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This paper proposes an intersection control algorithm which aims to determine an efficient vehicle-passing sequence that allows
the emergency vehicle to cross an intersection as soon as possible while the travel times of other vehicles are minimally affected.
When there are no emergency vehicles within the intersection area, the vehicles are controlled by the DICA that we proposed in
our earlier work. When there are emergency vehicles entering the communication range, we prioritize emergency vehicles through
optimal ordering of vehicles. Since the number of possible vehicle-passing sequences increases rapidly with the number of vehicles,
finding an efficient sequence of vehicles in a short time is the main challenge of the study. A genetic algorithm is proposed to
solve the optimization problem which finds the optimal vehicle sequence that gives the emergency vehicles the highest priority.
The efficiency of the proposed approach for expedited crossing of emergency vehicles is validated through comparisons with DICA
and a reactive traffic light algorithm through extensive simulations. The results show that the proposed genetic algorithm is able to
decrease the travel times of emergency vehicles significantly in light and medium traffic volumes without causing any noticeable
performance degradation of normal vehicles.

1. Introduction

Roads have become more and more congested because of
the rapidly increasing demand for transportation due to the
larger and growing population in the world in recent years.
Usually, such transportation problems could be alleviated by
careful city planning, but planning does not usually workwell
with the unexpected growth in the population and vehicle
usage. As efficient ways to address congestion problems,
self-driving vehicles and autonomous transportation systems
have attracted a lot of research and development efforts from
academia, industry, and governments. For example, during
the mid-1990s, the California PATH (Partners for Advanced
Transportation Technology) launched the Automated High-
way System program [1] and the US DARPA (Defense
Advanced Research Projects Agency) held a series of
autonomous vehicle challenges during the 2000s [2]. Also,

many companies have already made decisions to hugely
invest in developing their own self-driving vehicles or vehi-
cles with advanced driving assistance systems [3]. Further-
more, it is also shown in [4] that the overall capacity of the
traffic can be improved substantially when all vehicles on
roads are autonomous and connected for collision avoid-
ance. In recent years, many researches have been done to
improve intersection control performance by using optimiza-
tion approaches. Reference [5] developed a novel linear pro-
gramming formulation for autonomous intersection control
in which the nonlinear constraints were relaxed by a set
of linear inequalities. While the objective function of the
optimization problem in [5] involves the travel time, other
studies [6, 7] are trying to solve similar control problems
using an objective function with multiple criteria like safe
speeds and accelerationwhile avoiding collisions.The authors
of [8] proposed an algorithm with provable guarantees on
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safety and performance. A rigorous upper bound is provided
for the expected wait time in their approach. Compared
with centralized control approaches, infrastructure support
is not needed in decentralized control. In the approach [9]
proposed by Wu et al., the estimated arrival time is shared
wirelessly among vehicles to obtain the best passing sequence.
The problem of coordinating online a continuous flow of
Connected and Autonomous Vehicles crossing two adjacent
intersections was formulated as a decentralized optimal
control problem in [10]. The solution gives the optimal accel-
eration/deceleration for each vehicle at any time to minimize
fuel consumption. Some researchers also studied the control
mechanism when only a part of the traffic is autonomous
vehicles [11]. While there are already numerous research
efforts in the autonomous traffic area, the development of
safe and efficient autonomous transportation systems is still
at its early stage. We have proposed the DTOT- (Discrete-
Time Occupancies Trajectory-) based Intersection Control
Algorithm toward this objective in previous work [12, 13], and
we want to augment the algorithm to give emergency vehicles
(EVs) preferences to cross intersections quickly.

Human lives and the amount of financial loss highly
depend on the response time (from the time the emergency
service is called to the time help is offered) of emergency
vehicles.The travel time of emergency vehicles to the accident
scene is critical to the response time. So, it is very useful and
helpful to reduce the travel time of emergency vehicles on
roads, especially on intersections where congestions aremore
likely to happen. The survival chance of injured people in an
accident falls sharply if they reach the operating table later
than 60minutes after the accident [14]. Hence, shortening the
travel times of crossing intersections for emergency vehicles
will help save lives. In reality, the current way to handle emer-
gency vehicles is similar to using Vehicle-to-Vehicle (V2V)
communication (siren and lights) to warn nonemergency
vehicles on roads to yield to the emergency vehicle. Some
drivers cannot respond quickly to the warnings, which may
result in additional time delay for emergency vehicles and
even serious accidents. Many studies have been carried out to
allow emergency vehicles to have a faster travel across inter-
sections. Based onMAS (Multiagent System), [15] introduced
a statemachine for the intersection controller to change traffic
signal status according to lane occupation when an emer-
gency vehicle is approaching. Some researchers have explored
the priority evacuation of emergency vehicles under an
autonomous and connected traffic environment.Viriyasitavat
andTonguz proposed an intersection control system that only
uses Vehicle-to-Vehicle (V2V) communication to give emer-
gency vehicles priority of crossing [16]. The paper proposed
that, at an intersection, a leader should be elected from all
approaching vehicles to serve as the temporary traffic light
infrastructure and stop at the intersection to coordinate the
traffic.The green signal is always given to the lane of detected
emergency vehicles and through coordination “green-wave”
signals are displayed for the emergency vehicles to let them
move at a faster speed. Dresner and Stone proposed a
simple way to deal with emergency vehicles under their
intersection control framework AIM (Autonomous Inter-
section Management) [17]. Their algorithm only grants

reservations to vehicles in the lanes that have approaching
emergency vehicles, which allows the emergency vehicle to
continue on its way relatively unhindered.However, the travel
times of nonemergency vehicles will be affected significantly
and no global coordination is made for optimal traffic flow.

