creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

[UCI]1804: 27005- 200000008231

Master's Thesis
M} Sl

A Group Based Personalized Approach to Efficient
Hand Gesture Recognition Using Sensor Fusion

Seongjoo Shin(A! A + = & 1)

Department of

Information and Communication Engineering

DGIST

2018



Master's Thesis
R

A Group Based Personalized Approach to Efficient
Hand Gesture Recognition Using Sensor Fusion

Seongjoo Shin(A! A + = & 1)

Department of

Information and Communication Engineering

DGIST

2018



A Group Based Personalized Approach to Efficient
Hand Gesture Recognition Using Sensor Fusion

Advisor: Professor Yongsoon Eun
Co-advisor: Professor Sang Hyuk Son
Co-advisor: Professor Youngmi Baek

by

Seongjoo Shin
Department of Information and Communication Engineering

DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of the
requirements for the degree of Master of Science in the Department of Infor-
mation and Communication Engineering. The study was conducted in accord-
ance with Code of Research Ethics?.

12.21. 2017

Approved by
Professor Yongsoon Eun (signature)
(Advisor)
Professor Sang Hyuk Son (signature)
(Co-Advisor)
Professor Youngmi Baek (signature)

(Co-Advisor)

1 Declaration of Ethical Conduct in Research: I, as a %aduate student of DGIST, hereby declare that | have not committed
any acts that may damage the credibility of my research. These include, but are not limited to: falsification, thesis written by
someone else, distortion of research findings or plagiarism. | affirm that my thesis contains honest conclusions based on my
own careful research under the guidance of my thesis advisor.



A Group Based Personalized Approach to Efficient
Hand Gesture Recognition Using Sensor Fusion

Seongjoo Shin

Accepted in partial fulfillment of the requirements for the degree of Master of

Science.
11.21. 2017
Head of Committee (signature)
Prof. Yongsoon Eun
Committee Member (signature)
Prof. Sang Hyuk Son
Committee Member (signature)
Prof. Kyoung-Dae Kim
Committee Member (signature)

Prof. Youngmi Baek



MS/IC 214 . Seongjoo Shin. A Group Personalized Approach to Efficient Hand Gesture

201622000 Recognition Using Sensor Fusion. Department of Information and Communication Engineer-
ing. 2018. 29p. Advisors Prof. Yongsoon Eun, Co-Advisors Prof. Sang Hyuk Son, Co-Advi-
sors Prof. Youngmi Baek

Abstract

Multimodal interface keeps evolving in order to better represent people’s intention. A gesture as a type
of the multimodal interface is one of the effective ways for people to express their intention. Specially, hand
gesture recognition provides an eidetic and convenient way of human-machine interaction (HMI).

In this thesis, we investigate the problems of dynamic hand gesture recognition and develop a Korean
sign language (KSL) recognition system which can help many hearing and speech-impaired people communi-
cate with the public.

To recognize sign language, the system should first determine the shape of the hand and the movement
of the arm. Since sign language consists of a sequence of movements, it is difficult to distinguish a certain
gesture from gestures (movements). To address this problem, the recognition system has to know the beginning
and end of the gesture. To get the starting and ending points, we have defined the basic posture. The sign
language also has various lengths of gestures. It is effective to make the fixed length input data (gestures) rather
than predefine the length of each gesture for recognition.

Many attempts to study the hand gesture recognition commonly use various types of sensors such as
cameras, electromyograms (EMG), glove sensors, and inertial measurement units (IMU). Inconvenience caused
by their weight, the shapes uncomfortable to wear, and cumbersome calibration processes might decrease the
usability of them. Wearable devices like smart watches and armbands can solve this problem. Furthermore, in
order to improve recognition accuracy, the effective way is to exploit multiple heterogeneous sensors (both an
EMG sensor and an IMU sensor) which can produce the redundant information to the same physical variable.
It is necessary to pre-process before classification since it is important to classify the gesture using the values
extracted from the sensor. We evaluated the performance of two different methods, min-max and z-score nor-
malization.

Specially, we focus on the fact that EMG signals depends on physical features of people because the
amount of muscle and the thickness of the fat layer are different for each person. Unfortunately, in the traditional
recognition technique not to consider human physical features, since a single model is applied to all users, it
does not guarantee the performance in terms of accuracy. To address these issues, we create group-dependent
Neural Network (NN) models based on a sensor fusion technology. Our approach on group-dependent NN
models is to separate the models so that people can use different models. People are experimentally divided into
several groups according to persons’ data with similarity in body features after learning. We proved that the
physical similarity exists in our created models.

Finally, We compare our model with models of Artificial neural networks (ANNSs) including convolution
neural networks (CNNSs) and long short-term memory (LSTM) since the performance of those is high in the



classification. The experimental results show that the proposed method has high accuracy (99.13% of CNN
without dropout and 98.1% of CNN with dropout).

