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Abstract

In wireless sensor networks powered by battery-limited energy harvesting, sensor nodes that have relatively more
energy can help other sensor nodes reduce their energy consumption by compressing the sensing data packets in order
to consequently extend the network lifetime. In this article, we consider a data compression technique that can shorten
the data packet itself to reduce the energies consumed for packet transmission and reception and to eventually increase
the entire network lifetime. First, we present an energy consumption model, in which the energy consumption at each
sensor node is derived. We then propose a data compression algorithm that determines the compression level at each
sensor node to decrease the total energy consumption depending on the average energy level of neighboring sensor
nodes while maximizing the lifetime of multihop wireless sensor networks with energy harvesting. Numerical simulations
show that the proposed algorithm achieves a reduced average energy consumption while extending the entire network
lifetime.
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Introduction should be energy-efficient to extend their lifetime.
Many studies have focused on achieving the maximum
utilization with limited energy. In El Gamal and col-
leagues, energy-efficient scheduling algorithms have
been proposed and studied, in which the energy for
wireless data transmission is minimized by varying the
packet transmission time. Pal et al.* have proposed a
balanced cluster-size clustering algorithm in order to

Wireless sensor networks (WSNs) typically consist of
numerous sensor nodes, which accomplish their task
over a specific field. Each sensor node is capable of sen-
sing, processing, and communication using its own sen-
sor, processor, and wireless transceiver. It usually
monitors some surrounding environmental phenomena,
collects the sensing data, and forwards the data toward
a designated sink node, which is responsible for data
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extend the lifetime of WSNs. The proposed algorithm
has improved the cluster quality while providing a
lower death rate of the sensor nodes. In
Sankarasubramaniam et al.,” a fixed frame-size optimi-
zation for energy efficiency has been proposed. A study
of the feasibility of forward error correction in WSNs
has also been carried out. In He,® many multipath rout-
ing algorithms have been introduced to guarantee the
network latency and energy efficiency. Oh and Chae’
have suggested grid-based solutions, however, which
are based on unrealistic assumptions. As a promising
technology for overcoming the limited battery capacity,
energy harvesting in WSNs has also been studied.® '°
By gathering energy from the environment to extend
the lifetime of the sensor nodes, the network connectiv-
ity can be sustained longer. Gunduz et al.’ have pro-
vided mathematical tools and analytical models for
designing reliable communication systems with energy
harvesting. In particular, energy harvesting from a
radio-frequency (RF) signal in a relay network is
considered in Nasir et al.'® Given the structure of a
sensor-relay-destination node, a relay node is capable
of harvesting energy from the RF signal transmitted by
the sensor node, and the harvested energy is used to
forward data to the destination node.

A sensor node usually performs three operations,
which are sensing, processing, and data communica-
tion. It was reported in Anastasi et al.'' and Medeiros
et al.'? that among the three operations, the data com-
munication is the most energy-consuming operation in
most cases. For this reason, many researchers have
studied to reduce the energy consumption for data
communication in WSNs mainly by two approaches:
duty-cycling and in-network processing. In the schemes
based on duty-cycling approach, the energy is saved by
coordinating the schedules of wakeup/sleep time at sen-
sor nodes. Meanwhile, in-network processing-based
schemes, such as data aggregation and data compres-
sion, mainly attempt to reduce the amount of data to
be transmitted.

As one effective way to reduce the amount of data
to be transmitted, data compression has been actively
researched.'*"® Using an appropriate compression
method for sensing data, sensor nodes can transmit
and receive smaller-size data packets. As a result, the
energy consumption for data transmission at sensor
nodes can be significantly reduced. In Kimura and
Latifi,®® Srisooksai et al.,>' and Razzaque et al,”? a
detailed comparative survey is provided on various
data compression approaches for energy efficiency in
WSNs. Kimura and Latifi®® presented four types of
feasible data compression schemes that are used for
WSN nodes with limited resources. Srisooksai et al.”!
and Razzaque et al.>® provided a comprehensive review
of data compression algorithms for WSNs, classified
the compression algorithms into several categories such

as distributed source modeling, transform coding,
source coding, and compressive sensing, and compared
them with respect to various performance metrics such
as the compression performance and amount of power
consumption.