This paper extends our previously proposedDTOT-based
Intersection Control Algorithm (DICA) approach to include
emergency vehicles in the traffic to be controlled. Our goal
of intersection control is to let emergency vehicles cross
intersections as fast as possible while maintaining adequate
traffic performance. In this paper, we assume that emergency
vehicles are taking normal routes, which means that they will
not travel in a wrong lane. A genetic algorithm is proposed to
find the optimal passing sequence of vehicles whose trajecto-
ries can be rearranged. This optimal sequence aims to make
the emergency vehicles cross the intersection in the fastest
way. Among many sequence forming approaches [18–21]
in the literature, the authors of [21] proposed themost similar
approach to ours, which also proposed a genetic algorithm
to form vehicle sequences. However, unlike the approach
proposed in this paper, they are essentially not allowing
vehicles with conflicting routes to be inside the intersection
at the same time.

The rest of the paper is arranged as follows. Section 2
recalls the previously proposed intersection control scheme,
DICA, which is the foundation of this paper’s approach for
emergency vehicles. A new architecture and algorithm, called
Reactive DICA, for emergency vehicle handling is described
in Section 3. In Section 4, we propose a genetic algorithm
that efficiently solves the optimal vehicle sequencing problem
formulated in Section 3. The efficiency and accuracy of the
approach are evaluated through simulations in Section 5.
Finally, we draw the conclusion in Section 6.

2. DICA

In our previous work, we proposed a novel algorithm
named DICA [12] to coordinate autonomous intersection
traffic and later improved the computational complexity of
the algorithm significantly through several computational
approaches [13]. In this section, we review the basic idea of the
algorithm DICA which is the base algorithm to be extended
for emergency vehicles in this paper.

At the intersection considered in our work, a vehicle
communicates with the Intersection Control Agent (ICA) to
get a permission to cross. As shown in Figure 1, we define
two regions in an intersection. The communication region is
determined by the wireless vehicular communication range,
and the intersection region is the common area within an
intersection that is shared by all roads connected to the inter-
section.All vehicles areConnected andAutonomousVehicles
(CAVs) and are capable of wireless communications with the
ICA. It is also assumed that each vehicle is equipped with
a RFID (Radio Frequency IDentification) chip and detectors
are installed on every incoming lane at the entrance of
the communication region. Thus, ICA can detect the infor-
mation of each vehicle such as Vehicle Identification Num-
ber (VIN), the lane on which a vehicle is approaching
an intersection, and the time when a vehicle enters the
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Figure 1: DTOTs of two conflicting vehicles. 𝑂𝑝𝑞 represents the 𝑞th occupancy in a vehicle V𝑝’s DTOT. Note that occupancies in this figure
are intentionally made very sparse for clear illustration purposes. DTOT starts with the occupancy in which the vehicle’s front bumper first
comes into contact with the entering line of its lane of an intersection, and ends with the occupancy that the vehicle is completely out of the
intersection region.

communication region. It is assumed that a CAV can obtain
its current position, speed, and the relative distance to an
intersection precisely and also can avoid collisions with other
vehicles autonomously. We also assume an ideal wireless
vehicular communication performance such that all data
packages are exchanged correctly and timely since this paper
focuses on developing an algorithm for ICA to evacuate
emergency vehicles as quickly as possible. It is important
to note that, however, despite this ideal communication
assumption, the DICA algorithm could still be applicable
in practice with minor modifications to deal with imperfect
communication thanks to the above-mentioned information
collection mechanism through detectors. For example, if the
communication between CAVs and ICA is not perfect, we
may have two possible problems to solve: package delay and
loss. For delayed data packages, we can obtain the upper
bound for communication delay and integrate this delay
with the proposed DTOT by extending every occupancy to
take into account the delay upper bound. This approach will
make the algorithm a little bit more conservative but safe for

vehicles. For lost data packages, we can add an ACKmessage
in the algorithm.Ahead vehicle (or ICA)will sendREQUEST
(or RESPONSE) again if it does not receive an ACK message
from ICA (or the head vehicle). These simple approaches
can make DICA applicable in practice to deal with imperfect
communications.

2.1. Interaction between a CAV and ICA. Based on the above
basic assumptions, we now introduce the interactions
between CAVs and ICA in the autonomous and connected
intersection traffic considered in this paper. As shown in
Figure 2, a CAV and ICA may begin their interaction with
each other through vehicular wireless communications if the
CAV enters the communication region of ICA. A vehicle is
called the head vehicle on its lane if there are no vehicles in
front of it or the vehicle which is immediately in front of it
has begun entering the intersection region. One can see from
the figure that a CAV and ICA exchange information through
two specific types of messages, REQUEST and RESPONSE,
for the ICA’s intersection crossing coordination.
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Figure 2: Interaction between a CAV and ICA.

A REQUESTmessage contains information that is neces-
sary for a vehicle’s space-time reservation for its intersection
crossing, for example, (i) the VIN, (ii) the Vehicle Size
(VS) which consists of a vehicle’s length and width, and
(iii) a vehicle’s discrete-time state trajectory, which we name
the Timed State Sequence (TSS). A RESPONSE message
contains (i) the VIN and (ii) TSS. The TSS in RESPONSE
is a feasible TSS processed by ICA. Inside the DICA block
in Figure 2, ICA first uses the VS information contained in
the received REQUEST message to convert the TSS to the
corresponding DTOT which is simply a sequence of timed
rectangular spaces that the vehicle needs to occupy to cross
the intersection. If the requested DTOT has any potential
risk of collision with all other vehicles that have already
been approved to cross the intersection, then it is adjusted
appropriately to avoid the collisions. Then, ICA confirms the
adjusted collision-freeDTOT and sends it back to the vehicle.
DICA will be introduced in more detail in the next section.
In the sequel, we call a vehicle confirmed vehicle if it has
received a confirmed DTOT from ICA. We assume that each
CAV is equipped with a trajectory tracking controller so that
the vehicle can follow the confirmed DTOT with reasonably
small tracking error as long as the DTOT satisfies the
kinematic constraints for feasibility such as maximum speed,
acceleration, and deceleration.

