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Abstract 

     Accurate classification of human aquatic activities using radar has a 

variety of potential applications such as rescue operations and border patrols. 

Nevertheless, the classification of activities of water using radar has not been 

extensively studied, unlike the case of dry ground, due to its unique challenge. 

Namely, not only is the radar cross section of a human on water small, but the 

micro-Doppler signatures are much noisier due to water drops and waves. 

     In this paper, we first investigate whether discriminative signatures could 

be obtained for activities on water through a simulation study. Then we show 

how we can effectively achieve high classification accuracy by applying deep 

convolutional neural networks(DCNN) directly to the spectrogram of real 

measurement data.  

From the five-fold cross-validation on our dataset, which consists of five 

aquatic activities, we report that the conventional feature-based scheme only 

achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the 

collected data attains 66.7%, and the transfer learned DCNN, which takes a 

DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using 

the collected data, achieves a much higher 80.3%, which is a significant 

performance boost. 

 

 

 

 

Keywords: radar; micro-Doppler signatures; aquatic activity classification; 

convolutional neural networks; transfer learning 
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Ⅰ. Introduction 

1.1 Overview 

Increased demand for security, law enforcement, rescue operations, and health care has 

accelerated research in the detection, monitoring, and classification of human activities [1,2] 

based on remote sensing technologies. In particular, the unique micro-Doppler signatures 

from human activities enabled diverse and extensive research on human detection and 

activity classification/analysis using radar sensors [3-12]. More specifically, the authors of [6] 

extracted direct micro-Doppler features such as bandwidth and Doppler period, the authors of 

[7] applied linear predictive code coefficients, and the authors of [8] applied minimum 

divergence approaches for robust classification under a low signal-to-noise ratio environment. 

Furthermore, the authors of [9] suggested to use particle filters to extract features, the authors 

of [10] employed biceptrum-based features, the authors of [11] utilized orthogonal pseudo- 

Zernike polynomials, and features based on the centroid on the singular value decomposition 

(SVD) have been exploited in [12]. Compared to optical sensors, the electromagnetic radar 

sensors can operate in all weather conditions, regardless of lighting changings, and hence are 

competitive for the applications that require robust operations. So far, however, most of the 

research has focused on the classifications of human activities on dry ground. 

In addition to dry ground, the accurate classification of human activities on water 

(namely, the aquatic activities) has wide applications in rescue operations or coastal border 

patrols; for example, as monitoring human activities on ocean at night or on a foggy day 

using optical sensors can be extremely challenging, and the robust detection and 

classification using radar becomes desirable. However, for the activities on water, it becomes 

more difficult to design informative handcrafted features based on micro-Doppler signatures, 
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as in [6]. The reason is because human motions on water tend to be more irregular than those 

on the dry ground, and the micro-Doppler signatures become noisier due to water drops and 

waves. Moreover, the radar cross section (RCS) of parts of a human subject on water is low 

so that the Doppler signatures become less apparent than those on dry ground. Therefore, 

collecting large-scale training data of high quality, which is crucial for the application of 

machine learning algorithms, has become more difficult and expensive. 

In this paper, we investigate whether the micro-Doppler signatures can be still utilized to 

the more challenging case of classifying human activities on water. First, we carry out a 

simulation study on the micro-Doppler signatures of swimming activities using the point 

scatterer model to understand whether the signatures for different activities can be 

discriminative. Then, we continue our preliminary study in [13] by applying deep 

convolutional neural network (DCNN) directly to the spectrogram for the classification of 

human activities on water. As has been widely proven in many applications [14–17], the 

motivation of applying the DCNN is clear: instead of handcrafting the features for a given 

classification task, the DCNN can automatically learn the features as well as the classification 

boundaries directly from the two-dimensional (2-D) spectrogram data. We show that the 

DCNN becomes much more powerful, particularly with the transfer learning technique, for 

situations in which collecting high-quality data and devising handcrafted features are more 

challenging, as in the case of classifying human activities on water. 

Applying deep neural networks (also known as deep learning) to the micro-Doppler 

signature-based classification has been attempted only recently. Namely, the authors of [17] 

were the first to apply a DCNN to the micro-Doppler signature-based human detection and 

activity classification, the authors of [18] utilized stacked auto-encoder for fall motion 

detection, and the authors of [19] applied a DCNN similar to that in [17] but with a limited 
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dataset. To the best of our knowledge, leveraging the transfer learning of a DCNN has not 

been attempted before for the micro-Doppler signature-based activity classification. 

