive measurements becomes a major
source of error. In case the mobile target moves between two measurements during the construction of dt,
the assumption of having a common reference point across dt breaks. Furthermore, as the number of
elements in dt, i.e., |dt|, increases, the problem gets worse since the maximum time difference between
any pair of measurements can be as large as ε × (|dt| − 1) and a possible shift in the position of the
reference point between measurements in dt can be significant. Another source of error is the inaccuracy
of distance measurements. Although ultrasonic sensors have an error range less then ±5 cm, the method
of measurement is vulnerable to multipath effects as explained earlier.

To deal with the above difficulties, we use a two-step approach to remove noise fromD: The first step
erases non-event measurements (outliers) while the second step filters out low-quality measurements.
When the mobile target enters into the line-of-sight, meaning that an event occurs, the sensor records
a smaller TDOA value compared to the samples taken when the field-of-view is clear [2]. The first
step exploits this property and analyzes the sensor readings by setting an event threshold to 60% of the
readings. Hence, a reading less then this event threshold fires an event and is inserted into D, otherwise,
the element corresponding to this sensor is marked as invalid. Figure 1 shows the event threshold for
one of the sensors in our testbed along with the histogram of measurements recorded by that sensor.
We note this simple method removes more than 99% of the non-event data from D across all sensors.

Figure 1. To remove outliers, each sensor marks the sensor reading higher than the event
threshold (60% of the total readings) as invalid.
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In the second step of noise removal, the rows of D are clustered using a DBSCAN algorithm [28].
Interpreting dt as the K-dimensional coordinates of a target, DBSCAN clusters together rows that are in
10 cm proximity of each other in this K-dimensional space. Any cluster with less than 10 members is
discarded. After this step, we can make sure that each row in D is an accurate observation of the same
target. An example clustering result for measurements from 3 sensors is given in Figure 2 where dark
points are readings and gray large dots mark cluster boundaries. We tested this filtering mechanism by
collecting distance measurements to predetermined checkpoints while visiting the checkpoints regularly
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in an otherwise random walk fashion. We verified the system can identify outlier observations and filter
them out.

Figure 2. An example DBSCAN clustering of distance measurements from 3 sensors.
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Although clustering on 10 cm neighborhood, and using 10 members as the density threshold may
seem arbitrary, the fixed sensing range and error characteristics of the hardware make this configuration
generally applicable. This approach also handles errors due to the mobility of the target because clustered
rows of D correspond to events in which the target is slow or stationary.

4. Self-Configuring Localization for Landmarks

In this section, we present a GA-based algorithm, called Self-configuring Localization for Landmarks
(SeLL), to determine initially unknown locations of ultrasonic range sensors that will serve as landmarks
for target tracking. SeLL works on a cluster of K sensors. Given an input database D of distances,
SeLL tries to find the actual locations of K sensors, L = {l1, l2, . . . , lK} by exploiting the movement of
mobile target. As mentioned earlier, each row dt of D is a set of measurements to the same reference
point obtained by K sensors. In fact these reference points associated with rows of D are snapshots of
the mobile target’s trajectory. SeLL thus searches for a set of feasible locations, L̂ = {l̂1, l̂2, . . . , l̂K} that
would yield a solution for each and every reference point in D, based on the assumption that a solution
for all of the reference points can be found if and only if L = L̂. Once the relative locations of sensors
in each cluster is found, these clusters are aggregated into a complete topology that includes all of the
sensors in the environment.

As shown in Algorithm 1, SeLL starts with a set of z randomly generated estimations,
G = {L̂1, . . . , L̂z}. In GA terms, G is the population and each L̂i = {l̂i1, l̂i2, · · · , l̂iK} is an individual
that estimates the locations of sensors where l̂ik = (x̂ik, ŷik) is a point on a 2-dimensional plane
representing the location of sensor k in L̂i. To calculate the location of the reference point based on
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L̂i, let us define Cik to be a circle centered at l̂ik with a radius of dtk, where dtk is the measured distance
from l̂ik to the reference point. The following 3 steps constitute the main loop of the SeLL algorithm.