2.2. DTOT-Based Intersection Traffic Coordination. This sec-
tion introduces the high-level idea of how aDTOT is checked
and adjusted to avoid potential collisions by ICA. Algo-
rithm 1 which we call the DTOT-based intersection traffic
coordination algorithm (DICA) shows the process for ICA
to deal with a REQUEST message from a head vehicle.

We introduce the sets and notations that are used in
DICA in Algorithm 1. S is used to denote the set of vehicles
which have already been confirmed at the time when the
REQUEST message is received by ICA. A pair of vehicles
is defined to be space-time conflicting if their DTOTs have
at least one pair of occupancies that are conflicting in both
space and time. Another set C in the algorithm represents
the subset of S which contains vehicles whose confirmed

DTOTs have space-time conflicts with the DTOT of the
vehicle that is currently being processed for confirmation. As
shown in Algorithm 1, after converting TSS to DTOT, ICA
determines if there exist front vehicles that affect the vehicle
V𝑖’s motion and also adjusts V𝑖’s DTOT if needed by calling the
function checkFV(). Then, the function getCV()is called
to determine the initial set C. The first vehicle V𝑗 in the set
C is the earliest vehicle that is space-time-conflicting with
vehicle V𝑖. The updateDTOT() function adjusts DTOT(V𝑖)
appropriately so that DTOT(V𝑖) avoids space-time conflicting
with vehicle V𝑗’s DTOT. These two functions are iteratively
called within the while loop in Algorithm 1 until the set C
becomes empty, which indicates that no vehicles in the set
C will potentially collide with vehicle V𝑖. After DTOT(V𝑖) is
appropriately adjusted and confirmed that there is no space-
time conflicting with all other confirmed vehicles, then the
confirmed DTOT(V𝑖) is converted into TSS(V𝑖). Finally, ICA
sends RESPONSE with the confirmed TSS(V𝑖) back to the
vehicle V𝑖 so that the vehicle can cross the intersection safely
by following the confirmedDTOT.More detailed explanation
on each individual function called within DICA can be found
in our previous papers [12, 13].

3. Reactive DICA

In this paper, the problem we want to solve is how to let
EVs which are driven autonomously cross an intersection
as soon as possible under the connected and autonomous
traffic environment. In the meantime, we aim to keep all
other vehicles having similar travel times as when there are
no EVs in the traffic. In short, our objective is to evacuate
EVs through an intersection as quickly as possible while other
vehicles’ travel times are minimally affected. Note that, for
simplicity, the term “emergency vehicle” in this paper means
an emergency vehicle in an emergency status (i.e., with siren
and the lights on). The same assumptions as in our previous
work [12, 13] are employed in this problem. Overtaking
and lane changing inside the communication region are not
allowed, which means that vehicles on each lane will keep
their lane once they enter the communication region. As an
approach to give preference to EVs in autonomous traffic,
we give priority to EVs in an intersection crossing traffic
by optimizing the sequence of crossing vehicles. Also, since
we are augmenting the original DTOT-based intersection
control algorithm, the new algorithm will only be used
to coordinate vehicles when there is an EV within the
communication region of an intersection while the crossing
traffic is controlled the same way as before when all vehicles
are normal vehicles inside the communication region. Thus,
the entering of an EV activates the new algorithm, so we
call the augmented DICA the Reactive DICA (R-DICA).
DICA is only taking care of head vehicles which reduces
computational complexity and communication load of ICA
a lot. However, unlike in DICA, more vehicles are needed to
be considered in R-DICA in order to allow EVs to cross an
intersection as fast as possible. Specifically, all vehicles on the
lane of an EV which are ahead of the EV should be included
in the set of vehicles whose intersection crossing order is to
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(1) Let S be the set of confirmed vehicles and 𝑛 = |S|.
(2) Let V𝑖 be the vehicle to be considered for confirmation.
(3) Convert TSS(V𝑖) to DTOT(V𝑖)
(4) Call checkFV(S,DTOT(V𝑖)) → DTOT(V𝑖)
(5) Call getCV(S,DTOT(V𝑖)) → C

(6) whileC ̸= 0 do
(7) Pop the first vehicle inC → V𝑗

(8) Call updateDTOT(DTOT(V𝑖),DTOT(V𝑗)) → DTOT(V𝑖)
(9) Call getCV(S,DTOT(V𝑖)) → C

(10) end while
(11) Store DTOT(V𝑖) for vehicle V𝑖
(12) Convert DTOT(V𝑖) to TSS(V𝑖)
(13) Send TSS(V𝑖) to vehicle V𝑖

Algorithm 1: DICA (DTOT-based intersection traffic coordination algorithm).

be optimized. In the sequel, we call all those vehicles vehicles
on EV’s lane.Thus, the set of vehicles that we need to consider
for vehicle ordering includes all unconfirmed vehicles onEV’s
lane and also all confirmed vehicles which are not on EV’s
lane. All these vehicles can be divided into two types: vehicles
whose DTOTs cannot bemodified (vehicles that have already
entered the intersection or cannot make a stop at the entering
line even with maximum deceleration) and vehicles whose
DTOTs could be changed (vehicles that are stopping at the
entering line of the intersection or are able to make a stop at
the entering line, or unconfirmed vehicles that are ahead of
the EV).The sequence of vehicles of the latter type is what we
can optimize to expedite the crossing of EVs. We define the
set of these vehicles as S∗.