Keywords: Korean sign language; Electromyography; Hand gesture; Sensor fusion; Artificial Neural Network
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I. INTRODUCTION

There are many traditional input/output (1/0) devices through which computers/ma-
chines easily communicate with human beings. With the increasing interest in augmented real-
ity (AR) applications, this human-computer interaction technologies are evolving and new
types of 1/0 devices are being developed to improve interaction, such as gloves, haptic devices,
and head mounted devices (HMD). Specially, HMD called an eyewear display is a device
which can display a sequence of images on the screen of human eye level. It is useful tool for
the user to experience the real world. Since HMD generally uses a wireless controller to obtain
human intention, including a clickable trackpad, a trigger, some buttons, and an IMU sensor,
applications using HMD can only execute the preprogrammed functions corresponding to sev-
eral buttons. In addition, users familiarize themselves with all operation prior to using such
devices. If gestures as a non-verbal communication method are used for the intention input
function instead of such controller, we including speech-impaired persons and deaf persons
better enjoy the comfort and convenience of this interaction method. For example, we are al-
ready used to finger-based gestures for smartphones and tablets without any button. Especially,
hand gestures, which is one of the most common types of the multimodal input, also allows
humans to communicate naturally and intuitively. In terms of effective human-computer inter-
action, hand gestures is capable of easily getting much more information from users in diverse
situations without any limitation of the input device.

The structural characteristics of hand gestures with a sequence of the hand movements
causes two problems having a serious effect on the performance of hand gestures recognition.

First, while we move our arms or hands to perform the next gesture after performing one ges-



ture, itis difficult to distinguish between these two gestures (movements). To address this prob-
lem, we define a basic posture to better understand the start and end points of the given gesture.
This defined basic posture represents no movement, and should be performed between the two
different hand gestures in order to recognition them accurately and effectively. This is an ef-
fective way to distinguish between two gestures. Second, there are hand gestures of various
lengths depending on what we want to express. We used an interpolation filter to solve this
problem, which makes the gestures equal in length.

To recognize the hand gestures, various multiple sensors is commonly exploited. Here
is another challenge we might face. In daily life, the body of a human being generates various
bio-signals such as electrocardiography (ECG), electrooculography (EOG), electroencephalog-
raphy (EEG) and electromyography (EEG) [1]. Specially, EMG is generated while a person
uses a muscle. Since this measured signal can determine the intensity of muscle movement, the
EMG sensors are used to recognize hand movements to make a shape. The hardware redun-
dancy of the EMG sensors enables the recognition system to improve the reliability and the
accuracy. An inertial measurement unit (IMU) is an electronic device which mainly has a gy-
roscope, and an accelerometer. It is commonly used to measure the movement and direction of
an object in several wearable devices [2], [3]. Therefore, the IMU sensor can also be used to
measure the movement of the arm to make a gesture. Sensor fusion technology focuses on
combining various sensory data obtained from heterogeneous sensors. Such technology is used
to drive towards convergence in various fields in order to satisfy the non-functional require-
ments of systems. Therefore, using sensor fusion is more effective way to improve accuracy,
reliability and robustness of systems of recognition systems than exploiting the redundancy of
homogeneous sensors. By using both the EMG sensor and the IMU sensor, while we take ad-
vantage of the sensor fusion technology, unpaired data from the differences of sampling fre-
quencies of sensors disturbs the accurate fusion due to multi-view data. To address this problem,
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we select under-sampling being not complex process within the range with no distortion of
sensory data, considering the real-time processing, among under and oversampling approaches
[25]. Therefore, in order to equalize the sampling frequency, we down-sampled one sensor to
match the sampling frequency of both sensors.

Finally, the hand recognition model using bio-signals measured by sensors should de-
signed for the diversity of human physical features. It directly affects the performance of the
designed recognition model. Since individual data obtained from people has different features,
the accuracy of recognition might be low if one learning model is applied to all users. The
reason is that: (1) The EMG signal can be measured differently depending on the arm’s muscle
and subcutaneous fat layer thickness. (2) The IMU value can have different values depending
on the height of the person and the length of the arm. For this reason, we create several models
that can be applied to individuals. This model, called GDM (group-dependent model), learns
only the data of people in each group.

We focus on how to recognize Korean sign language (KSL) in real-time by addressing
those technical challenges as described above. There are 2.5 million people with disabilities in
Korea. 10% of them are hearing-disabled and speaking-disabled persons [4]. People with hear-
ing impairments or speech impairments use sign language to communicate with others. Since
people still lack knowledge of sign language, it is difficult for them to communicate with others.
A system that recognizes and translates KSL is helpful for communicating with others. The
system recognizes sign language, converts it into a natural language, and output it by using a
speaker.

In this paper, we propose a method to accurately recognize hand gestures related to
KSL, which is based on the fusion of EMG and IMU sensors and leverage artificial neural
networks (ANNS) as a learning model. The main objective is to design a learning model and
provide an optimized learning model for each individual group which consists of persons with
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similarity in body features. For that, the cross validation method is performed by testing one
person’s data on another’s learning model in order to find people with similar data, and then
they are grouped together.

