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Abstract
Studies on interactions between brain regions estimate functional connectivity which are usu-

ally based on the basis of temporal presence. Functional connectivity derived from resting-state

has been attracted by several recent studies as it provides valuable insight into the intrinsic net-

works of the human brain. Functional near-infrared spectroscopy (fNIRS) has gained attention

in resting-state functional connectivity (RSFC) patterns detection because of its advantages

compared to other neuroimaging modalities. Several progressive methodologies in detecting

RSFC patterns in fNIRS, such as seed-based correlation analysis, and independent component

analysis (ICA), were adopted in previous studies. Despite the fact that it is not known which

methodology is the most suitable in detecting RSFC patterns, seed-based correlation analysis

and ICA-based analysis which are the most widely used methodologies in RSFC studies, have

intrinsic disadvantages. Therefore, in this study a method based on artificial neural network

(ANN) was introduced to meet the possibilities of overcoming the conventional methods chal-

lenges. The RSFC patterns of the sensorimotor system derived from ANN were consistent with

the previous findings. Moreover, the results of ANN illustrated the superior performance in the

terms of specificity and sensitivity compared to both conventional approaches. The main con-

tribution of the present thesis is to emphasize that ANN can be used as an appropriate method

to estimate the temporal relation among brain networks during resting-state.

Keywords: Functional near-infrared spectroscopy, Functional connectivity, Seed-based cor-

relation analysis, Independent component analysis, Artificial neural network.
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I. INTRODUCTION

The human brain has been represented as a complex system with intrinsic structurally and

functionally interconnected networks. Statistical dependencies and synchronization of neuro-

physiological events of remote functional brain networks have been defined as brain functional

connectivity [1]. Connectivity maps provide valuable insights into anatomical-functional ar-

chitectures of the brain which can be measured not only during cognitive or motor tasks, but

also during resting states. Resting state functional connectivity (RSFC) is the synchroniza-

tion of spatially remote spontaneous brain activations which represents the interactions be-

tween neuronal activations while the brain is in its resting level. In the resting state, subjects

are not required to perform any tasks so the brain is not simulated with any external stimula-

tions. Researchers recently has focused on connectivity maps derived from brain networks as

it showed potential for diagnosis of brain diseases [2–4]. For example, detection of abnormal

functional connectivity has been used in characterizing patients with autism spectrum disor-

der [5], affective disorders [6], and depression [7]. Modern non-invasive neuroimaging modal-

ities such as functional magnetic resonance (fMRI), electroencephalography (EEG), functional

near-infrared spectroscopy (fNIRS), and megnetoencephalography (MEG) has shown an im-

portant role in exploring functional connectivity of the brain networks in both task and resting

states of normal and patients with brain diseases.

Among all aforementioned modalities, functional near-infrared spectroscopy (fNIRS) as

a promising tool for brain signal acquisition, offers high temporal resolution, long period of

continuous data acquisition, and low burden on the participants. Several previous studies have

presented the feasibility of using fNIRS in detecting resting-state functional connectivity using

fNIRS [8–10]. fNIRS monitors hemodynamic response based on the change of hemoglobin

level during brain activation by transmitting the near-infrared light (600∼900 nm) through a

path from transmitter, scalp, tissue, skull, brain, and receiver. The change of hemoglobin is

caused by neurovascular coupling in the cerebral cortex. Therefore, the increase of oxygenated

hemoglobin (HbO) and decrease of deoxygenated hemoglobin (HbR) can be utilized as a metric
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for estimating brain activation. Oxy- and deoxy-hemoglobin absorb the light with different

coefficients (see Fig. 1.1). Eventually, the difference of the light intensity in fNIRS’s sources

and detectors can be converted to the oxy- and deoxy-hemoglobin level using Beer-Lambert

law [11, 12]. Chapter II provides more details on principles of fNIRS.

Numerous connectivity analyses have been explored in all aforementioned neuroimaging

modalities in order to identify inter-connected brain networks. They usually entail finding pre-

dominant patterns based on statistical dependencies measurements. The most common analysis

methods in fNIRS are seed-based correlation analysis [9] and independent component analysis

(ICA) [13] in which each of them models latent factors from data by considering a linear-

mixing problem of the input data [11]. In seed-based correlation analysis, seed-regions should

be determined as the region of interest (ROI). After the selection of ROI (seed), temporal cor-

relations of selected ROI with all other channels are computed and the resting-state functional

connectivity (RSFC) maps from the fNIRS data acquired during a resting state, can be con-

structed [9]. In ICA-based analysis of RSFC, data from whole channels of a resting state is di-

vided into several statistically independent components including RSFC networks [13] (chapter

II will provide more details). Although, the two above mentioned methods have several inher-

ent problems [13–15], it is not known which method can best describe the intrinsic networks.

To date, studies on estimating RSFC maps based on fNIRS are in their early stages and there is

(a) (b)

Figure 1.1. Physiological response of hemodynamic signal. (a) Concentration changes of HbO, HbR, and
total hemoglobin represented (HbT) are presented in red, blue, and green lines, respectively. Stimulus period is
presented at 0 second. (b) Light obsorbtion differences in Oxy- (red) and Deoxy-hemoglobin (blue).
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no unified standard for analyzing resting-state fNIRS data [8].

Recent new machine learning algorithms has brought a wide applications in signal and im-

age analysis [16–18]. Artificial neural networks (ANN) have some distinguishing aspects that

make them attractive. They are data-driven, nonlinear methods which are able to generate an

appropriate mapping between their inputs and outputs [19]. Thereby, it is reasonable that neu-

ral networks may be able to enhance the performance in constructing connectivity networks. In

this thesis, a deep artificial neural network has been utilized to construct functional connectivity

maps from fNIRS signals while measured during a resting-state. Eventually, the performance

of RSFC maps derived from neural networks have been compared with the aforementioned

conventional schemes in constructing connectivity maps.