As one of the applications for data compression, we
consider multihop WSNs, in which packets generated
from a source node are relayed by intermediate nodes
and travel toward the destination node along a multi-
hop wireless path. The nodes along the multihop path
are able to perform data compression in order to reduce
their energy consumption for transmission. As the
packet is relayed toward the destination node from the
source node, the length of the packet becomes smaller
by data compression, which leads to a gradual decrease
in the energy consumption.

In this article, we consider the energy savings using
data compression in order to extend the lifetime of
multihop WSNs. A sensor node transmits and receives
a smaller-size packet using data compression so that it
can reduce its energy consumption. We also consider
battery-operated sensor nodes, which are rechargeable
by energy harvesting. Depending on the environment,
for instance, the amount of sunlight, the energy har-
vested at each node can be different as time goes by,
resulting in an unevenness in the energy levels among
the sensor nodes. In order to decrease the average
energy consumption of sensor nodes and extend the
lifetime of the networks, we propose a data compres-
sion algorithm considering the average energy level of
the sensor nodes within the next m hops. The compres-
sion level for each sensor node is determined such that
the difference between the magnitude of its own energy
level and the average energy level of the sensor nodes
in next m hops is reduced. Numerical results from a
simulation of the proposed algorithm verify that the
network lifetime is significantly increased while reduc-
ing the average energy consumption.

The remainder of this article is organized as follows.
An overview of related works is presented in section
“Related works.” In section “Energy consumption
model,” we describe the energy consumption model
and formulate the amount of energy consumed at each
node. We then propose an algorithm to extend the net-
work lifetime using data compression in section
“Proposed decision scheme for compression.” The
simulation results are presented in  section
“Performance evaluation,” and section “Conclusion”
concludes this article.

Related works

There has been a significant amount of work on the
data compression for energy conservation in WSNs.
We briefly summarize the related work into two
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categories, standalone compression at a single node
and cooperative compression among multiple nodes.

Standalone compression at a single node

The data compression schemes in this category focus
on the compression process carried out at a single sen-
sor node without exchanging energy information with
other nodes.'>'® The main purpose of these schemes is
to achieve the increase in the compression ratio of data
packets, that is, how much the data packet size can be
reduced. Mercelloni and Vecchio'*'* have proposed a
simple lossless entropy compression (LEC) algorithm
for temperature and relative humidity sensing data.
LEC algorithm exploits the characteristics of high cor-
relation between consecutive data measured by a sensor
node. To compress the measured data, LEC algorithm
first computes the differences of consecutive measured
data and divides them into a small number of groups.
These groups are then entropy encoded using a small,
fixed dictionary table based on Huffman coding, result-
ing in the compression ratio of around 67%. Since
LEC algorithm can be implemented using a small, fixed
dictionary, it requires low memory, but the data resolu-
tion is very limited. Marcelloni and Vecchio'? have pro-
posed a more improved lossless compression method
based on Huffman coding, called lightweight data com-
pression. Compared to LEC that always uses the same
dictionary, this method utilizes a reference dataset to
generate a dictionary under measurement. With the
modest computational and memory requirements, it
achieves a higher compression ratio compared to LEC,
which varies between 46% and 82%. Some lossy data
compression methods have also been researched.'>'¢ In
contrast to lossless data compression, lossy data com-
pression tolerates a certain level of inaccuracy induced
by the data compression, but the significantly higher
compression ratio can be provided. Capo-Chichi
et al.'> have proposed a lossy data compression algo-
rithm called K-RLE,where K is a parameter of preci-
sion and RLE means run-length encoding. The main
idea of K-RLE algorithm is that the consecutive
sequence of the same bits » or bits in the range
[K — b,K + b] are compressed as a combination of the
bit » and its count n. Simulation results show that K-
RLE provides higher compression ratio than RLE, but
it consumes more energy to compress and decompress.
In Alsalaet and Ali,'® a modified discrete cosine trans-
form (MDCT)-based data compression method for
vibration signals has been proposed. Since the vibration
signals from machinery parts such as bearings and
gears are almost stationary and deterministic, the
authors have addressed that MDCT is the most suit-
able for compressing the vibration signals. To increase
the compression ratio, the authors have suggested to

encode MDCT coefficients using embedded harmonic
coding (EHC).