The first technical contribution of this thesis is the development of the transformation
method from numerical sensor data to image data in order to use the designed learning model
with the CNN architecture since CNN achieves good performance in the 2D image recognition.
In addition, after the transformation, we assess the two normalization methods to find out the
effective pre-processing method.

The second contribution is the development of a novel group-dependent learning
model. People are experimentally divided into some groups according to persons’ data with
similarity in physical characteristics. It turns out that the experimental results of the models
divided by the group are better, and we proved that the characteristics of the group’s people are
similar, comparing with the real data of people.

The third contribution is that we provide the CPS (cyber-physical systems) design for
tight interaction between sensors of the physical world and classification of the cyber world
through networks. The CPS system is implemented as a prototype for the KSL translation ser-
vices and is available anywhere and anytime.

The remainder of this thesis is organized as follows. In Section I, we describe the
existing hand gesture recognition methods and the challenges of those. We clarify the aim of
our proposed method and then describe how to design it to recognize the hand gestures with a
high level of accuracy in detail in Section Ill. In Section 1V, the validity of our implemented
the Korean sign language system is verified by showing experimental results for real data ob-
tained from ten human participants. Finally, the thesis is concluded with future work in Section

V.



1. BACKGROUND

2.1 Hand Gesture Recognition

There are some prior research to recognize gestures in relation to Human-machine
interaction (HMI) [1, 2, 5]. They focus on how to recognize the given gestures by using sensory
data and understand their meanings in order to control the devices by performing certain func-
tions for applications.

To control electronic devices used in a smart home, Costanza et al. have developed a
hand gesture technique [7]. They not only provide recognition without any user calibration, but
also reduce computational complexity. It can only recognize pre-defined gestures using muscle
signals. Their method do not consider movements at all. A recognition method is developed to
raise the level of human acceptance in AR, it does not also allow the movement of the arms
and hands [6].

Rahman et al. have proposed a method to recognize the sequence of movements [5].
Their approach is limited in providing high mobility because the equipment required for the
recognition must be installed in one place. Radkovski and Strizke have proposed a method of
hands-free interaction between a person and a device in AR [8]. This requires a lot of sensors
for the landmark and provides low portability.

Recently, machine learning algorithms such as support vector machine (SVM) [9], hid-
den Markov model (HMM) [10], [11], and Artificial neural networks (ANNSs) [12] have been
studied to recognize gestures. In particular, ANNSs, including Convolutional neural networks
(CNNs) and Long-short term memory (LSTM), are one of the most popular classifiers. Archi-
tecture of CNNs is usually designed to recognize 2D input data, and many researchers use it to

classify camera data in order to detect pedestrians, objects, and drones [13, 26, 27].



These techniques mainly create a single model for a specific application by using a
large amount of input data. If the designed model based on those is applied to hand gesture
recognition, it might have low performance. This is because it does not consider the diversity
of human physical characteristics. For example, the signal of EMG depends on physical char-
acteristics and behavior of individuals such as the amount of the user’s muscle and fat, and how
the person is moving. To address this problem, when learning the user model, there is an at-
tempt to use both the sensor values and estimated physical characteristics [14]. They try to
estimate this user-dependent factors by observing one motion. In this case, although it shows
good performance, it fails to identify some signs. The estimation error under the uncertainty

and the noise, which might affect recognition performance, are inherent in the method.

2.2 Sensors for Hand Gestures
There are two kinds of hand gestures: static gestures and dynamic gestures [10] as

shown in Figure 1 [15].

(@) “One” sign (b) *“Sorry” sign

Figure 1. Examples of static and dynamic gestures



When performing static gestures, users do not move hands and arms and hold a pos-
ture of the hand to be used in the communication as show in Figure 1(a). Each static gesture

is distinguished only by the shape of the hand representing different meaning.
Since dynamic gestures have a sequence of movements and postures of both the hand

and arm, dynamic gesture recognition is the same as sequence recognition. Many studies have
used cameras, EMG sensors, globe sensor with IMU, and flex sensors to recognize dynamic
hand gestures. The camera sensor is used to extract and recognize the features of arms and
hands [16], [17]. The globe sensor has a flex sensor and an IMU sensor. It recognizes the shape
of the hand using the flex sensor and recognizes the position of the hand using IMU. Both
sensors have a high recognition rate. But it has disadvantages and inconveniences. Camera
sensors are difficult to use outdoors because they have to be fixed in one place. In the case of
glove sensors, people must wear uncomfortable gloves. In the case of the globe sensor, it is
difficult for people to use their hands on other things. Because they have to wear the cumber-
some gloves. Wearable devices such as smart watches and armbands are not restricted by loca-

tion and are not inconvenient to use hands [18], [19], [20].



I11. METHODOLOGY

In this section, we introduce the method to recognize hand gestures. In order to create
an optimized learning model for many people, we perform a series of operations: (1) feature
extraction, (2) pre-processing, (3) generation of architectures for the ANN models, (4) learning

and testing the architectures by using cross-validation.