For our experiments, we used Doppler radar and collected spectrogram data of five 

human subjects performing five different activities on water: freestyle, backstroke, and 

breaststroke swimming, swimming while pulling a floating boat, and rowing. We 

implemented two versions of the DCNN and compared their performances with a baseline 

Support Vector Machine (SVM) that implements the handcrafted features in [6]. The first 

DCNN is the one trained from scratch using the collected spectrogram data, which exactly 

follows the approach of [13] and [17]. The second DCNN is the transfer learned DCNN, 

namely, we take a pre-trained DCNN, which is trained on a separate, large-scale RGB image 

classification dataset, ImageNet [20], and fine-tune the network parameters using the 

collected spectrogram data. Our result of the transfer learned DCNN significantly 

outperforming other schemes illustrates that the features learned by the DCNN for the RGB 

image classification can be successfully transferred to the micro-Doppler signature-based 

classification. In the following sections, we summarize our simulation study and data 

collection process, explain the DCNN training in more detail, and present the experimental 

results. 

 

1.2 Related Work 

1.2.1 Human Activity Classification on Ground using Convolutional Neural Networks 

The research of [17] proposes the use of deep convolutional neural networks (DCNNs) 

for human activity classification based on Doppler radar. The data were collected using a 

Doppler radar test bed operating at 2.4 GHz. A human being moving directly toward the radar 
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was measured in an indoor environment under line-of-sight conditions. Twelve humans were 

measured for 3s as they performed seven different activities. The activities consist of 

performed seven different activities. The activities consist of (a) running, (b) walking, (c) 

walking while holding a stick, (d) crawling, (e) boxing while moving forward, (f) boxing 

while standing in place, and (g) sitting still. Each activity was measured four times per 

subject, and three spectrograms were extracted from each measurement, resulting in 1008 

data points. The size of the extracted spectrogram was 300 x 140. The measurement setups 

are shown in Figure 1, and the sample spectrograms are shown in Figure 2.  

 

 

Figure 1. Setup for human activity measurements 

 

 

Figure 2. Sample spectrograms of human activities on dry ground 

 

Previously, proposed schemes of [6] for these problems remained in the conventional 

supervised learning paradigm that relies on the design of handcrafted features. Whereas these 
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schemes attained high accuracy, the requirement for domain knowledge of each problem 

limits the scalability of the proposed schemes. In [17], they present an alternative deep 

learning approach. They apply the DCNN, one of the most successful deep learning 

algorithms, directly to a raw micro-Doppler spectrogram for human activity classification 

problem. As a result, the result is similar to [6], however, they did not use any explicit domain 

knowledge for extracting features, and the spectrogram itself served as input data to the 

DCNN.  

 

1.2.2 Human Activity Classification on Water using Convolutional Neural Networks 

Like the preceding 1.2.1, they apply the DCNN to a 2-D spectrogram for a human 

activity classification on water problem in [13]. They measured five human activities on 

water; a swimming person doing the free stroke, backstroke, and breaststroke, a swimming 

person pulling a floating object, and a rowing person in a small boat. The received signal was 

processed with the joint-time frequency analysis to investigate its time-varying micro-

Doppler characteristics. To construct the train and test datasets, they measured a single 

subject five times for each activity. From each measurement, they extracted five spectrograms 

for 2 seconds (100 pixels) with overlapping time windows. In the cropped spectrogram, the 

Doppler frequency was between 0Hz and 500Hz(256 pixels). After training, DCNN could 

recognize the activities with a quite high accuracy. However this study is implemented with 

dataset about only single person. 
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Ⅱ. Micro-Doppler Simulation of Swimming Activities 

It is an interesting research question whether it is possible to obtain meaningful micro-

Doppler signatures for the human activities on water when a subject is illuminated by radar. 

To that end, we carried out a simulation study of micro-Doppler signatures for the swimming 

activities to understand their characteristics before collecting real measurement data. When a 

person is swimming, the major detectable parts of a human body from radar are arms. Hence, 

if the arm motion of a person is properly modeled, we can simulate the expected micro-

Doppler signatures as similar works were done for human walking in [3,4]. In this section, we 

focus on two swimming styles, the freestyle and backstroke, and simulate the micro-Doppler 

to verify whether discriminative signatures could be obtained. 