Cooperative compression among multiple nodes

The data compression methods presented in this cate-
gory focus on how sensor nodes cooperatively compress
the data packets transmitted on the network by sharing
the network information such as the position of each
node or the spatial correlation between sensing data at
different sensor nodes.'” ' In Tavli et al.,'” an optimal
data compression scheme was formulated as an optimi-
zation problem that maximizes the minimum lifetime of
the sensor nodes in order to increase the network life-
time. It is assumed that each node can compress and
decompress raw data with multiple compression levels.
The energy consumption was modeled by introducing
two types of virtual nodes that perform data compres-
sion and decompressions. Because of computation com-
plexity of solving the optimization, the authors
proposed a heuristic approach, which enables the nodes
farther away from the base station to always compress
their data and those closer to the base station not to
compress data. Incebacak et al.'"® have considered the
data compression in a stealth mode of WSNs, where
each sensor node has a different limited transmission
power depending on its position in order not to be
detected from adversaries. They proposed an optimiza-
tion framework that jointly considers the network pri-
vacy preservation and the multi-level compression
presented in Tavli et al.'” in order to increase the net-
work lifetime while retaining the network privacy. Five
different compression strategies based on the multi-level
compression have been compared to investigate the
impacts of these strategies on the network lifetime in
the stealth mode of WSNs. The data compression for
delay-tolerant applications in WSNs has also been con-
sidered in Ali et al.'” The authors have focused on both
spatial and temporal correlations between the data col-
lected by different sensor nodes over a long period of
time. Accordingly, they proposed an adaptive hybrid
compression (AHC) scheme that fuses both spatial and
temporal compression in order to increase the compres-
sion ratio with a guaranteed data recovery accuracy.
Our proposed data compression algorithm falls into
the second category because it utilizes the information
from the other sensor nodes on the network to reduce
the energy consumption and increase the network life-
time in WSNs. The proposed approach is distinct from
existing methods in that it focuses on an energy-
harvesting scenario of WSNs, in which the sensor nodes
have significantly different amount of energy consumed
and harvested at each node. In order to deal with this
unevenness of energy, each sensor node gathers the
usable energy levels of other sensor nodes and compare
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them with its own energy level when deciding how
much it needs to compress data packets to support the
other sensor nodes that are relatively lack of energy.
Under the proposed method, all sensor nodes cooperate
with other nodes to fairly consume their energy so that
they are almost simultaneously exhausted and conse-
quently the network lifetime is increased.

Energy consumption model

We consider multihop data transmission in a WSN, in
which data packets are relayed by intermediate nodes,
as shown in Figure 1. In our network topology, N
nodes are randomly distributed in the network. Each
node is battery powered with an energy-harvesting
capability. Therefore, the energy level in the battery
could be different among the sensor nodes in the same
network because they are geographically distributed in
an area and are exposed to different surrounding
environments.

We derive an energy consumption model for com-
pressed data transmission in the multihop WSN. Let L
be the length of a data packet. Each data packet con-
sists of b blocks, and the block size is L, = L/b. For
energy conservation, each data packet can be com-
pressed and then transmitted in a shorter form. Note
that the sensing data may include repeated and redun-
dant information and can be compressed.

Each node can compress a certain number of blocks
among all blocks before it transmits the packet. For
example, if a source node compresses x blocks among
the total number of b blocks, a relay node receives a
packet with (b — x) uncompressed blocks. Then, the
relay node can further compress a certain number of
blocks among the uncompressed blocks and transmits
the packet to the next relay node. Therefore, the
packet size becomes smaller as it is relayed toward
the destination node. Depending on the energy levels
of the nodes, the number of blocks compressed at
each node could be different in order to extend the
network lifetime.