Roughly speaking, our approach for fast crossing of
emergency vehicles is to assign the highest priority to them
and delay confirmation for all other normal vehicles. Thus,
incorporating a priority based ordering of vehicles into the
basic DICA framework would achieve this goal. To find such
an optimal vehicle ordering, we formulate an optimization
problem based on the entrance time of vehicles which is the
time a vehicle enters the line of an intersection. Let P(S∗)
be the set of ordered vehicle sequences (or simply called a
sequence in the sequel) from the set of vehicles inS∗. Then, if
we use𝑇V

𝑒 to represent entrance time of vehicle V, a reasonable
objective function for our optimization problem would be

min
P(S∗)

𝑇EV
𝑒 , (1)

where 𝑇EV
𝑒 is the entrance time of an EV at an intersection.

Thus, to solve this optimization problem, we first need to
introduce an approach that determines the entrance time of
an EV.

First, we note that some sequences in P(S∗) can be
eliminated if we impose some constraints for optimal vehicle
ordering. For example, the order of vehicles on EV’s lane
cannot be altered and hence should be preserved. Also, since
all confirmed vehiclesS∗ are able to stop before the entering
line of an intersection, we can allocate higher priorities for
vehicles on EV’s lane than those in other lanes.We useP(S∗)
to denote the set of ordered sequences of vehicles satisfying

these constraints. Now, let us consider a sequence 𝑠 in the
set P(S∗). Then, if we consider the first vehicle V in the
sequence 𝑠, then it is easy to see that the vehicle is always a
head vehicle on EV’s lane and has a confirmedDTOT. Hence,
the entrance time of this vehicle V can be determined simply
by its 𝜏(OV

1)which is the time when the vehicle V occupies the
first occupancy of its DTOT. For any other vehicles which are
not the first vehicle in the sequence 𝑠, the way of computing
their entrance times is a bit different. We need a time interval
between any two successive vehicles in a sequence to ensure
safety. This time interval is called separation time 𝜏𝑠. In this
paper, as shown in Figure 3, we define three separation times
for different situations between two vehicles.

𝜏𝑠 =
{{{{
{{{{
{

𝛿𝑐 V𝑖 ⊗ V𝑗 Figure 3(a), or

𝛿𝑠 V𝑖 ≺ V𝑗 or V𝑗 ≺ V𝑖 Figure 3(b), or

0 V𝑖 ⊙ V𝑗 Figure 3(c),
(2)

where symbols⊙ and⊗ are used to represent that two vehicles’
routes are compatible and conflicting, respectively. V𝑖 ≺
V𝑗 represents that vehicles V𝑖 and V𝑗 are on the same lane
and V𝑖 is following V𝑗. The separation time’s value depends
on pavement conditions, vehicle mechanical errors, and
weather conditions. The focus of this paper is on proposing
a coordination algorithm not the determination of these
values. Thus, we just approximate the values from current
empirical estimations which are widely accepted [22]. Then,
the expression to compute the entrance time of V𝑗 which is
not the first vehicle V1 in the sequence is

𝑇𝑗𝑒 = max {𝑇𝑗𝑎 , 𝑇𝑖𝑒 + 𝜏𝑠} , (3)

where V𝑖 is the immediate predecessor of V𝑗 in the sequence
and 𝑇𝑗𝑎 is the predicted arrival time of the vehicle V𝑗 which
is the shortest time for the vehicle to arrive at the entering
line of an intersection under the constraints of maximum
acceleration and speed without considering other vehicles in
traffic. 𝑇𝑖𝑒 is V𝑖’s entrance time and 𝜏𝑠 is the separation time
between V𝑖 and V𝑗. Starting from the second vehicle in
sequence, this equation is iteratively used to compute the
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(a) (b) (c)

Figure 3: Three different situations for separation time.

entrance time of each vehicle in the sequence until the
entrance time of the emergency vehicle is computed.

Now, the complete form of an optimization problem for
optimal vehicle ordering tominimize the entrance time of the
EV is formulated as follows: Given predicted arrival times𝑇V𝑖

𝑎

for all V𝑖 ∈ S∗, find 𝑠∗ such that

𝑠∗ = min
𝑠∈P(S∗)

𝑇EV
𝑒

s.t. 󵄨󵄨󵄨󵄨󵄨𝑇
𝑖
𝑒 − 𝑇𝑗𝑒

󵄨󵄨󵄨󵄨󵄨 ≥
{{{{
{{{{
{

0 V𝑖 ⊙ V𝑗

𝛿𝑐 V𝑖 ⊗ V𝑗

𝛿𝑠 V𝑖 ≺ V𝑗 or V𝑗 ≺ V𝑖

𝑇V
𝑒 ≥ 𝑇V
𝑎 ∀V ∈ S

∗.

(4)

A naive approach to solve the optimization problem in
(4) is an exhaustive search in all possible sequences that can
be generated from the set S∗. If we suppose that there are
𝑛 vehicles in S∗ (i.e., 𝑛 = |S∗|) and there are 𝑛EV vehicles
on EV’s lane, then there are 𝑛!/𝑛EV! sequences in P(S∗).
However, if 𝑛 is becoming large, then the computational time
and resources required to solve the optimization problem are
increasing significantly. Hence, it might not be an efficient
approach to use an exhaustive search method when we want
to solve problem (4) with many vehicles. Such computation
issues of the problem present the need to seek heuristic
approaches which are good at solving complex problems in
a very short time compared with exhaustive search. Several
heuristic optimization approaches like genetic algorithm,
ant colony system, and artificial neural networks exist in
the literature. Reference [23] used permutation encoding
scheme and solved the flow shop scheduling problem with
an objective of minimizing the makespan. The paper [21]
proposed a genetic algorithm to optimize the groups of
compatible vehicles in a very short time. References [24, 25]
reviewed many researches where genetic algorithms can be
used to solve job scheduling problems which can meet our

Detect a new vehicle

Yes EV? No

GA DICA

No Yes
EV exited?