Based on [21], we calculated the velocity of point scatterers of upper and lower arms of a 

swimmer for each swimming style. The arms are modeled as a sum of point scatterers with a 

separation of wave length (λ), and we assumed the received signal becomes the linear 

superposition of Doppler shifts from all point scatters. For simplicity, a single scattering 

model is employed while ignoring multiple reflections. For the freestyle, we modeled the 

motion as two rotating cylinders, in which the upper arm (r1) rotates with the angular velocity 

of ω while keeping θ constant as shown in Figure 3a, and the lower arm (r2) is assumed to be 

always on the x–z plane. In this case, the velocity of each point scatters can be analytically 

calculated through trigonometry. We set r1 as 0.28 m, r2 as 0.42 m, and ω as 2π rad/s. With 

an operating frequency of 7.25 GHz and a sampling rate of 1 Ksps, the simulated 

spectrogram with additional Gaussian noise is presented in Figure 4a. For the backstroke, in 

contrast, we assumed the motion as a single rotating cylinder as shown in Figure 3b. We set 

the length (r) of the cylinder as 0.7 m and the angular velocity, ω, as π rad/s, since the rotation 

of the backstroke is typically slower than the freestyle. The resulting simulated spectrogram 
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is shown in Figure 4b. 

 

Figure 3. Modeling of arm motions of (a) freestyle and (b) backstroke. 

 

By comparing Figure 4a,b, we observe clear sinusoidal signatures in both figures. 

However, we also see that the signatures from the freestyle and backstroke are not identical 

and show a subtle difference. Such a difference, which is confirmed by the real measurement 

data in the next section, suggests that the micro-Doppler signatures for the activities on water 

can indeed be discriminative, and a powerful classifier may be necessary for the accurate 

classification of the activities. 

 

Figure 4. Simulated spectrogram of (a) freestyle and (b) backstroke. 
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Ⅲ. Measurements of Human Activities on Water 

For the measurement of the five activities on water, we used the same setup in [13] and 

collected the spectrogram data of the activities of five human subjects in a swimming pool. 

The average height and weight of human subjects are 178 cm and 76 kg. The activities 

include freestyle, backstroke, and breaststroke swimming, pulling a floating object, and 

rowing a small boat. As we focused only on the human signatures on water, the measurement 

data was collected in a more controlled environment than that of a sea or a lake. Doppler 

radar, which operated at 7.25 GHz with an output power of 15 dBm, was used to capture 

human motions as each human subject approached the radar system. We used vertical 

polarization assuming that human motion, especially arm motion, effectively interacts with 

illuminated electromagnetic (EM) waves. 

The received signal was processed with the joint-time frequency analysis to investigate 

its time-varying micro-Doppler characteristics. In the short-term Fourier transform, the fast 

Fourier transform (FFT) size was set at 256, and the non-overlapping step size at 20 ms. 

Example pictures and spectrograms for each activity are presented in Figure 5. While we 

recognize that each activity indeed possesses unique micro-Doppler signatures, as suggested 

by the simulation study in Section 2, they are not as clear as those from dry-ground 

measurements because of the low RCS and interference of water waves and drops. 
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Figure 5. Example pictures and spectrogram of (a) Freestyle; (b) Backstroke; (c) Breaststroke; 

(d) A swimming person pulling a floating boat; and (e) Rowing. 

 

In order to construct the training and test data sets for our DCNN-based approach, we 

measured a single human subject five times for each activity. From each measurement, we 

randomly extracted five spectrograms with 2 s intervals (100 pixels), potentially overlapping 

with each other. In the cropped spectrogram, the Doppler frequency was between 0 Hz and 

500 Hz (256 pixels). The negative frequency does not contain significant information because 

the human subject was approaching the radar during the measurement. As a result, we have a 

total of 625 data samples (i.e., spectrograms), which consist of five actions with 25 samples 

for each action for every 5 subjects. The dimension of each spectrogram was 252 (frequency) 

by 100 (time). 
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Ⅳ. Classification Method Using Deep Convolutional Neural Networks 

4.1. DCNN Trained From Scratch 

Recently, DCNNs are revolutionizing many applications that mainly involve 2-D data, 

e.g., image recognition. The key reason is due to their power of automatically learning 

hierarchical representations (i.e., features) for given classification tasks directly from the raw 

data input. Such a revolution was realized due to the explosion of data, the advent of high-

performance computing processors such as the graphic processing unit (GPU), and continued 

algorithmic innovations. A more thorough overview on DCNNs and deep learning in general 

can be found in [22], and the references therein. 