Figure 2 shows the compression process of a data
packet while the packet is relayed along a multihop
path. The data packet is divided into smaller-sized
blocks and can be compressed on a block-by-block
basis. Each node performs data compression using a
certain compression level and transmits the compressed
data to its next node along a multihop routing path.
For instance, in Figure 2, the source node compresses
the first three blocks of the original data, and the
remaining blocks are sequentially compressed by the
following relay nodes. Finally, the nth node receives the
reduced packet with the size of /(n — 1), which is com-
pressed and transmitted by the (» — 1)th node. As more
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Figure 1. A multihop wireless sensor network.
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Figure 2. Variation in the data length with compression at each
node.

blocks are compressed, the length of the data packet
becomes smaller.

As the data packet begins to be compressed at the
preceding nodes, the length /(i) of the data packet that
would be transmitted at the ith node becomes

i i

1) = Ly-(1—a)- Y x(j) + Ly - (b=>_x()))

j=1 Jj=1
=Ly (1 —a)- > x(j) + b= _ x(j) (1)
j=1 Jj=1
=Ly-(b—a- ) x())
=1

where x(j) is the compression level meaning the number
of blocks compressed by the jth node, and « is an aver-
age compression ratio. For example, if @« = 0.1, the
length of a block is reduced by 10%, and it becomes
0.9L,. The first and second terms in equation (1)
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correspond to the sum of the lengths of compressed
blocks and the sum of the lengths of uncompressed
blocks, respectively. Depending on x(j), the jth node
and its following nodes may transmit a different-size
packet. When a block is compressed, it is assumed to
have a size of (1 — «) X L, for simplicity. Note that x(j)
cannot be greater than the total number of blocks b,
and the sum of x(/) for all nodes should be less than or
equal to b, (i.e. 0 <x(j) <band 3/_' x(j) < b).

We derive the energy consumption at each node in a
multihop network. Let €, €, and €. denote the energy
consumed for one-bit transmission, reception, and com-
pression, respectively, and let Ae(i) represent the energy
consumed at the ith node for delivering a data packet.
By equation (1), Ae(1) at the first node, which is the
source node, is given by

Ae(l) =Ly -x(1)-€. + I(1) - ¢ 5

=Ly -x(1)-€.+Ly-(b—a-x(1))- ¢ @)
The first and second terms in equation (2) are the ener-
gies consumed for compression and transmission at the
first node, respectively. Note that since we focus on
how the energy consumption for packet transmission,
compression, and reception affects the network life-
time, the energy consumed for other functionalities
such as sensing and routing is not included in equation
(2). Intermediate nodes receive a packet, compress it,
and transmit the reduced-size packet. The energy con-
sumption at the ith relay node for i € {2, ...,(n — 1)}
can be represented by

Ae()=1(i—1)-€ + Ly -x(i) - €. + I(i) - &
i—1
=Ly-(b—a Y x(j) (e + &) + Ly-x(0) - (e — €,

ji=1
3)

where each term represents the energies consumed for
reception, compression, and transmission, respectively.
The destination node receives the compressed packet
and retrieves the original packet by decompressing it.
The energy consumption at the nth node (destination
node) is given by

n—1
Ae(n)=In—1)-€ + Ly - Zx(j)'ed
n—1 j:1 n—1 (4)
=Ly-(b—a- Yy x(j) &+ Ly x(j)- €
j=1 =1

where €, is the energy consumed for decompression per
bit of the decompressed packet

5
Ae(l) €;
Ae(2) € + ¢
Ae(3) € + ¢
=L
Ae(n — 1) € t g
Ae(n) €,
i € 0 e 0
(e, + €)a € ... 0
— L :
(e, T e)a (e, +t€)a ... €u
€. €. €
© 0 x(1)
N . x(2)
-1 S . (5)
0 0 ... e ‘
€] €5 ... €y x(n N 1)

Equations (2)—(4) can be represented in the matrix
form given in equation (5). Then, the energy consump-
tion for each compressed data transmission in a multi-
hop network is simply written as follows

Ae:L'Yd—Lb'(Yr—YC)~X (6)

where Ae = [Ae(1), ...,Ae(n)]T,Yd is the energy con-
sumption for data transmission and reception, Y, is the
energy reduction due to the reduced packet length, Y.
is the energy consumption for data compression and
decompression, and x = [x(1), ..., x(n — 1)]". Note that
Y, depends on «, whereas Y, is a constant matrix for
the given values of €. and €.