Stop confirmation of new vehicles;
con�rm vehicles based on the optimal
order from GA

Figure 4: Control flow diagram of ICA in R-DICA.

requirements. Thus, we also choose to use genetic algorithm
(GA) to obtain the optimal sequence of vehicles.

The high-level architecture of R-DICA combining GA
and DICA is shown in Figure 4. R-DICA activates GA
when ICA detects an EV. Then, ICA stops accepting any
confirmation of new vehicles which are detected after the EV.
All vehicles that belong to S∗ are rearranged to obtain the
optimal sequence for the EV’s crossing byGA.Then, ICAonly
confirms vehicles that are already included in the setS∗ until
the EV exits the intersection.Once the EV is completely out of
the intersection, ICA switches back to using DICA tomanage
normal intersection crossing traffic.

4. Genetic Algorithm for Vehicle Ordering

In this section, we discuss the details of how GA is used to
find the optimal vehicle sequence in (4).
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(1) Generate 𝑁pop different individuals randomly for 𝑛 vehicles in S∗ → I

(2) 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘(I) → I

(3) 𝑘 = 0
(4) 𝑗 = 0
(5) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑏𝑒𝑠𝑡 𝑙𝑎𝑠𝑡 = 0
(6)
(7) while 𝑘 < 𝑁max and 𝑗 < 𝑁noChange do
(8) 𝑐𝑟𝑜𝑠𝑠𝑂V𝑒𝑟(𝑃𝑐,I) → I

(9) 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘(I) → I

(10) 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝑚,I) → I

(11) 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘(I) → I

(12)
(13) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑏𝑒𝑠𝑡, 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑠𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(I)
(14) if𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑏𝑒𝑠𝑡 > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑏𝑒𝑠𝑡 𝑙𝑎𝑠𝑡 then
(15) 𝑗 = 0
(16) else
(17) 𝑗 = 𝑗 + 1
(18) end if
(19) top 𝑁pop individuals → I

(20) 𝑘 = 𝑘 + 1
(21) end while
(22) Decode 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑠𝑡

Algorithm 2: Genetic algorithm for vehicle ordering.

Genetic algorithms, which have been widely used to
solve problems in computer science, artificial intelligence,
information technology, and engineering, are techniques of
self-organized and self-adapting artificial intelligence mim-
icking the evolutionary process of creatures in nature [24,
26]. A solution in GA is called an individual which is
encoded compactly to facilitate the processes of crossover and
mutation that are essential in a genetic algorithm. A group
of individuals is called a population in which some individ-
uals are selected as parents to generate offspring through
crossover and mutation. Based on some features of each
individual, some individuals survive and others die among
all the original population and new individuals. Individuals
who correspond or near correct solution have a better chance
to survive during evolving since they have high objective
values, which is called fitness. Fitness function should be
defined properly to evaluate each individual. As introduced
above, solutions in GA evolve to adapt the objective prob-
lem. Optimal or near-optimal solutions are expected to be
obtained after a certain number of generations. In this paper,
we propose a GA to solve the complex traffic control problem
for emergency vehicles in a short time. Permutation encoding
scheme is used in the algorithm. And crossover andmutation
operators suitable for the permutation encoding scheme are
devised. The proposed GA for vehicle ordering is shown
in Algorithm 2. The detailed discussion for permutation
scheme, crossover,mutation, and so forth of the proposedGA
is given in the following sections.

In the proposed GA, we first generate a random popu-
lation I that contains 𝑁pop individuals which are encoded
by permutation scheme. The function 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘()
takes a set of individuals and makes modifications to the
infeasible individuals. Feasible individual corresponds to

a sequence of vehicles that does not violate the order of
vehicles on EV’s lane. After propermodification, the function
returns a set containing individuals which are all feasible.The
function 𝑐𝑟𝑜𝑠𝑠𝑂V𝑒𝑟() then perform crossover on randomly
selected pairs of individuals from the population I with a
probability 𝑃𝑐 to generate new offspring. Then, the feasibility
of the offspring is checked. Notice that, after crossover, the
number of individuals is larger than 𝑁pop. Mutation on
the produced offspring with probability of 𝑃𝑚 is done by
function 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(). The mutated individuals also need to
be checked for feasibility and modified if needed. Based on
given conditions, each individual in I is evaluated by a
fitness function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠() which computes the reciprocal of
the entrance time of the emergency vehicle in that individual.
The highest fitness value and the corresponding individual
are recorded. Notice that the fitness can also be obtained
by using other metrics like the exit time of the EV, the
trip time of the EV, and so forth. These metrics will give
us similar results. We choose the entrance time because we
have the predicted arrival time for each vehicle. Thus, it
is easy to implement the algorithm. Then, we use the top
𝑁pop individuals from the original population and offspring
to form the new population. If any of the stopping criteria
(maximum number of iterations or the best solution is not
updated for a certain number of generations) is met, then the
algorithm terminates. Otherwise, the algorithm repeats the
steps inside the while loop.