Algorithm 1: A self-configuring algorithm to determine locations of landmarks

Function GA(Maxgen, Rx, Rm, z)begin
Create population G of z random individuals;
generation = 0;
while generation < Maxgen do

Calculate fitness of all individuals;
G′ = ∅;
while |G| < z do

Select two parents, p1 and p2 from G;
Perform crossover with rate Rx;
Perform mutation with rate Rm;
Insert the offspring to G′;

end
G = G′;
generation = generation + 1;

end
return the best individual;

end

Step 1. Quality Estimation: The quality of an individual L̂i is calculated using a Distance function
which computes a value proportional to the dissimilarity between L̂i and L, or to the success of finding
consistent solutions for D. The GA algorithm tries to minimize the Distance in order to find the best L̂i

that is closest to L. In other words, the Distance function associates a non-negative penalty value for a
given estimation of the geographic layout of locations, L̂i.

As noted earlier, only three elements in dt are sufficient for calculating the location of the reference
point via trilateration [29]. Hence, let us first consider the case of having three location estimates in L̂i,
say l̂i1, l̂i2 and l̂i3. SeLL forms three circles (Ci1, Ci2 and Ci3) and finds two points of intersection for
each of two-circle combinations of three circles, resulting in six intersection points (Figure 3). Among
them, three points, one from each two-circle pair, that are closer to one another are selected. Then
the reference point is within the triangle defined by these three points. With perfect inputs these three
points overlap and the location of the reference point can be calculated with point accuracy, whereas
the surface area of the estimation triangle increases as the error increases. Next, when the size of L̂i is
greater than 3, the redundancy in dt can be used to enhance the quality of L̂i. That is, the location of the
target is calculated with all combinations of two-circle pairs, {(Cik, Cim) | k 6= m} and corresponding
distance measurements, {(dtk, dtm) | k 6= m} by using the intersection of two circles.

The location of the reference point, although unknown, is the same across dt, and hence, we define a
prediction error at time t, denoted by eit, as the aggregate difference between calculated locations of the
reference point from the circle pairs. The Distance of L̂i is then given by the sum of all eit’s over the
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rows of D. In Figure 3, ot denotes the actual location of the target at time t. As illustrated in Figure3a,
eit = 0 if L̂i is the global minimum solution and there is no error in the distance measurements. However,
the predictions for ot do not overlap for an inferior L̂i and eit > 0 as shown in Figure3b. The pseudo
code for a simplified Distance function is given in Algorithm 2.

Figure 3. Calculation of the prediction error eit. (a) Perfect prediction; (b) Close prediction.
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Algorithm 2: Simplified Distance function

Function Distance(L̂i, D)begin
Distance = 0;
foreach dt ∈ D do

O′ = {};
foreach l̂ik ∈ L̂i and l̂im ∈ L̂i, k 6= m do

Cik = circle with radius dtk centered at l̂ik;
Cim = circle with radius dtm centered at l̂im;
o1, o2 = IntersectionPoints(L̂i,Cik, Cim);
Add o1, o2 to O′;

end
O = points from O′ that are closest to each other;
eit =

∑
pairwiseDistances(O);

Distance = Distance+ eit;

end
end

We further develop an algorithm for calculating the intersection points to deal with the cases in which
some circle pairs do not overlap. We are concerned with the quality of L̂i, i.e., it’s ability to solve dt,
rather than the actual measurement error, the main source of which is the prediction error. To calculate
the intersection points of two circles Cik and Cim, we first compute a Euclidean distance between the
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centers of the circles as ||l̂ik − l̂im|| =
√