Logo LED

Expancabie Mex

& Status LED

Figure 2. An armband called MYO

3.1 Feature extraction

We use an armband, called MYO, to extract the data as shown in Figure 2. This arm-
band is worn on the forearm and has the function to recognize five static gestures as shown in
Figure 3 [21]. This armband’s SDK (Software Development Kits) allows us to get the raw data
from the sensors. Therefore we can use this data to create our recognition model without using

the static gestures provided by the armband.

Double Tap Wave Left Wave Right Make Fist Spread Fingers
Figure 3. Five static gestures recognized by MYO
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This arm band contains eight EMG sensors and one IMU sensors. The EMG sensors
are non-permeable stainless steel. The IMU includes a three-axis accelerometer and a three-
axis gyroscope. This armband transmits data from the sensor via Bluetooth.

It is difficult to distinguish between two gestures in the case of a dynamic gesture with
multiple motions. These dynamic gestures are difficult to find starting and ending points be-
cause they have different lengths. We define a basic posture to effectively recognize dynamic
gestures that have a sequence of motions. This basic posture has no hand and arm movement
and is located between the two gestures. Every single gesture consists of three step: basic pos-
ture (start), gesture, basic posture (end). The start basic posture and the end basic posture are
the same. One gesture recognized by this system must start with the basic posture and return to
the basic posture. Figure 4 shows the sequence of postures of a single gesture recognized by
the system.

The accelerometer of the IMU recognizes the starting and ending point of the gesture.
When the hand or arm moves in the basic posture, it is recognized as the starting point, and
when it returns to the basic motion after the gesture, it is recognized as the ending point. To

reduce the effect of noise in the accelerometer, we use the n average values recently obtained

[ e ) Vo 5
= =)y (= =) = =N
~!| i._ P 1 ¢ _, k| t_ 4
NoA N=A NEA
1 P 1 ) o Y P~
g : - BT \ ' -
[ _.'P:F *_T 1 | \
f o - [ — ]
| : J 'r- :
§ e 4
[y i { ] T = 1
L 'Y L | ¥ \
e =P e =P}
Start Gesture End

Figure 4. A sequence (one unit) defined for different signs to be distinguished

9



on each axis. The average value of the accelerometer, ACCy,(m), is shown in Equation (1).

_ 1=
ACC,(m) = ;Z Vy(m — i) (1)
i=0

In Equation (1), ¥ € {X, Y, z} means each axis of the accelerometer and m is the av-
erage value obtained on the axis 1, and V,,(j) is the value obtained on the j-th axis . We
set the size of the n to 10, taking into account the effect of gesture length and noise. When the
value of m¢(m) Is greater than the upper bound (a certain positive value) or less than the
lower bound (a certain negative value), the system recognizes that the gesture has started. When
all values of mw(m) all ¢ are kept within between upper bound and lower bound for ten
consecutive times, the system recognizes this as an ending point. Because the value of
mw(m) obtained in one part of the gesture can be near the boundaries. Figure 5 shows the

starting and ending point in mw(m) graph of one gesture.

15 Starting point
N
1
ol '\ A
0 A f
— P e
0.5 :
End point
-1
1.5

Figure 5. An example of the starting and ending points in the accelerometer’s values
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3.2 Preprocessing and Acquisition
The raw data of the EMG sensors included in the MYO arm band have a value of -128

to 128. We converted this value to an absolute value. This is because the value of the EMG
signal is the magnitude of the force. This can be expressed as E.; = |EL|, and E! is the i-th

data obtained from the channel ¢ (¢ < 8) of the EMG sensors.

We have two problems because we used EMG sensor and IMU sensor together. First,
the sampling frequencies of the two sensors are different. The EMG sensor of MYO has a
sampling frequency of 200 Hz and the IMU sensor has a sampling frequency of 50 Hz. When
two different types of sensors are used together, the sensor frequency with a low sampling
frequency is selected for sensor synchronization. Therefore, the sampling frequency of the
EMG sensor are down-sampled to 50 Hz. Secondly, the range of raw data from two sensors is
different. We try two method of min-max and z-score normalization to find a normalization
method that can improve recognition performance. The raw data is converted to a z-score and

is represented by Equation (2).

9 , (2)

where E.; and M,,; are the i-th values of each channel (c < 8 and ¥ < 6) of the EMG
and IMU sensors respectively. In the case of the EMG sensor, u and o are the mean and
standard deviation of the values obtained from all channels of the EMG sensors. In the case of
the IMU sensor, u' and ¢’ are the mean values and standard deviations obtained from accel-
erometer, gyroscope of IMU, respectively.

The min-max normalization is a method using a maximum value and a minimum value

11



different from the z-score. The raw data of the EMG and the accelerometer, gyroscope of the

IMU are transformed into a common range by using Equation (3), respectively.

5 Ec,i - Smin
i =————,and
' Smax - Smin (3)
<, My — Smin
dlp,i P

Smax - Smin

where S, isOand S,,,, 1S 255.