4.1. Chromosome Encoding and Feasibility Check. Instead
of using the popular binary encoding scheme for genetic
algorithms, we choose to use permutation encoding scheme
which ismore suitable to find an optimal sequence for vehicle
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EV1 2 3 4 5 67

Figure 5: An example of the permutation encoding scheme; the
leftmost vehicle has the highest priority while the rightmost one has
the lowest priority.

ordering. As shown in Figure 5, the individual corresponds
to a sequence of vehicles which is {V1, V2, V3, V4, V7,EV, V5, V6}
where the leftmost vehicle V1 is the first one and the rightmost
vehicle V6 is the last one. Different chromosomes denote
different sequences of vehicles. Once an individual is created,
it is not always true that the corresponding sequence is a
feasible one since vehicles’ order on EV’s lane cannot be
altered. Every newly generated individual should be checked
against the subsequence of vehicles on EV’s lane for feasibility.
Figure 6 is provided to have a visual impression of the
situation when vehicles’ sequence needs to be optimized.
In the figure, V1, V3, and EV are the vehicles on EV’s lane
whose order could not be altered. And note that, except
for vehicles on EV’s lane, all other vehicles that are not
a head vehicle are not part of the sequence. The vehicles
from south and west that are not head vehicles are such
vehicles that will be confirmed only after EV exits. If an
individual is not feasible, the corresponding bits of vehicles
on EV’s lane should be changed to conform to the correct
relative order. The function 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘() is making the
corresponding modifications to an infeasible individual. An
example of adjustment according to the sequence of vehicles
that are ahead of the EVon the same lane is shown in Figure 7.

4.2. Crossover andMutation. Two individuals perform cross-
over to generate offspring if they are selected to be parents.
The offspring inherit features (i.e., gene structures) from their
parents. Different encoding schemes have different crossover
operators since they have different gene structures. For the
most popular binary encoding scheme, it is easy to do
crossover and mutation since a chromosome only contains
binary bits. For our permutation encoding scheme,we choose
to apply one-point crossover [26] which is implemented in
the function 𝑐𝑟𝑜𝑠𝑠𝑂V𝑒𝑟(). As shown in Figure 7, the same
bits may exist in one chromosome after the parts behind the
randomly chosen position are swapped. In the second step in
the figure, the two children have the same bits {V2, V3} and
{V5, V6}, respectively. To generate correct chromosomes, we
adjust the chromosome of one child by swapping those same
bits from another child’s chromosome while preserving the
relative ordering of parents. Note that the new chromosomes
may also not be feasible since the order of vehicles on EV’s
lane in a chromosome may not be the same as the actual
order. If this happens, since the order of the vehicles on
EV’s lane cannot be changed, we manually adjust the relative
order of vehicles to be the correct order to have a feasible
chromosome. For example, in Figure 7, we adjust the order of
V1 and V3 for the second child in the last step. Feasibility check
and adjustment are done by the function 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘().

Similar to probabilistically selecting two individuals for
crossover, we apply mutation on the produced chromosomes

based on a given probability by the function 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛().
Different from binary encoding scheme’s mutation which
could be done by simply changing the value of a randomly
selected bit from 1 to 0 or 0 to 1, our permutation encoding
scheme exchanges the bits on two randomly chosen positions
to obtain a new chromosome. As shown in Figure 8, positions
of V2 and EV are randomly chosen to exchange values and
feasibility check based on vehicles’ order on EV’s lane is
performed after mutation.

4.3. Fitness and Selection of New Generation. The reciprocal
of the entrance time of the emergency vehicle is defined as
the fitness of an individual in our proposed GA.The entrance
time of the emergency vehicle can be determined as discussed
in Section 3. Among all individuals in the population and the
offspring produced, the best 𝑁pop individuals are selected to
form the next generation.

4.4. Stopping Criterion. The constant 𝑁max represents the
number of maximum generations and 𝑁noChange represents
the number of continuous generations where solutions are
not changed. As shown in Algorithm 2, if the best solution
is not updated after 𝑁noChange generations or the 𝑁maxth
generation has been reached, then the algorithm terminates
and stops searching for a better solution.

5. Simulation

The performance of the proposed optimization approach for
EVs is evaluated against the DICA and a reactive traffic
light algorithm which is explained below. All simulations
are implemented in an open-source traffic simulator, SUMO
(Simulation of Urban MObility) [27]. The default traffic
management for intersections in SUMO is not used and the
control algorithms are programmed as Python applications.
The TraCI is used for the interaction between the Python
applications and SUMO. Configurations for intersections in
the simulation and corresponding results are described in this
section, followed by discussions on the obtained results.

5.1. Simulation Setup. Extensive simulations of different traf-
fic volumes are performed on an isolated perfect 4-way
intersection where each approach has three incoming lanes
and two exit lanes. Similar to real intersections in the United
States, among the three incoming lanes, the leftmost lane is
dedicated for left-turn vehicles, and through vehicles can use
the other two lanes. The rightmost lane can also be used by
right-turn vehicles. All roads have a speed limit of V𝑚 =
70 km/h. The maximal acceleration (𝑎max) and deceleration
(𝑎min) for all vehicles are set to be 2m/s2 and −4.5m/s2,
respectively. In the simulation, for simplicity, we used the
same size for normal vehicles and EVs so that they both have
5-meter length and 1.8-meter width.We let vehicles approach
an intersection with different speeds when they enter into
the communication region of the intersection to make the
simulation more realistic. In detail, when a new vehicle is
spawned outside of the communication region, the speed of
the vehicle is set with a random value within the range from
40% to 100% of the maximum allowed speed V𝑚. In those
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Figure 6: Example situation of vehicles whose sequence is to be optimized in the intersection space; note: vehicles on EV’s lane are V1, V3,
and EV.
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Figure 7: An example of one-point crossover. The relative ordering of parents is preserved when the chromosomes are adjusted due to the
existence of the same bits. Feasibility is checked for the two children based on vehicles’ sequence on EV’s lane and adjustments are made.