From equation (6), we derive a dynamic model for
the energy consumption of multihop transmission. Let
& denote the energy level of the nodes along the path
after the kth multihop transmission. Then, the model
for & is given by

5k+1=€k—Ae+ék
=& +A.-x+ B,

(7)

where 4. = L, - (XY, — Y.),B. = —L-Y,; + € and ¢ is
the average amount of energy harvested during the time
elapsed between two transmissions.

Proposed decision scheme for
compression

In this section, we consider the energy consumption
using data compression for multihop data delivery. As
a data packet is forwarded along a multihop path in
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WSNSs, the packet length gradually becomes smaller by
data compression, and then, the energies consumed for
receiving and sending the packet at each node decrease.
Here, we propose a scheme that determines the compres-
sion level of each node in order to minimize the energy
consumption and to maximize the network lifetime.

Energy consumption minimization

First, we focus on the minimization of the sum of the
energies consumed by the nodes along a multihop path.
This problem is formulated as follows

minimize AeT -1,
X

subject to  x(i) >0 forVie {l,...,(n— 1)} ()

n—1

> x()<b

i=1
where /, € R" is an all-ones column vector.
Proposition 1. The optimal solution for minimizing the

sum of the energies consumed is to compress all blocks
at the source node.

Proof. The sum of the energies consumed can be writ-
ten as

n—1

Ae" 1, = L(n — ey — Ly Z {a(n — ey — €} - x(i)

i=1

= €saved
©)

where €, = (¢, + €,) and €4 = (e, + €;). Note that
esaved 18 the energy reduction due to data compression,
whereas the first term corresponds to the energy con-
sumption for multihop transmission without compres-
sion. Since the first term in equation (9) is constant
with respect to x, the minimization problem in equa-
tion (8) is now the same as the maximization of egyeqd-
Under the same constraints of equation (8), we can eas-
ily get the following result:

0€saved _ 0€saved .. ..

f R I, ....,(n—1 di<j.

ox() () or any i,j € { (n—1} and i<j

Hence, the optimal solution 1is obtained as
x = [b,0, ...,O]T ifn > [;Eﬂ Otherwise, x = 0.

The above proposition implies that if (n > L%‘l—‘) is
satisfied, compressing all of the blocks at the source
node is optimal for energy saving. If the inequality is
not satisfied, data compression is wasteful since data
communication with compression consumes more

energy than that without compression.

Network lifetime maximization

We now further consider the problem of maximizing
the network lifetime. To this end, we need to consider
the energy level of each sensor node for each packet
transmission. The network lifetime can be defined dif-
ferently depending on the type of applications. For
example, it can be the instant when the first node
exhausts all its energy, a certain portion of nodes die,
the network is partitioned, or the loss of sensing cover-
age occurs.>® Here, we adopt the first one, that is, if
one of the sensor nodes runs out of energy, it is consid-
ered that the network lifetime ends.

In a given multihop path, there may exist an uneven-
ness in the energy levels among the sensor nodes due to
the unbalanced energy consumption for packet trans-
mission or a different amount of recharged energy by
energy harvesting at each node. Consequently, for each
packet transmission, the problem of maximizing the
network lifetime can be formulated as follows:

maximize min & 4

X
subjectto &, 41 =&, +A.-x + B,
x(@) >0 for Vie{l, ---,n—1},

n—1

> x(@)<b

i=1

(10)

From equation (10), since & + (i) = Ex(i) — Ae(i) +
er(i) and E,(i) + e4(i) is constant with respect ot x, we
further have

max min{& + 1)} = max min{£() — Ae(i) + &)}
< max min{& i) + ex(D)}
— min{£x(i) + ()}
(11)

where £;(i) denotes the energy level of the ith node for
the kth transmission, and ¢(i) denotes the amount of
energy harvested at the ith node during the time elapsed
between the kth and (k + 1)th transmissions.