(x̂ik − x̂im)2 + (ŷik − ŷim)2. Depending on the Euclidean
distance, three exceptional cases may arise: (1) if ||l̂ik − l̂im|| > dtk + dtm then Cik and Cim are separate
and there is no intersection; (2) if ||l̂ik − l̂im|| < |dtk − dtm|, then one circle is contained within the other
and there is no intersection; and finally, (3) if ||l̂ik− l̂im|| = 0, and dtk = dtm then the two circles coincide
and there are infinite number of intersections. Note that, even though two candidate estimations L̂i and
L̂j may both fall into the first case and yield no intersection, it is desirable that the Distance function
assigns a lower rank for the candidate which is closer to the real topology L. Notably, simply assigning a
constant large penalty to infeasible estimates results in poor performance and significantly increases the
search time. Therefore, when two circles do not intersect due to case 1, we enlarge both of the circles
by an equal amount so that they intersect. Likewise, if one is contained in the other, the inner circle is
extended. These two cases are illustrated in Figure 4 a,b, respectively. When either case is encountered,
the individual is penalized by the amount proportional to the total expansion of both circles. This process
is summarized in Algorithm 3.

Algorithm 3: A function for calculating the intersection points

Function IntersectionPoints(L̂i,Cik, Cim)begin
if Cik ∩ Cim 6= ∅ then

return Cik ∩ Cim;
end
else if ||l̂ik − l̂im|| > dtk + dtm then

// Cik and Cim are separate

∆e = ||l̂ik − l̂im|| − (dtk + dtm);
punish L̂i by ∆e;
return (Cik + ∆e/2) ∩ (Cim + ∆e/2);

end
else if ||l̂ik − l̂im|| < |dtk − dtm| then

// Once circle is inside the other

∆e = |dtk − dtm| − ||l̂ik − l̂im||;
punish L̂i by ∆e;
if dik < dim then

return (Cik + ∆e) ∩ Cim;
else

return (Cim + ∆e) ∩ Cik;
end

end
end
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Figure 4. Distance function handling no-solution cases: when no intersection points are
found, circles are extended to the dashed versions. (a) Case 1; (b) Case 2.
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Figure 5 shows the behavior of theDistance function with varying localization error in two sensors of
a 4-sensor network when the remaining two sensors have perfect predictions. We observe the Distance
function can correctly assess the quality of L̂i, such that, as the estimations deviate from the actual
locations, the Distance of L̂i increases. This behavior also allows us to detect sensor displacements
after localization by tracking abrupt changes in the Distance of the current topology (see Section 5 for
details of displacement handling). Note that the distance of L̂i may not be 0 even if L̂i = L due to
measurement errors; however, it will be smaller than most of the candidates.

Figure 5. Distance vs. localization error in two sensors in a 4-sensor network.
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Step 2. Crossover: After the quality estimation, current population, G is sorted according to the
Distance values of individuals. In addition, a new generation, G′ is created and initialized as an empty
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set. Pairs of individuals are then selected from G according to ranking selection that biases towards
better individuals [30]. Each pair, with a probability of Rx, goes through the crossover operator. This
operator randomly selects the location estimation for one sensor from one of the parents to create two
offsprings (Figure 6). These offsprings are then added to the next generation G′. With a probability of
1− Rx, input pairs are added to G′ without any changes. This crossover operation aims to collect good
genes, in the sense of improving per-sensor estimations, for the individuals to help convergence to the
best solution around the discovered areas of the search space [31]. The selection and pairing process
continues as long as |G′| < z.

Figure 6. The crossover operator works on two parents to generate two offsprings.
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Step 3. Mutation: Each individual inG′ is modified with a probability ofRm by selecting a sensor and
a coordinate axis randomly and replacing the selected value with a random value. Mutation operation
prevents the search from getting stuck in a local optima by introducing new areas of exploration.
The mutation rate, Rm, is generally chosen to be very small to reduce randomness. With high mutation
rates, the search becomes essentially random [31,32]. Note that, we also use elitism, i.e., always keep
copies of the top-ranked 3 individuals with no modification. Elitism ensures that high quality individuals
survive and contribute to the next generations. Following the mutation operation, the new generation G′

becomes the new current generation G and the algorithm repeats itself for Maxgen generations [33].

5. Target Tracking and Displacement Handling

Having identified the positions of landmarks, we develop an algorithm, called Self-configuring Target
Tracking (SeT), which keeps track of the location of a mobile target using distance measurements from
landmarks to the target as well as monitor if some of the landmarks are displaced. The former is achieved
by using trilateration to locate the target, while the latter is handled in the same way as SeLL.