cases where vehicles need to stop just before the entering line
of the intersection region to avoid potential collisions with
other confirmed vehicles, the distance between the entering
line of the communication region and the entering line of the
intersection region should be long enough for a vehicle to

be able to stop from the maximum allowed speed V𝑚. Thus,
it is easy to conclude that the distance should be at least
−V2𝑚/(2𝑎min) ≈ 42.01m. So, in simulation, we set the distance
between the entering lines of the communication region and
the intersection region as 50m.
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Figure 8: An example of mutation. Feasibility is checked for the
mutated chromosome based on vehicles’ sequence on EV’s lane and
adjustment is made. V2 and EV are randomly chosen to swap to
perform mutation. EV is swapped with V3 to conform to vehicles’
sequence on EV’s lane.

Table 1: Parameters used for various traffic volumes and patterns.

Parameter Value
Traffic volumes∗ 100/200/300/400/500
𝑝𝑉 0.03/0.06/0.08/0.11/0.14
𝑝𝐿 0.20
𝑝𝑆 0.60
𝑝𝑅 0.20
𝑝EV 0.02
Random seeds 12/21/66
∗Expected number of vehicles per 10 minutes.

Vehicles are generated randomly on each road with
a randomly assigned intersection route. Every generated
vehicle has the probability of 𝑝EV to be an EV; otherwise, it
will be a normal vehicle. In our simulation, an emergency
vehicle is generated only when there is no such vehicle inside
the communication region. To create variations on the traffic
pattern, we use several different random seeds to generate dif-
ferent traffic patterns andmake the simulations reproducible.
Table 1 summarizes the parameters used for various traffic
volumes and patterns that were employed in many of our
simulations where 𝑝𝑉 corresponds to traffic volumes and 𝑝𝐿,
𝑝𝑆, and 𝑝𝑅 are the probabilities for a generated vehicle to
take left, straight, and right routes, respectively. For every
traffic volume, we run three simulations with different traffic
patterns and then use the averages of these simulation results
as the result for each traffic volume case. For the genetic
algorithm, we set 𝑁pop = 100, 𝑁noChange = 10, 𝑃𝑐 = 0.85,
𝑃𝑚 = 0.05, and 𝑁max = 100.

Simulations were run by 0.05 s time step. We terminate
each simulation when the simulation time reaches one hour.
The simulation time here represents the simulated time in
simulation programs. And the computation time which will
be used in the following discussion is the time that a computer
takes to run a simulation program. All simulations were run

Red

If an EV exists

If an EV exists

If an EV exists

YellowGreen

Lights for conflicting
lanes set to yellow

Figure 9: Reactive traffic light diagram.

on a 64-bit Windows computer, and its processor is Intel(R)
Core(TM) i7-4770 CPU @ 3.40 GHz with 8 GB RAM.

5.2. Reactive Traffic Light. To show the effectiveness of the
proposed R-DICA for emergency vehicles, a reactive traffic
light algorithm for emergency vehicles is implemented and
tested. As shown in Figure 9, the traffic light for the lane of
an EV changes to green as quickly as possible when an EV
is detected on the boundary of the communication region.
Arrows with a single line represent the state transitions (i.e.,
conventional traffic light algorithm) when there is no EV
inside the communication region, while arrows with double
lines show the actions that the algorithm will perform if an
EV exists. The conventional traffic light algorithm we used is
the default traffic light implemented in SUMO which has 31-,
13-, and 83-second durations for green, yellow, and red light
phases, respectively. As shown in Figure 9, if the current status
is yellow or green when an EV is detected, the algorithm
changes the light back to green or just extends the green light
for a fixed amount of time, respectively. If the current status
of the lane is red when an EV enters the communication
region, the algorithm immediately sets the green lights of
conflicting lanes to yellow and then the lane of the EV will
have green light after the yellow phase of the conflicting
lanes. This augmentation of the reactive mechanism in the
traditional traffic light system certainly helps an EV to cross
an intersection as quickly as possible.

5.3. Simulation Results. Performances of three different traf-
fic patterns for all five volume cases are recorded from
simulations. Figure 10 shows a series of screenshots of
simulation employing R-DICA in SUMO when an EV (the
vehicle in red) is crossing the intersection from the south. In
the simulation, normal vehicles in yellow are not confirmed
by ICA while green normal vehicles are the confirmed ones.
In Figure 10(a), we can see that R-DICA activated the GA
algorithm which establishes an optimal order of vehicles to
expedite the crossing of the EV. As one can note, in Figures
10(a) and 10(b), the head vehicle on the right lane of the west
road is not confirmed, which means that this vehicle has a
lower priority than the EV. All vehicles whose DTOTs cannot
be modified are confirmed vehicles. And head vehicles that
have a higher priority than the EV are confirmed. Figures
10(b) and 10(c) show that the EV is crossing the intersection
unhindered while lower priority vehicles are waiting before
the intersection. As shown in Figure 10, as soon as the EV
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Figure 10: A series of screenshots of simulation which illustrates a situation when an EV is crossing the intersection.

Table 2: Computation time comparison between ES and GA.

Traffic volume
(number of vehicles per 10 minutes) 100 200 300 400 500

Computation time of ES (h) 0.05 0.52 N/A N/A N/A
Computation time of GA (h) 0.05 0.15 0.35 0.65 0.72

exits the intersection, all head vehicles get confirmed, which
means R-DICA operates the same way as DICA.The optimal
vehicle-passing sequence from the genetic algorithm ensures
the fast crossing of an intersection for the EV.