Hence, if we denote i* = arg min{& (i) + ex(i)}, that
is, i* is the index of the node with the smallest energy
level, then any x that satisfies & + (1) > Ex(i%) + ex(i*),
Vi can be a solution to equation (10). In other words,
the network lifetime is maximized as long as the remain-
ing energy level of every node after compressed trans-
mission is not less than the smallest energy level among
the nodes. This result matches with our intuition in that
we can exploit the unbalanced energy levels among
nodes using the residual energy level of each node
above the smallest energy level.
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Proposed m-hop averaging compression algorithm

Instead of solving the optimization problems, we pro-
pose a heuristic algorithm that determines an appropri-
ate compression level x(i) at each node for maximizing
the network lifetime while reducing the total energy
consumption of the WSN in practice. Since each node
is rechargeable by energy harvesting and may have con-
sumed a different amount of energy in the past, there
may exist a certain level of differences in the energy lev-
els among nodes. To reduce these differences and make
the energy level of all nodes equal for maximizing the
network lifetime, each node determines its compression
level by comparing its own energy level with the aver-
age energy level of the next m nodes within m hops. Let
5_’;(1‘) denote the average of the sum of the current
energy levels and energy harvested for the m-hop nodes.
Then, g(i) is given by

i+m

0= > (&0 +a0)

j=it1

(12)

Here, we assume that each node can predict the amount
of energy harvested and obtain the current energy levels
of the next m nodes. Since the timeslot in which each
packet transmission is carried out is very short (less
than several milliseconds), the amount of energy har-
vested at each node during the time elapsed between
two timeslots can be considered steady. Therefore,
each node can predict the amount of energy to be har-
vested for this timeslot using an one-step-ahead linear
prediction filter based on the amounts of energy har-
vested during a few previous timeslots. It is also possi-
ble to obtain the energy levels of the next m nodes
with very little energy consumption for a small value
of m (e.g. m = 1 or 2) because sensor nodes can piggy-
back the energy level on their data packets instead of
using any extra control packets for energy informa-
tion sharing.

Using the calculated average energy level in equation
(12), the ith node determines the level of compression
for each packet by comparing E(i) + ex(i) with @(i).
For example, if the energy level of the ith node with
energy harvested is greater than the average of the sum
of current energy levels and energy harvested for the
next m-hop nodes, that is, £(i) + ék(i)>ﬁ(i), it com-
presses the data packet as much as possible by increas-
ing the compression level until &,(i) + ex(i) becomes
less than or equal to ﬁ(z’) or all of the blocks of the
data packet are compressed. Otherwise, if the node has
less energy than the average energy level of the next m
nodes, it forwards the data packet to the next node
without any compression. This process is carried out at
each node while the data packet is forwarded from the
source node to the destination node. Thus, as the num-
ber of transmitted packets increases, the energy levels of

Algorithm | Determining the compression level at the ith
node.

I: gtemp — gk(') + ék(’) )

2: while Eemp>E (i) and Z}' _ 1 x()<bdo
3 x(i) — x(i) + 1

4: 5temp — 5temp —Lp-ec T Lp-a-g

5: end while

6: (i) — Lb-(b—a-zj'.zlx(j))

7:Ae(i) — I(i— 1) - + Lp - x(i) - €. + I(i) - €
8: k(i) — Ex(i) — Ae(i)

nodes will become more and more close to each other
with this algorithm.

Algorithm 1 shows the pseudocode for the proposed
algorithm that determines x(i) at each node. First, the
sum of the current energy levels £ (i) and energy har-
vested e (i) is stored in the temporary variable &, in
line 1. As shown in lines 2-5, each node increases its
compression level as much as possible until the con-
straints in line 2 are violated. Once the compression
level is determined, /(i) and Ae(i) are calculated, as
shown in lines 6-7. Note that we assume that /(0)=0
since the source node does not receive any packets.
Finally, &(i) is recalculated by subtracting Ae(i) from
Ex(i) in line 8.