Many studies use zero padding to make the input data the same size. These studies are
image processing, signal processing, and research using a neural network. Zero padding is a
method of filling the necessary parts with zeros [22, 23, 24]. In our work, interpolation filter is
used to equalize the length of gestures because the lengths of the gestures are different and the
lengths of each sample of one gesture are different. As people become accustomed to gestures,
the speed of gestures is faster, so the length of the sample in the same gesture can be shorter
than before. Interpolation is the estimation of a value located between fixed values. Interpola-
tion filters are used in up-sampling, linear and spline, and we use the spline method [28]. The
longest sample of all gestures is 192. We set the size of the training data size for learning to

200. Because it is longer than the longest length of the sample and to perform max-pooling. In

(@) “Cute” sign

(b) “Wait” sign
Figure 6. Preprocessed input data of gestures as an image
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Figure 6, the preprocessed data of two types of gestures (word “Cute” and “Wait”) are repre-
sented by two-dimension image. One of the gesture data consists of 8 channels of EMG sensor
and 6 channels of IMU sensor (three channels of accelerometer, three channels of gyroscope).
Therefore, the sample of gesture is transformed into a fixed size (the x-axis is 200 and the y-

axis 14).

3.3 Creation of Architectures Using Neural Networks

We designed the NN architecture for hand gesture recognition systems. CNN is a spe-
cialized network for image classification. To take advantage of this, we transformed the sensor
data as an image and used it as learning data. LSTM is often used for data classification such
as speech recognition with variable length. We create CNN and LSTM architectures and com-
pare their performance.

Figure 7 shows our three architectures: (a) CNN architecture without dropout, (b) CNN
architecture with dropout and (c) LSTM architecture. Dropout is a way of changing the value
of one neuron to the next layer to zero at a certain probability. This has the same effect as
operating except for that neuron [25]. Dropout is usually used to avoid overfitting. The CNN
architecture without dropout consists of three convolution layers, one max-pooling, and three
full connected layers. The CNN architecture with dropout has the same structure as (a) archi-
tecture and has dropout applied. The hyper-parameters used in the three architectures are: the
learning rate is 0.001, the batch size is 10, the activation function is Relu, the optimizer is SGD
and the epoch is 50. We used Tensorflow and Keras together. Tensorflow is an open source
library for machine learning created by Google. Keras is a neural network API written in Py-

thon.
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Figure 7. Designed NN architectures (a) CNN architecture without dropout (b) CNN archi-

tecture with dropout (c) LSTM architecture

3.4 Group-Dependent NN Models
We first create models in which all the people’s data are learned. These models are

made up of a combination of two normalizations (z-score and min-max) and three learning

T

Training model

(a) One single learning model for all users

TR

G1 model G2 model G3 model

(b) Group-dependent models

Figure 8. Comparison between a traditional approach and our novel approach
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architectures as shown in Figure 7. A single model | that has been learned from the data of all
people has a low recognition rate because people’s physical characteristics are different. We
create a learned model with only one person’s data and test it with data from another person
and found a similar type of person. We create a group of similar types of people and a learned
model from the data of the people in the group. We call this as GDM and Figure 8 shows this.

In Figure 8, the label P is data of the person and the label G is the group.
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IV. KSL RECOGNITION SYSTEM

4.1 Data Acquisition

The data for the hand gesture recognition system are extracted from 10 men (5 people
are 20s and 5 people are 30s) without muscle disease. They wear a MYQO armband on their
right arm and perform prescribed gestures as follows: They watch the video of the gestures two
or three times, and then perform it without watching the video. They perform 30 classes of KSL

each 70 times. These data are preprocessed and normalized in two ways (z-score and min-max).

4.2 Generation of Group-Dependent NN models

We create six models by combining two ways of normalization, each of architecture
based on CNN and LSTM, and the dropout solution. After the designed CNN architecture
without dropout is learned by using training data which are pre-processed by z-score, a single
model for all people is created. We also design CNN architecture with dropout and LSTM
architecture. Each of single models with the design architecture is trained with 15,000 training

data and is tested with 6,000 test data.

Table 1. The recognition results of a single model for all data

Number Pre-Processing NN model Accuracy (%)
1 Z-score CNN without dropout 94.2
2 Min-max CNN without dropout 94.6
3 Z-score CNN with dropout 93.7
4 Min-max CNN with dropout 91.1
5 Z-score LSTM 91.1
6 Min-max LSTM 3.3
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As shown in Table I, the single model using the CNN architecture without dropout
have the best performance when it is learned with the normalized data by the z-score method.
Every model using data normalized by the z-score method achieves the higher recognition rate
(the rate = 80.1, 79.5, and 69.5%) than models (the rate = 71.6, 70.6, and 16%) using min-max
normalization. Also, all models using CNN architecture have got better accuracy than two sin-
gle models using LSTM architecture. Note that the results of all models are not high in terms
of the recognition accuracy. It turns out that any model cannot respond well to data for all of
the involved people with different physical characteristics.