The authors of [17] were the first to apply a DCNN to micro-Doppler signature-based 

human activity classification by casting the problem as an image classification problem. 

Applying a DCNN to micro-Doppler signature directly achieved the accuracy essentially in 

par with the handcrafted feature-based state-of-the-art scheme in [6]. In order to apply the 

framework of [17] to the classification of human activities on water, we can simply feed the 

spectrogram data obtained in Section 3 and train the parameters of the DCNN. Regarding the 

handcrafted feature-based scheme, however, we observe that the micro-Doppler signatures of 

the activities on water are more subtle compared to those of the activities on dry ground, as 

can be seen in Figure 5; hence, it is not clear whether the handcrafted features developed in [6] 

would also lead to high accuracy when classifying the activities on water. 

We tried two different DCNN configurations. The first model (DCNN-Scratch-I), 

depicted in Figure 6a, is identical to the one considered in [17]. That is, as shown in the 

figure, we used three convolution layers, in which each layer had 20 convolution filters with 

5pixels-by-5pixels in size, respectively, followed by a Rectified Linear Unit (ReLU) 
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activation function and a 2pixels-by-2pixels max pooling layer. We used 500 hidden nodes 

with ReLU activation for the fully connected layer, followed by a softmax classifier. The 

network has about 4 million parameters. The second configuration (DCNN-Scratch-II) is 

inspired by the recent advances in the DCNN architectures [23,24] that use consecutive 

convolution filters before pooling as depicted in Figure 6b. The number of filters and filter 

sizes for each layer are given in the figure, and the network has about 55 million parameters. 

To train both models, we used the mini-batch Stochastic Gradient Descent (SGD) with 

momentum, with the learning rate 0.01 for DCNN-Scratch-I and 0.0005 for DCNN-Scratch-II, 

the momentum 0.9, and the batch size of 50. Dropout was used at the fully connected layer 

with a rate of 0.5, and the maximum iteration of the mini-batch SGD update was 5000. We 

also used zero padding at the boundary of the data. 

 

Figure 6. The architectures of the DCNN learned from scratch. (a) DCNN-Scratch-I and (b) 

DCNN-Scratch-II. 
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4.2. Transfer Learned DCNN 

While the DCNN trained from scratch with the collected spectrogram could learn useful 

features and achieve high classification accuracy as in [17], the small amount of our training 

data for the activities on water (i.e., 625 samples) may not realize the full potential of the 

DCNN. Therefore, we also experimented with the transfer learned DCNN. 

 

 

Figure 7. Different learning processes between (a) traditional machine learning and (b) 

transfer learning 

 

Figure 7 shows the difference between the learning processes of traditional and transfer 

learning techniques in [25]. As we can see, traditional machine learning techniques try to 

learn each task from scratch, while transfer learning techniques try to transfer the knowledge 

from some previous tasks to a target task when the latter has fewer high-quality training data. 

Transfer learning [25] generally refers to the techniques that transfer the knowledge or 

models learned from a certain task to some other related, but different, task (i.e., a target task) 

that typically lacks sufficient training data. Such techniques commonly improve the accuracy 
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of the target task provided that the two tasks possess some similarity in the data distribution. 

While various transfer learning techniques exist, the transfer learning of the DCNN can be 

done with the following simple procedure: Take a DCNN that is already trained for some 

classification task that is related to the target task and possesses a large amount of training 

data, replace the output classification (softmax) layer that matches the target task, and fine-

tune (i.e., update) the DCNN parameters with the limited amount of training data from the 

target task. 