Performance evaluation

To evaluate the performance of our proposed algo-
rithm, we considered a multihop WSN, in which N sen-
sor nodes are randomly distributed. It is assumed that
each sensor node is an IEEE 802.15.4-based MICAz
device powered by two AA rechargeable batteries.”**
Each node is also assumed to have 5 kJ (2.5 kJ per each
AA rechargeable battery) as the initial energy. As
reported in the MICAz datasheet,”® the transmission
range of RF transceiver in MICAz is between 75 and
100 m. Here, the average distance between sensor nodes
is set to 80 m so that the adjacent sensor nodes are
within the transmission range of each other. We also
refer to the energy model in De Meulenaer et al.,>
where the energy consumed for computation, transmis-
sion, and reception are 3.5, 600, and 670 nJ/bit, respec-
tively. Each node is assumed to exploit bzip2 to achieve
lossless data compression with compression ratio of 0.7
as discussed in Barr and Asanovi¢.*® For compression
and decompression of one bit, it requires 116 and 31
instructions/bit, respectively. Based on the energy
model and data compression above, the parameters
used in our simulations are chosen as €, = 600 nJ/bit,
€, = 670 nJ/bit, e, = 3.5-116 = 460 nJ/bit, €, =
3.5:31 = 108.5 nJ/bit, and a = 0.7. The original data
packet length L is 1000 bits, and the number of blocks
in a packet b is 100 (i.e. Ly is 10 bits/block).



International Journal of Distributed Sensor Networks

Dest. 3‘,-7 (( ))

,’(( )" é )
(( )) ,'l Dest. 2
\ ,/' ()
(g é S é B
(@) é

»—"Y'az\:eﬂ
é (©)
Dest. 1
r 8

Source 2 é — Routing path 1

(( )) Source 3
2
%

Source 1

""" * Routing path 3

===% Routing path 2
Figure 3. Multihop network topology with |5 nodes and 3

—— No-compression
100 -¢ - First-node-all

m=2
m=3

Proposed
—e- Proposed

data flows.
600
5 —
2 T~
g 500 B
o
5 R
= |
£ 400 ooy
B b b ‘\éi:"s
g - TS g=p
: e
o ‘~<>—__<___>_ ===
S - - - 4
>
& 200
Q
2
o
(4]
on
s
[
>
<

—4- Proposed §m=1§

0

10 11 12 13 14 15 16 17 18 19 20

Number of nodes

Figure 4. Average energy consumption with respect to the

number of nodes.

g 240 —— No-compression

% 220 | -o- First-node-all

< 200 |- - Proposed (m=1

2 Proposed (m=2

g 180 + —e- Proposed (m=3

£ 160 s B e e S
o =T

£ 140 g :

S 1201

_;45 100 R —

E 80 |

g 60 B — D N D G W
o L - <

%0 40

2 20

< 0

0 11 12 13 14 15 16 17 18 19 20

Number of nodes

Figure 5. Average network lifetime with respect to the
number of nodes without energy harvesting.

Figure 3 shows an example of multthop WSN with
15 nodes and 3 data flows. We assume that one packet
transmission from the source node to the destination
node is completed within one timeslot, and in each
timeslot, each node is recharged by energy harvesting
that is determined by a Gaussian random distribution
with a mean of 100 wJ and a standard deviation of
20 pJ. At every packet transmission, a source node and
a destination node are randomly selected, and then, a
multihop path from the source node to the destination
node is determined by a routing algorithm. There exist
a variety of routing algorithms for WSNs such as
location-based routing, data-centric routing, QoS-
based routing, and energy-aware routing by Goyal and
Tripathy.?” Here, we adopt the simplest one, shortest-
path routing algorithm, to investigate the performance
of the proposed data compression algorithm without
being affected by any other conditions such as routing.
We performed simulations of our proposed algorithm
with three cases, m = 1, m = 2, and m = 3, and com-
pared them with a no-compression scheme and a first-
node-all-compression scheme, in which the source node
in a multihop path compresses all of the blocks, regard-
less of its energy level, in order to minimize the sum of
the energies consumed by the network.