Therefore, we hypothesize that people with similar characteristics would have a good
result on the same learning model. First, a model with CNN architecture is learned only by the
data of one person is defined as a user model. Second, data of the rest except him are tested on
a user model learned only by one person’s data in order to further analyze the performance
(accuracy) of individual user models learned from using data of ten subjects which participate
in training.

Experimental results for all user models are presented in Table 11, Table 11, and Table
IV, and the result is highlighted in bold if it is greater than median value of accuracy. User
models of Table Il(a) and (b) are based on CNN without dropout. CNN with dropout is used
for user models of Table 111(a) and (b). User models of Table IV(a) and (b) have LSTM archi-
tecture. Table I1(a), Table Ill(a), and Table 1\VV(a) show the results of user models to which z-
score normalization is applied respectively. The results of user models performing min-max
normalization are in Table I1(b), Table I11(b), and Table 1\VV(b), respectively.

From Table 11 and Table 111, we find that the combination of the z-score normalized
method and the CNN architecture has many cells with values higher than median value rather

than those of other models.
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In Table Il(a), when the first person’s data (Label Personl) are tested on the ninth

person’s model (Label User Model 9), the result is 89.7%. Also, when the ninth person’s data

(Label Person 9) are tested on the tenth person’s model (Label User Model 10), the result is

95.2%.

Table I1. Recognition accuracy (%) of the user model based on CNN without dropout for

each person

(a) Z-score
User Person
Model | 1 2 3 4 5 6 7 8 9 | 10
1 99.7 | 435 | 51.2 | 40.8 | 38.2 | 48.0 | 80.2 | 60.7 | 71.0 | 67.2
2 58.7 | 98.8 | 47.7 | 26.2 | 438 | 428 | 56.8 | 44.8 | 55.7 | 54.5
3 585 | 40.3 | 98.8 | 425 | 338 | 752 | 575 | 57.0 | 56.2 | 38.7
CNN 4 475 | 322 | 498 | 983 | 265 | 66.2 | 432 | 375 | 31.8 | 27.2
without 5 552 | 42.7 | 38.8 | 28.0 | 99.7 | 34.3 | 58.5 | 51.0 | 41.5 | 46,5
dropout 6 543 | 42.0 | 708 | 52.7 | 305 | 98.3 | 58.2 | 48.3 | 49.3 | 39.7
7 842 | 60.7 | 51.5 | 37.3 | 57.0 | 488 | 99.8 | 57.8 | 83.7 | 82.3
8 54.8 | 51.8 | 458 | 315 | 43.8 | 375 | 53.5 | 99.7 | 51.5 | 56.8
9 89.7 | 520 | 49.8 | 31.8 | 46.3 | 428 | 925 | 59.0 | 99.8 | 95.2
10 | 815 | 595 | 435 | 335 | 50.2 | 40.0 | 94.0 | 56.8 | 97.7 | 99.8
(b) Min-max
1 99.8 | 46.7 | 43.7 | 36.3 | 425 | 395 | 78.2 | 63.5 | 68.0 | 61.8
2 605 | 98.7 | 43.7 | 34.0 | 49.0 | 473 | 743 | 555 | 51.2 | 56.3
3 56.3 | 38.8 | 99.3 | 34.2 | 422 | 725 | 56.0 | 54.8 | 43.7 | 36.3
CNN 4 450 | 29.3 | 51.3 | 97.8 | 33.7 | 66.5 | 52.3 | 34.2 | 35.8 | 25.2
without 5 483 | 365 | 33.2 | 255 | 99.7 | 29.0 | 54.3 | 46.3 | 405 | 453
dropout 6 59.3 | 46.2 | 67.5 | 51.5 | 37.0 | 985 | 632 | 49.0 | 50.3 | 46.0
7 813 | 52.7 | 48.7 | 29.7 | 53.7 | 433 | 99.8 | 545 | 79.8 | 76.2
8 513 | 42.7 | 445 | 268 | 402 | 357 | 52.3 | 99.0 | 47.2 | 53.5
9 86.8 | 483 | 52.2 | 343 | 47.7 | 468 | 927 | 60.2 | 99.7 | 88.0
10 | 748 | 580 | 47.0 | 30.3 | 495 | 432 | 91.8 | 60.5 | 92.0 | 99.7
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In Table I1l(a), when the first person’s data (Label Personl) are tested on the ninth
person’s model (Label User Model 9), the result is 85.0%. Also, when the ninth person’s data
(Label Person 9) are tested on the tenth person’s model (Label User Model 10), the result is

97.2%. Depending on the person and the model with the high results, we make a group.