5.3.1. Computation Time. To show the computational effi-
ciency of R-DICA using GA, we implemented R-DICA in
two different versions: one with GA and the other one with
the exhaustive search (ES) method to solve the optimization
problem. Computation times of different volume cases are
recorded for both methods. Simulation results are shown in
Table 2 where “N/A” means that the computer was not able
to complete the simulation due to memory errors.

From the result, we can see that R-DICA with GA has
definite advantages over R-DICA with ES in terms of com-
putational efficiency. As shown in the table, the exhaustive
search method only works for light traffic volumes while it
has memory issues for traffic of higher volumes.

5.3.2. Performance of EVs. The following performance mea-
sures are obtained to compare the performance of R-DICA
with DICA and the reactive traffic light: a vehicle’s trip
time (𝜏) is defined as the time taken for a vehicle from the
moment when it enters into the communication region of an
intersection until the vehicle exits the intersection. Based on
the measurement of 𝜏 for all crossed vehicles, we obtained
the average trip time (𝜏) and the maximum trip time (𝜏𝑚)
which show the performance of the crossed vehicles. Besides
these performance measures, we also calculated throughput
(𝜌) which is the percentage of all crossed vehicles against the
total number of generated vehicles. We calculated the rate of
average trip time to throughput, which we call the effective
average trip time (𝜏𝑒).The detailed explanation for this metric
can be found in [12].
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Figure 11: Performance comparison of EVs for DICA, R-DICA, and the reactive traffic light: (a) average trip time; (b) maximum trip time.
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Figure 12: Performance comparison of normal vehicles for DICA, R-DICA, and the reactive traffic light: (a) throughput; (b) effective average
trip time.

As shown in Figure 11, the average trip times of EVs in
all three algorithms (DICA, R-DICA, and the reactive traffic
light) are compared. For traffic volumes from 100 to 400, R-
DICA has the least average trip time of EVs compared with
the other two algorithms. Especially in light traffic volumes,
R-DICA reduces the EVs’ average travel time by more than
50% from the reactive traffic light. However, the algorithm
has a bit longer average trip time for EVs than that of the
reactive traffic light in 500 traffic volume. The worst case for
EVs’ travels is illustrated by the maximum trip time of EVs
in Figure 11(b). The maximum trip time of R-DICA increases
and becomes greater than that of the reactive traffic light.
Both average trip time and maximum trip time of EVs for
DICA are increasing along the volumes. One may note that
the average trip time and the maximum trip time of the
reactive traffic light keep almost the same with the increase
of the traffic volume.Through observation of the simulations,
part of this is because too many vehicles accumulate before
the intersection when the lane of the EV is under red light. In

this situation, the EV is not detected and is stopping outside
the communication region. When the light for the lane of
the EV turns green, the EV accelerates from rest to enter the
communication region which results in a higher speed for
the EV.Thus, for the heavier traffic volumes, EVs always have
a higher speed when detected and are expedited to cross by
preference.The trip time within the communication region is
then reduced compared with R-DICA.

5.3.3. Performance of Normal Vehicles. Comparison of the
performance for normal vehicles for all three algorithms is
shown in Figure 12. From this result, we can see that the
throughput and effective average trip time of R-DICA are
nearly the same as those of DICA, which shows that the
performance of normal vehicles is minimally affected by EVs.
Both the throughput and effective average trip time of normal
vehicles become worse with the increase of traffic volumes.
This is consistent with the result in our previous work [12, 13].
Also, one can see from Figure 12 that the reactive traffic light
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Table 3: Comparison of maximum trip times of normal vehicles
between DICA and R-DICA.

Traffic volume
(number of vehicles per 10
minutes)

100 200 300 400 500

Maximum trip time of normal
vehicles (DICA) (s) 17.88 35.80 55.37 89.47 132.90

Maximum trip time of normal
vehicles (R-DICA) (s) 18.62 38.52 61.68 99.15 150.00

has steady and worse performance for normal vehicles than
the other two algorithms.

Tomore investigate the negative effect of prioritizing EVs
on other normal vehicles, we compare the maximum trip
time of normal vehicles for DICA and R-DICA in Table 3.
The maximum trip time of R-DICA is very close to that of
DICA and their difference increases with traffic volumes.This
shows that it will bring about more negative effect on normal
vehicles to evacuate an EV in congested traffic.

6. Conclusion

In this paper, we have shown that the DICA algorithm can be
augmented to allow emergency vehicles to cross intersections
faster. A genetic algorithm based approach is proposed as
part of the augmented algorithm, called R-DICA, to opti-
mize the sequence of vehicles which gives the emergency
vehicle the highest priority and keeps the influence on other
vehicles’ travel times as minimum as possible. The R-DICA
operates the same way as DICA if there is no EV inside
the communication region and optimizes vehicle-passing
sequence if an EV enters the communication region. Reactive
traffic light and DICA algorithms are also implemented for
simulation and their results are compared with R-DICA
to evaluate the performance of R-DICA. Simulation results
show that R-DICA is effective in reducing travel times of
EVs and has better performance than the reactive traffic
light for normal vehicles. We conclude that the performance
of normal vehicles is not noticeably affected based on the
simulation results of DICA and R-DICA. Currently, it is
in progress to optimize each vehicle’s trajectory to achieve
the maximum traffic control performance. In the future,
we will relax assumptions like perfect communication and
accurate prediction of DTOT to make the algorithm more
applicable to real situations. Also, DICA will be generalized
to include nonautonomous traffic like human-driven vehicles
and pedestrians.
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