We first evaluated the average energy consumption.
Figure 4 plots the average energy consumption with
respect to the number of nodes N in the network. The
average energy consumption means the total energy
consumption divided by N when one packet is trans-
mitted from the source node to the destination node.
Our proposed algorithm exhibits an average energy
consumption that is roughly 120 pJ lower than that of
the no-compression scheme regardless of the number of
nodes. The first-node-all-compression scheme shows a
much lower average energy consumption than our pro-
posed algorithm because every node, except the first
node, receives and transmits the fully compressed
packet, which facilitates a lower energy consumption.

In order to evaluate the network lifetime, we next
measured the average network lifetime with respect to
N for two cases, that is, without energy harvesting
(Figure 5) and with energy harvesting (Figure 6). Here,
if any one of the nodes runs out of energy, the network
lifetime is considered to be finished, as mentioned in
section. ““Proposed decision scheme for compression.”
Let us assume that the total number of timeslots means
the network lifetime since the number of timeslots is
equal to the number of possible packet transmissions.
In both Figures 5 and 6, it is seen that our proposed
algorithm exhibits the longest network lifetime, which
is approximately 5-10° timeslots more than the no-
compression scheme over a wide range of the number
of nodes. On the other hand, the first-node-all-com-
pression scheme shows the shortest network lifetime
among the three schemes, even though it exhibits the
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lowest average energy consumption, as shown in Figure
4. This definitely implies that the one node that is

frequently chosen to be the first node is exhausted
much quicker than any other node.

We also examined the effect of energy recharging by
energy harvesting on the network lifetime. As shown in
Figures 5 and 6, energy harvesting with a Gaussian
random distribution N (12.5 mJ, 2.5 mJ) has an effect
on the extension of the network lifetime. Specifically,
the overall network lifetime of every scheme with
energy harvesting is roughly 3-10° timeslots higher than
the lifetime without energy harvesting. Also, Figure 7
simply shows that the network lifetime is extended as
the mean value of energy harvesting, which follows a
Gaussian random distribution, is increased.

Finally, we evaluate the network lifetime perfor-
mance of the schemes in a larger network. Figure 8
shows the average network lifetime with respect to the
number of nodes varying from 20 to 120. The perfor-
mance results verify that the proposed algorithm pro-
vides the longest network lifetime in the larger network
environment regardless of the value of m. It is also
observed that the network lifetime of every scheme pro-
portionally increases as the number of nodes increases.
This is because the probability that each node is
involved in routing paths decreases as the number of
nodes in the network increases. As a result, each node
consumes less energy for receiving, compressing, and
transmitting data packets.

Through our numerical simulations, it is obvious
that our proposed algorithm using data compression
extends the network lifetime while reducing the energy
consumption of WSNs. Furthermore, how to choose
an appropriate value of m has been investigated. As
shown in Figures 4-8, the performance differences
between different values of m are not remarkable, even
though the algorithm with a larger m, for instance,
m = 3, results in slightly less energy consumption and a
longer network lifetime than those with m =1 or
m = 2. However, it becomes more difficult for each
node to get the energy-level information of the other
nodes in real multihop networks as the number of hops
between nodes increases. Therefore, a value of m of 1
or 2 is sufficient since our proposed algorithm ensures
a sufficiently long network lifetime, even with a small
m value.

Conclusion

In this article, we have considered energy savings for
wireless sensor nodes that suffer from a limited battery
capacity. For energy-harvesting WSNs that can be
slowly recharged, we have proposed a data compres-
sion algorithm to decrease the average energy con-
sumption while maximizing the network lifetime. As a
data packet is relayed along the multihop path in the
network, our proposed m-hop averaging compression
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algorithm determines the amount of packet to be com-
pressed at each node by mainly considering the average
energy levels of the next m nodes within m hops. Our
extensive simulation results have verified that our pro-
posed data compression algorithm achieves a consider-
able reduction in the energy consumption with a
significantly extended network lifetime.
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