Table I11. Recognition accuracy (%) of the user model based on CNN with dropout for each

person
(a) Z-score
User Person
Model 1 2 3 4 5 6 7 8 9 10

1 09.7 | 448 | 453| 383 | 413 | 425| 782 | 555| 66.5| 620

2 583 | 98.7| 478 | 343| 420| 46.3| 59.0| 425| 523 | 517

3 56.3 | 38.7| 99.2| 39.2| 333| 74.0| 56.5| 547 | 48.8| 403

CNN 4 488 | 402 | 542 | 983 | 373| 715| 483 | 433| 38.7| 30.0
with 5 52.7| 403 | 347 | 273 | 99.8| 300 | 57.8| 453 | 40.7| 438
dropout 6 528 | 39.3| 69.3| 548 | 357| 985 | 57.0| 488 | 47.7| 380
7 835 | 58.7| 477 | 427| 527| 495 | 99.8| 535 | 80.0| 80.2

8 540 | 422 | 365| 23.0| 39.7| 285 | 487 | 995 | 443 | 528

9 85.0| 50.3| 50.3| 34.2| 445| 452 | 90.5| 52.7| 99.8| 945

10 81.7| 57.3| 418 | 343| 46.7| 403 | 922 | 56.2| 97.2| 99.8

(b) Min-max

1 998 | 37.2| 46.3| 357| 355| 418| 758 | 60.3| 675 | 61.7

2 60.7 | 98.7| 48.2| 322 | 485| 46.7| 66.0| 51.7| 51.0| 54.2

3 595 | 39.7| 995 | 415 427 | 76.0| 51.7| 54.7| 46.0| 33.7

CNN 4 532 | 340| 45.0| 98.0| 270 | 648 | 543 | 37.3| 38.7| 29.0
with 5 472 | 383 | 31.7| 278 | 995| 29.0| 53.3| 470 39.0| 39.0
dropout 6 570| 38.0| 655 | 527 | 278| 98.7| 618 | 49.7| 47.7| 36.8
7 76.3| 53.2| 535| 312 | 540 | 468 | 998 | 54.7| 78.7| 785

8 55.0| 440| 383 | 29.7| 403| 355| 50.0| 99.2| 443 | 50.0

9 855 | 453 | 48.8| 298| 43.0| 420| 958 | 50.3| 99.8| 925

10 75.2| 555 | 423| 27.7| 482 | 34.7| 88.7| 553 | 94.7| 99.8
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Table IV. Recognition accuracy (%) of the user model based on LSTM for each person

(a) Z-score
User Person
Model | 1 2 3 4 5 6 7 8 9 | 10
1 99.7 | 39.3| 387 | 39.3| 31.3| 43.0| 73.2| 44.2| 67.8| 615
2 473 | 987 | 417| 255| 31.5| 37.0| 482 | 46.8| 43.0| 42.3
3 445| 342| 99.3| 29.0| 233| 655| 37.5| 43.8| 353 | 35.3
4 455 | 263 | 442 | 98.0| 20.8| 63.0| 458 | 32.8| 30.7| 26.0
LSTM 5 353 | 39.0| 298| 253 | 99.7| 245| 52.3| 338 32.3| 308
6 457 | 333| 68.3| 50.8| 165| 985 | 44.2| 46.3| 39.2| 32.8
7 727 | 418 448 | 292| 417| 443| 99.8| 448| 72.2| 715
8 487 | 345| 337| 205| 20.7| 31.8| 50.8| 99.3| 35.8| 41.2
9 725| 418| 458 | 355| 307 | 44.3| 815| 450| 99.8| 885
10 68.3| 55.7| 402 | 32.2| 39.2| 36.3| 79.0| 49.2| 94.7| 995
(b) Min-max
1 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
2 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
3 35| 33| 33| 33| 33| 33| 33| 33| 33| 33
4 25| 55| 23| 17| 47| 17| 38| 40| 38| 22
LSTM 5 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
6 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
7 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
8 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
9 33| 33| 33| 33| 33| 33| 33| 33| 33| 33
10 35| 33| 33| 33| 32| 33| 33| 32| 33| 33

Consequently, according to the results in Table 1l1(a) and Table Ili(a), people are di-
vided into four groups (Group A: Label Personl, 6, 7, 9, and 10, Group B: Label Person 2, 4
and 8, Group C: Label Person 3, Group D: Label Person 5). Each person was divided into
groups according to the K-means algorithm, and the results of the table were used as the input

data. The K-means algorithm is an algorithm for grouping given data into k clusters. Based on
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Table V. Recognition results for GDMs

(@) CNN without dropout
Group A B C D
Accuracy (%) 96.3 94.7 98.8 99.7

(b) CNN with dropout

Group A B D D

Accuracy (%) 96.1 94.0 99.2 99.8

data of individual groups, we create a group-dependent model and perform the test again.
Table V(a) is the result of the CNN model without dropout and (b) is the result of the

CNN model with dropout. The model without dropout and the model with dropout have aver-
age 97.4% and 97.2% recognition results, respectively. In addition, we test learning models
with data from two experimental participants. The data of these experimental participants are
not used in the learning data. The CNN without dropout model (number 1 of Table II) and the
CNN with dropout model (number 3 of Table 1) have 81.0% and 79.3%, respectively.

Table VI shows the results of testing the two data in a GDMs. In Table VI (a) The first
person (Label Person 10)’s data has the highest accuracy (85.1%) when tested on the model of
group B. The second person (Label Person 11)’s data has the highest accuracy (80.5%) when
tested on the model of group A. Label person 10 and 11 set group B and A as their own learning
models, respectively. When a new person not included in the learning data uses GDM, the
model of the group with the highest accuracy is set as the learning model.