By following the above procedure, we take a DCNN that is pre-trained with the 

ImageNet dataset and fine-tune the network parameters using the spectrogram data collected 

for the activities on water. ImageNet [20] is a large-scale benchmark dataset that consists of 

1.5 million RGB training images that are 224pixels-by-224pixels, created for computer vision 

tasks such as image classification or object detection. The dataset was used for the annual 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) and significantly accelerated 

the innovation for the DCNN-based algorithms. Furthermore, the ImageNet pre-trained 

DCNN has been successfully used as a base model for transfer learning to some other 

applications (i.e., target tasks) such as style classification [26] or earth observation 

classification [27] that have limited training data. However, most of the transfer learning 

schemes regarding fine-tuning the ImageNet pre-trained DCNN were applied to target tasks 

that still take the RGB images as input. Therefore, since the characteristics of the natural 

RGB images in ImageNet and the spectrograms collected from the Doppler radar are 

completely different, it is not apparent at all whether our approach, i.e., the transfer learning 

of the ImageNet pre-trained DCNN to the spectrogram-based classification of activities, can 

be effective. 

In our experiments, we show such effectiveness of transfer learning with two seminal 
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DCNN models pre-trained on ImageNet, namely, AlexNet [15] and VGG16 [23]. AlexNet, as 

is depicted in Figure 8a, has five convolutional layers and three fully connected layer with 

about 60 million parameters. The model is the winner of the 2012 ILSVRC challenge [15] 

and became the catalyst of recent research on the DCNN. Since the spectrogram image has a 

single channel, we simply copied the data for each of the three input channels for AlexNet. 

For fine-tuning the network parameters, the final softmax layer of AlexNet was replaced with 

a new softmax layer that has five classes, and the entire network parameters were updated 

with the spectrogram data. The architecture of the second base model, VGG16, is given in 

Figure 8b. As can be seen in the figure, VGG16 has a much deeper architecture than the 

others, i.e., 13 convolutional layers and 3 fully connected layers. The network has 138 

million parameters and achieved about half the error rate on the ImageNet test set compared 

to AlexNet in 2014 ILSVRC [23]. We follow the same procedure of transfer learning for 

VGG16 as to that of AlexNet. We call the two transfer learned DCNNs with each base model 

as DCNN-TL-AlexNet and DCNN-TL-VGG16, respectively. The hyper-parameters for the 

mini-batch SGD training of both models were identical to those of the DCNNs trained from 

scratch, except for learning rates of 0.001 for AlexNet and 0.0005 for VGG16. 

 

Figure 8. The architectures of DCNN used for transfer learning. (a) AlexNet and (b) VGG16. 
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We confirmed that the transfer learning technique is very effective than scratch CNN for 

radar based classification of human aquatic activities. Besides, we similarly applied transfer 

learning to classify of human activities on the ground with VGG16 model [29]. As a result, 

we see that the transfer learned model with VGG16 achieve the best accuracies compared to 

conventional method [6] that utilizes the handcrafted features and scratch CNN model [17]. 

We explain about detailed experimental results in the next section. 

 

 

Ⅴ. Experimental Results 

We followed the approach of [17] and carried out five-fold cross validation (CV) using 

the spectrogram data collected as in Section 3 to evaluate the performances of the compared 

methods. Each fold consists of data from each human subject (i.e., 125 samples); thus, the 

classification accuracy measures the generalization abilities of the algorithms across the 

human subjects. Note that the preliminary study in [13] carried out the five-fold CV using 

only the data from a single subject, which is why the accuracy was much higher. For the 

DCNN models, since the model configurations (e.g., the number of layers and the number of 

convolution filters) were fixed as explained in Section 4, the only hyper-parameter we chose 

via CV was the early stopping parameter; namely, we picked the SGD iteration that gave the 

best average test score. We used Caffe [28] to implement the DCNN and utilized the Intel 

Xeon processor E5-2620-v3 and NVIDIA GTX Titan X GPU for our experiments. 

Before we applied the DCNN, we implemented eight handcrafted features from the 
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spectrograms similar to the ones developed in [6] and applied the SVM as a baseline 

conventional method. The features include torso Doppler, Doppler bandwidth, Doppler offset, 

the bandwidth without Doppler, the Doppler periodicity, and the variance of the Doppler 

energy distribution. Note these features extract some general information on micro-Doppler 

signatures and are not just specifically designed features for dry ground activities. We note 

that, due to the poor quality of the spectrograms for the activities on water, a few features 

could not be calculated occasionally; hence, we replaced a missing feature with the average 

value of the corresponding feature for the same activity and for the same person. For the 

SVM, we used the Gaussian kernel and chose the best parameters for the kernel width and the 

regularization parameter for the slack variables among 2500 combinations via CV. 