In order to improve the accuracy and the robustness of tracking and to effectively handle noise-prone
ultrasonic sensors, the redundancy in the number of landmarks is exploited. In particular, SeT uses
K (>3) landmark sensors such that the target location is determined as the average of trilateration results
of three-landmark combinations of the K landmarks as shown in Equation (1).∑

s∈(|L̂i|
3 )

Trilateration(s)

|
(|L̂i|

3

)
|

(1)
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Although SeT can simultaneously detect and report positions of multiple targets, it cannot track
the identity of multiple humans in a robust manner. For example, when two residents stop in close
proximity of each other, SeT cannot maintain identities, meaning that other identification mechanisms
are necessary to achieve multi-target tracking. Hence, we primarily focus on tracking a single target and
reserve the latter as a future work.

To detect landmark displacements, SeT keeps track of the Distance function as part of the
tracking process, looking for fluctuations in its value, as a sudden increase in the Distance suggests a
displacement of landmarks. For instance, Figure 7 plots the Distance function over time in a four-node
topology, indicating one of the landmarks in the network is displaced at time t = 108. Clearly, the
occurrence of displacement event is immediately reflected on the Distance function as it suddenly starts
producing large values. When the system detects a displacement event, it starts a recovery phase that
detects the faulty landmark and attempts to reconstruct the network topology.

We take advantage of the redundant number of landmarks, e.g., K = 4, to identify which of the
landmarks has been displaced. For this purpose, we define a Distance3 function that computes the
distance between the point estimations for the target locations using 3 columns in the D matrix. The
Distance3 function is essentially the Distance function working only on 3 landmarks, and hence,
equivalent to calculating the diameter of the prediction triangle for trilateration.

Figure 7. The Distance function abruptly changes upon a landmark displacement
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We only consider a single landmark displacement assuming that it is unlikely that multiple landmarks
are relocated within a short time window. When a displacement event is detected, the system with
4 landmarks forms four sets of 3 landmarks by removing one landmark from the input and calculates
the Distance3 for each of the landmark set. If one of the landmark sets yields a significantly lower
Distance3 value, the landmark left out for the calculation is determined to be the displaced one and
a quick recovery process is initiated. Figure 8 illustrates a case in which node1 is displaced at time
t = 108. In this figure, the change in the Distance3 functions for the three-landmark sets that include
node1, i.e., WO/node2-4, show a clear increase in the estimation error. In the recovery phase, a
brute-force search for the current location of the displaced node is carried out. Due to low sensing range
of ultrasonic ping sensors, this search is fast while the results are very accurate.
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Figure 8. The Distance function for 3 nodes to detect the displaced node in case of a single
node movement: only the Distance3 function without node1 (WO/node1) does not show
a jump in its value.
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Tracking multiple objects requires modification to the SeT algorithm. First of all, an additional
parameter, called an expected diameter, can be used in order to trigger the new multiple-object predictor.
The algorithm can then check the diameter of a single object against the threshold and try to fit the data
to a multi-object model in case exceeding the threshold. Unknowns of such a model are the number
of objects, N and locations of the objects in the room, Pi, 1 ≤ i ≤ N . These unknowns can be
solved through a GA formulation where an individual is encoded as a tuple (N , Pi) and the fitness being
the distance between expected sensor data due to an individual and the actual sensor data. Note that
stochastic minimization algorithms are observed to perform better with ultrasonic sensors due to various
and frequent sources of errors.