Note that the recognition result of the model learned by the data of the group is higher
than a single model learned by all the data as shown in Table I. It turns out that the physical

characteristics of the same group’s people are similar, comparing with the real data of people
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as shown in Table VII. It shows the body information of the people in the group.

with data of not included in learning data

Table V1. Recognition results (%) for group-dependent models

(@) CNN without dropout
Person A B C D
10 78.3 85.1 49.6 42.6
11 80.5 70.5 37.3 38.8
(b) CNN with dropout
Person A B D D
10 74.3 84.0 50.1 35.1
11 815 73.3 355 385
Table VII. Body information of people in each group
Height | Weight | Fore-arm | Upper-arm Arm circumference
Group | Person
(cm) (ka) (cm) (cm) (cm)

1 172 65 25 30 26
6 178 72 27 34 27
A 7 173 77 28 27 27
9 172 68 26 30 27
10 172 69 27 30 27
2 177 75 29 33 27
B 4 178 69 28 30 26
8 178 75 29 33 27
C 3 181 85 30 33 29
D 5 174 68 28 28 27
10 176 71 27 30 26
11 171 67 27 30 26
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4.3 System Implementation

The group-dependent learning models, which show a high recognition performance
(more than 99%) as mentioned above, are used to implement the KSL recognition system. The
overall system design is illustrated in Figure 9. After the user wears the armband and performs
the KSL, the data is transmitted to the mobile PC via Bluetooth. The mobile PC sends this data
to the classifier server with the learning model. The server pc pre-processes the data and applies
it to the learning model. The server sends the text result on the mobile PC. The mobile PC
sends the text results to the Google TTS server and receives the mp4 result. The mobile PC
outputs the result on the speaker.

The implemented system’s mobile pc is a laptop with windows 7. This PC communi-
cates with the arm band via Bluetooth. The PC also communicates with a classifier server and

agoogle TTS server using a wireless network such as WiFi. The pc will be replaced by a mobile

device.
Raw data
«——Text result
—Raw data>» .
Classifier server
Myo O —Text result
— |[«MP4 result
‘))<—MP4 result—
Mobile PC

Google TTS server

Figure 9. A diagram of our KSL recognition system
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V. CONCULSION

In this thesis, we propose the effective method to Korean sign language recognition
using EMG and IMU sensors. This method focus on developing the group-dependent models
based on deep learning. This specified model comes from the fact that the physical character-
istics of human being are absolutely different but similarity among them may exist. The deep
learning approaches such as CNN and LSTM are exploited to create the group-dependent mod-
els. To achieve more high performance, the raw data in the numeric range is transformed to the
2D image as an input of group-dependent models. In order to recognize sign language accu-
rately and efficiently, we investigate several problems to be addressed. First, it is difficult to
distinguish between given gestures when we communicate with sign language using dynamic
hand gestures. The second problem is that the length of the dynamic hand gestures is different.
To address these problems, we define the basic posture and apply interpolation filter to initial
data of the gestures in order to fix the length. Although using both the EMG sensor and the
IMU sensor is helpful for improving the reliability and accuracy for recognition, unpaired data
from the differences of sampling frequencies of sensors disturbs the accurate fusion due to
multi-view data. We select under-sampling being not complex process within the range with
no distortion of sensory data, considering the real-time processing. In addition, since the range
of variables obtained from the two sensors is quite different, two normalization methods such
as z-sore and min-max are applied to process the raw sensor variables and we evaluate their
performance.

When the user models based on the same architecture are used, our results indicate that
the performance (in terms of the accuracy) of them with z-score is higher than min-max nor-
malization of them. All user models based on the CNN architecture show better performance
than those based on the LSTM architecture for Korean sign language recognition. We think
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that the preprocessing method contributes to CNN much rather than LSTM. In addition, we see
that the user model corresponding to each group are more accurate than one single model for
all people data. In this regard, we suggest that to create the individual user model for each of
groups with similarity is more effective than that of one single model learnt from data of all
available people.

We create a KSL recognition system. This system helps the hearing-impaired and the
language impaired to communicate with the public. This system can be used in any place. The
system recognizes the KSL that the person performs and outputs it to the speaker.

We plan to create a GDM with better performance by collecting more data since the
number of participants in the current work is too small and to compare it with other experi-
mental results. It is important to determine the number of groups if many people will use the
group-dependent model. The elbow method [29] is a method of determining the number of
clusters, which is a method of increasing the number of clusters. This method is a method of
setting the number of clusters to n if the performance of n+1 cluster models is not better than
that of n cluster models.

We will implement and optimize it to be used outdoors in real time so that it can work
on smart devices with limited processing capacities, such as smart phones. It is worthwhile to
provide our KSL recognition system for the people who want to communicate with or help the

speech-impaired people but they have never learned how to speak sign language.
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