Table 1 summarizes the CV results. We see that the baseline SVM that utilizes the 

handcrafted features achieves an accuracy of 45.1%. While it is certainly better than a 

random guess among the five activities (i.e., 20%), we can clearly see that the handcrafted 

features developed for the activities on dry ground [17] are not generalizing enough to the 

activities on water. On the contrary, we observe that the DCNN-Scratch-I and DCNN-

Scratch-II achieve accuracies of 61.9% and 66.7%, respectively, which are significantly 

better than the baseline SVM (a 40% improvement). This result proves the robust nature of 

the DCNN for micro-Doppler signature-based classification; namely, instead of designing a 

separate set of features for different classification tasks, the DCNN can directly learn the 

features from the raw data of the new task and achieve high accuracy. Furthermore, we see 

that the transfer learned models, DCNN-TL-AlexNet and DCNN-TL-VGG16, achieve 74.6% 

and 80.3%, respectively, which are again significantly better than the DCNN models learned 

from scratch. Comparing to the baseline SVM, DCNN-TL-VGG16 is 78% more accurate. 

From this result, we observe that the features learned by the DCNN for RGB image 



１７ 

 

classification can be extremely useful even when transferred to the micro-Doppler signature-

based human activity classification problem that has only a limited number of spectrogram 

data for training. The reason is because the DCNN learns features in a hierarchical way; 

hence, the low-level features learned for RGB image classification, such as edge or texture 

detectors, may be utilized and fine-tuned to detect useful micro-Doppler signatures for the 

classification. 

After publication, we got a comment about comparison between the results of training 

with scratch VGG16 and DCNN-TL-VGG16. We decided that is a valid opinion and did 

additional experiment, because the deeper network commonly achieves the better 

performance. For the result of DCNN-Scratch-II, we experimented with a variety of models 

which have different model networks and configurations. However, we did not experiment 

using much deeper network, like VGG16. As a result, the results of training with scratch 

VGG16, called DCNN-Scratch-VGG16, is better than the DCNN-Scratch-II and it achieves a 

similar performance to DCNN-TL-AlexNet. Nevertheless, DCNN-TL-VGG16 achieves the 

best performance as ever. 

  

Table 1. Five-fold cross validation results for the compared schemes. 
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Figure 9 shows the learning curves (averaged over the 5 folds) of the two DCNN models, 

DCNN-Scratch-I and DCNN-TL-VGG16. From the figure, we observe that the DCNN-TL-

VGG16 consistently dominates DCNN-Scratch-I with a significant gap in accuracy and 

converges quickly to attain the best accuracy in around 100 iterations of the SGD updates. On 

the contrary, DCNN-Scratch-I, which learns the DCNN parameters from scratch, needs more 

iterations (around 400 iterations) to converge to the best accuracy it can achieve. From this 

result, we clearly see that the transfer learning of the DCNN can be done very efficiently and 

effectively. 

 

Figure 9. Average learning curves of DCNN-Scratch-I and DCNN-TL-VGG16. The 

horizontal axis stands for the number of mini-batch SGD update iterations. 

 

In Figure 10, we provide the visualization of a sample input spectrogram data as it passes 

through the convolution layer of DCNN-TL-VGG16, the best model. Figure 10a is the raw 

spectrogram input for one of the “freestyle” motions, and Figure 10b is the visualization of 

the feature maps (i.e., the results of the convolution of each filter) after the first convolution 
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layer. While there are many filters in the first layer, we only visualized the feature maps that 

showed the most contrasting characteristics. As stated in Section 3, the micro-Doppler 

signatures of the “freestyle” motions are quite noisy, so the handcrafted features in [6] may 

not be able to discriminate the activity well from others. However, as we can see in Figure 

10b, the convolution filters in DCNN-TL-VGG16 can successfully capture various aspects of 

the input spectrogram, e.g., textures and edges, such that the high classification accuracy can 

be achieved using those captured features as shown in our experiments. 

 

Figure 10. Visualization of feature maps. (a) Raw spectrogram for “freestyle.” (b) 

Visualization of 5 feature maps of DCNN-TL-VGG16 after the first convolution layers. 