6. Evaluation

We evaluated our GA-based self-configuring localization protocol on a six-node testbed deployed
within a 6 m2 room. As shown in Figure 9, a total of six different topologies were tested. We marked
certain points on the ground as checkpoints. These checkpoints correspond to the intersection points of
the dotted lines in Figure 9, in which, each dotted square measures 1 × 1 m2. Sensor nodes are placed
on these checkpoints and on the ground for ease of reconstructing the experiments, but we observe that
slight differences in height from the ground do not have a significant impact on the performance of the
algorithm. Sensors measure their distances to the object in a round robin fashion and wait for 0.5 s before
each measurement. A participant walks between the checkpoints with no predetermined path while we
record the time and the checkpoint location when the participant arrives at a checkpoint. Hence, we have
the ground truth for the path taken by the participant. At some point in the experiment, we move one
sensor node to an arbitrary, non-occupied checkpoint to mimic node displacement. A summary of the
experimental setup and parameters for the GA are given in Table 1.
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Figure 9. Six different topologies under test. (a) Topology-1; (b) Topology-2;
(c) Topology-3; (d) Topology-4; (e) Topology-5; (f) Topology-6.

(a) (b) (c)

(d) (e) (f)

Table 1. Experimental setup and Genetic Algorithm (GA) parameters.

Parameter Value

Number of generations 400
Population size 100
Mutation rate (Rm) 0.1
Crossover rate (Rx) 0.6
Number of elites 3
Area size 3 × 2 (m2)
Number of sensors 6
Sensing delay 0.5 (s)

The experimental results are summarized in Table 2. To evaluate the performance of the proposed
algorithm, we compute the accuracy of determining the locations of landmarks, quantified by a
localization error, εL, according to Equation (2), in which L refers to the actual locations of landmarks,
and lk and l̂k are the actual and estimated location of a landmark, respectively.

εL =
∑
lk∈L

||lk − l̂k|| (2)

Equation (2) computes the total of distances between actual and estimated locations of all of the
landmarks in the topology. We also calculate the maximum tracking error, εTMAX

and the average
tracking error, εTAV G

. εTMAX
is the maximum distance encountered between the actual and estimated

locations of the mobile object throughout the experiments, and εTAV G
is the average of these errors

reported with the 90 percentile range. Moreover, we report the time the system needs to infer a node
displacement as the displacement detection latency, tD. In our experiments, we only tested a single node
displacement and we claim this is a common case since it is unlikely that multiple nodes are displaced as
noted earlier. We also report the time, tR for recovering from a displacement. We executed our algorithm
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on the collected data offline so that we were able to run the algorithm multiple times on the same data,
however, the system is designed to run in real-time. We report the average of 10 runs for each dataset.

Table 2. Experiment results per topology: localization error (εL), self-configuration
time (tSC), maximum and average tracking errors (εTMAX

, εTAV G
), displacement detection

latency (tD), and time taken to recover from 1-landmark displacement (tR).

Topology εL (cm) tSC (min) εTMAX (cm) εTAV G (cm) tD (s) tR (s)

Topology-1 8.23 5.69 19.62 12.47± 3.56 24.64 3.14
Topology-2 12.87 5.71 29.50 16.39± 7.01 36.71 3.92
Topology-3 13.60 5.32 25.21 14.21± 6.22 43.37 3.11
Topology-4 5.41 5.43 22.09 9.57± 8.19 21.09 3.49
Topology-5 9.21 4.98 23.42 12.13± 9.08 29.50 2.91
Topology-6 14.40 6.07 16.01 6.08± 7.56 33.99 3.06

As summarized in Table 2, we observe, on average, 10 cm landmark localization error. εL is relatively
smaller for topologies that cover the circumference of the observed environment (Topology-1,4,5) with
less than 10 cm average error for these topologies. Independent of the topology, the time to discover
the locations of the landmarks during the self-configuration phase is about 6 min. This is expected
since the execution flow is not heavily dependent on topological structure. Slight changes in the self
configuration time are due to number of infeasible solutions generated during execution, which results
in additional computations.

Maximum tracking error, εTMAX
varies across topologies and it also depends on the path followed by

the participant. Since we did not have a fixed path before the experiment, we cannot reliably evaluate
the effect of topological formations on the tracking error. Generally, a higher landmark localization error
yields higher tracking errors, and maximum observed tracking error is between 16 to 30 cm. In Table 2,
we also report the average tracking error including 90 percentile error ranges. On the average, we can
track a mobile target with 20 cm accuracy in a 6 m2 room.

We further evaluated the tracking performance of our protocol under two topologies of different sizes,
i.e., 2× 3 m2 and 4× 6 m2, as shown in Figure 10. We first measured the tracking performance for the
testbed in Figure10c. We report 90% confidence level for 10 runs. The localization error, εL is 7.16 cm
while the self-configuration time, tSC is 4.03 min. The 90 percentile maximum tracking error, εTMAX

is 21.27 cm and the average tracking error, εTAV G
is 11.71 cm. We also conducted a tracking test in

the same testbed, and present an example tracking estimation along with the ground truth in Figure10d.
Note that the black path is an approximation of the ground truth while the gray path is an estimation by
the system.

We then measured the tracking performance for a larger testbed shown in Figure 10e, which is a
sitting room setup with a sofa in the middle. We ran 10 experiments to report the following results.
εL and tSC are 17.53 cm and 8.23 min, respectively. εTMAX

is 24.46 cm while an absolute maximum
tracking error over all 10 runs is 36.28 cm. Finally, εTAV G

is 18.43 cm. We believe these results are
satisfactory, although there is also a large room for improvement since we are putting no efforts in post
processing, e.g., smoothing, the tracks generated by our system.
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Figure 10. Tracking tests on two real testbeds of different sizes where Sis indicate sensors.
(a) Picture of 2×3 m2 testbed; (b) Picture of 4×6 m2 testbed; (c) Tracking test 1 in a 2× 3 m2

testbed; (d) Tracking test 2 in a 2× 3 m2 testbed; (e) Tracking test 3 in a 4× 6 m2 testbed.
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We finally evaluated the performance of our displacement detection and topology correction algorithm
according to the pattern given in Figure 11. The experiments are carried out by first recording sensor
data from all sensors in Figure 11, and later selectively suppressing the sensor at the target location until
a predetermined time of displacement. We then suppress the source node and start streaming the target
node creating a virtual displacement. This method allows us the speedup the process of analysis.
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Figure 11. Displacement patterns for measuring displacement detection performance.
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The results of the experiments are summarized in Table 3. We observe that εTMAX
is inclined

to increase with increasing displacement. This result is expected due to larger errors during the
reconfiguration phase. Surprisingly, the magnitude of displacement does not seem to affect the detection
latency. Hence, as long as there is a significant discrepancy between estimated layout and sensor data,
the system can infer a displacement. The latency of detection is approximately 30 s and we do not
expect to see lower values with our hardware because the system should be carefully designed in order
not to enter into the reconfiguration phase frequently. Note that even multi-path effects may cause
such discrepancies. Nevertheless, this latency can still be further reduced using higher quality sensors.
Similarly, the recovery time, tR, after a displacement does not seem to depend on the magnitude of the
displacement. Rather, we consider that the time required for reconfiguration is a function of the resulting
topology. We observe that within 5 s of the detection, the system reconstructs the model.

Table 3. Displacement performance results for scenarios in Figure 11: Maximum and
average tracking errors (εTMAX

, εTAV G
), displacement detection latency (tD), and time taken

to recover from 1-landmark displacement (tR)

Scenario Distance (cm) εTMAX (cm) εTAV G (cm) tD (s) tR (s)

P1 141 17.53 8.50± 3.17 27.47 3.24
P2 200 16.01 7.23± 2.52 30.34 2.19
P3 283 23.38 11.19± 2.46 32.45 4.54
P4 316 29.14 13.03± 2.14 30.32 3.37

7. Conclusions and Future Work

In this paper, we presented a self-configuration protocol for device-free target tracking systems.
The proposed protocol first maps the geographic topology of a network of low-cost ultrasound sensors
without using nodes with known locations, then proceeds to track humans using the same hardware.
We also developed a lightweight sensor displacement scheme that can detect any changes in the topology
in less than a minute and initiate a quick recovery phase to generate a new map within seconds. Finally,
we demonstrated via experiments that our proposed system can produce highly accurate results over a
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broad range of network layouts. In the future, we will extend our tracking system to add the capability
of tracking multiple targets.
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