 

 

As we mentioned before, we followed the transfer learning approach and implemented 

four-fold cross validation using the spectrogram data in 1.2.1 [29]. In Table 2, we observe 

that the transfer learned model with VGG16 achieves the best accuracy of 92.9% in 

comparison with the 91.9 of [6] and 90.3 of [17]. These results for classification of human 

ground and aquatic activities show that ImageNet pre-trained models are useful to transfer 

learning with the radar based spectrogram data. 
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Table 2. Four-fold cross validation results for classification of human activities on the ground. 

 Fold1 Fold2 Fold3 Fold4 Average 

DCNN-TL-VGG16 96.9% 95.3% 87.5% 92.2% 92.9% 

 

 

Ⅵ. Discussion and Conclusions 

In this paper, we considered the problem of classifying human activities on water based 

on micro-Doppler signatures. We first carried out a simulation study suggesting that the 

classification in such a scenario can be challenging. Then, with real measurement data, we 

applied several DCNN-based methods and achieved almost double the accuracy of the 

baseline SVM that uses handcrafted features developed for the activities on dry ground. Our 

contributions are as follows: (i) We carried out the initial, rigorous work on the classification 

of human aquatic activities, which can be applied to several applications. (ii) We showed the 

robust nature of the DCNN-based classification framework for the micro-Doppler signature-

based activity classification. (iii) We showed that the transfer learning of the ImageNet pre-

trained DCNN can be extremely useful when there are only a small number of Doppler radar-

based spectrogram data. This result shows that the DCNN approach and the use of the 

transfer learning technique are promising for further extension on micro-Doppler signature-

based detection and classification problems. 

As mentioned in the introduction, human activity classification in the ocean would be 

one of the most important applications of this study. It should be noted, however, that, when 

ocean waves are very strong, it becomes very difficult to accurately detect and classify a 

human activity. Ocean waves consist of several components such as breaking waves, resonant 
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waves, capillary waves, and gravity waves, and they produce different kinds of scatterings, 

e.g., Bragg scattering, burst scattering, and whitecap scattering. Thus, when the waves are 

strong, such complex scatterings as well as the large RCS of the waves make it difficult to 

detect human signatures through radar. However, when the waves are less strong, such as 

those from lakes, the micro-Doppler signatures from a human subject can still be identified 

and used, and a more systematic study for such a situation constitutes a direction of potential 

future research. 

In addition, another fruitful future research direction is a comparison of the performance 

of a DCNN and all combinations of existing feature-based schemes [6–12] to investigate the 

optimum performing methods for micro-Doppler signature-based human activity 

classification. 
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요 약 문 

 

CNN 전이학습을 이용한 마이크로 도플러 신호 기반의 사람 수중행동 분류 

 

 레이더 기반으로 측정된 사람의 수중행동을 정확히 분류하는 것은 구조작

업이나 국경수비와 같은 다양한 분야에서의 잠재력을 가지고 있다. 그럼에도 불

구하고 지상에서의 경우와는 달리 수중에서의 경우 레이더를 사용하는 경우에 발

생하는 어려움 때문에 수중행동의 분류에 관한 연구는 광범위하게 이뤄지지 않고 

있다. 물에서는 사람의 레이더 반사 면적이 작을 뿐만 아니라 물방울과 파도로 

인해 마이크로 도플러 신호에 잡음이 끼기 때문이다.  

 본 논문에서는 시뮬레이션 연구를 통해 수중행동으로부터 식별할 수 있는 

신호를 얻을 수 있는지 조사했다. 그 다음, 우리는 측정한 데이터로부터 얻은 스

펙트로그램을 컨볼루션 신경망(DCNN)의 입력데이터로 사용함으로써 높은 분류성

능을 달성함을 보인다.  

5가지 동작으로 구성된 데이터셋에 5-fold 교차 검증으로 실험을 수행했으

며, 기존의 특징 기반의 방식은 45.1 %의 분류성능을 달성하지 못했다. 반면, 우리

가 수집한 데이터를 사용해 DCNN으로 학습시킨 경우 66.7 %, 그리고 RGB이미지 

데이터셋으로부터 미리 학습이 된 DCNN의 파라미터를 fine-tune하여 전이학습하

는 경우에는 성능상에 있어 현저히 향상된 80.3%의 높은 분류 성능을 얻었다.  

 

 

 

핵심어: 레이더; 마이크로 도플러 신호; 수중행동분류; 컨볼루션 신경망; 전이학습 
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