The chapters of this thesis are separated into five parts: introduction in chapter I, basic

concepts and background in chapter II, method in chapter III, results in chapter IV followed by

discussion and conclusion in chapter V. Chapter II includes the basic principles of fNIRS, con-

ventional and proposed method in estimating RSFC maps. The experimental procedure, signal

processing, and estimation of RSFC maps can be found in chapter III. Chapter IV presents the

results obtained from the conventional and proposed schemes. The discussion and conclusion

are given in chapter V.

3



II. BASIC CONCEPTS AND BACKGROUND

1. Functional Near-Infrared Spectroscopy (fNIRS)

As briefly mentioned in chapter I, fNIRS has been utilized as an emerging non-invasive brain

imaging technique. fNIRS basically relies on the principles of the neuro-vascular coupling

which is also known as hemodynamic response. Through neuro-vascular coupling, neuronal

activity is followed by changes in localized blood flow including hemoglobin. The change

in hemoglobin during neuronal activation leads the increase of oxygenated hemoglobin (HbO)

and decrease in deoxygenated hemoglobin (HbR) as was shown of Fig. 1.1(a) in chapter I. Both

HbO and HbR concentrations absorb the light intensity, though with different coefficients. This

difference absorption coefficients can be used as a metric in estimating the changes of HbO and

HbR concentration which is the principles of modified Beer-Lambert law (MBLL) [11,20]. The

light intensity is transmitted from fNIRS transmitter and after passing through scalp, tissue,

and skull, it is received in fNIRS receivers. The measured light intensities is converted into the

concentration changes of HbO and HbR using MBLL. The MBLL equation is expressed by

∆ [HbO]

∆ [HbR]

=
1

d ·DPF

εHbO
λ1 εHbR

λ1

εHbO
λ2 εHbR

λ2

−1∆ODλ1

∆ODλ2

 (2.1)

where the concentration changes of HbO and HbR are defined as ∆[HbO] and ∆[HbR], respec-

tively. d is the distance between light source and detector. DPF is the differential path length

factor. ε is the extinction coefficient at wavelength λ , and ∆OD is the light intensity change.

2. Discrete Wavelet Transformation as Band-pass Filter

fNIRS contains different types of noises. One of the filtering methods of the raw fNIRS

data is based on discrete wavelet transformation. The discrete wavelet transform decomposes

the signal, S[n], into different coefficients named as approximation and detailed coefficients

each with specific range of frequencies. The mentioned coefficients can be obtained by the
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scaling function (φ j0,k[n]) and wavelet function (ψ j,k[n]) ( j, and k are scaling and translating

parameters, respectively. Please refer to [21] for more details.) through below equations;

Aφ [ j0,k] =
1√
M ∑

n
S[n]φ j0,k[n], (2.2)

and

Dψ [ j,k] =
1√
M ∑

n
S[n]ψ j,k[n], (2.3)

where M is the total points, Aφ [ j0,k] is approximation coefficient, Dψ [ j,k] is detailed coeffi-

cient. Then, a signal S[n] can be expressed by

S[n] =
1√
M ∑

k
Aφ [ j0,k]φ j0,k[n]+

1√
M

∞

∑
j= j0

∑
k

Dψ [ j,k]ψ j,k[n]. (2.4)

The approximation coefficients and detailed coefficients can be rewritten as

a j0 =
1√
M ∑

k
Aφ [ j0,k]φ j0,k[n], (2.5)

and

d j =
1√
M ∑

k
Dψ [ j,k]ψ j,k[n], (2.6)

so, the signal S[n] can be reconstructed from the mentioned components by

S[n] = a j0 +
j0

∑
j=−∞

d j. (2.7)

Eventually, the signal can be reconstructed by picking the coefficients whose range of frequency

is aligned with the desired cutoff frequency. The reconstructed signal represents the filtered

signal [22].

3. Seed-based Correlation Analysis using General Linear Model (GLM)

Seed-based correlation analysis is one the most commonly used method in detecting functional

connectivities. In the simplest seed-based functional connectivity, the correlation between the

times-series of one fNIRS channel (known as seed) and all the other channels is exploited [23].

5



In order to calculate the correlations, general linear model (GLM) has been utilized in this

thesis as explained in [9]. The standard linear model of brain activity can be expressed by

Y = X .β + ε, (2.8)

where Y is a column vector of the oxy-hemoglobin time series from a channel. X is known

as the design matrix. In the case of functional connectivity study in fNIRS, it includes the

oxy-hemoglobin time points of the selected seed as a regressor in the linear model. The design

matrix should additionally contain a constant column for modeling the mean of the signal. The

variable β defines the unknowns which are going to be estimated by the given input data (Y )

and the design matrix (X) in order to reduce the error represented as ε . In other words, the time

points of fNIRS channel is modeled as the sum of weighted columns of the design matrix. To

be more specific, GLM can model the time points of all the fNIRS channels (excluding selected

channel as the seed) based on the time points of the selected seed and result in estimated β s.

The linear regression model in Eq. 2.8, is typically solved using the least-squares method.

Thereby, the best estimate of β can be derived by

β = (XT .X)−1.XT .Y, (2.9)

Next, statistical T-test can be used in order to test whether the estimated β s are nonzero or not

by

T = c.β /
√

c.(XT .X)−1.σ2.cT , (2.10)

where σ2 is the mean-squared error of the residuals (σ2 = < ε2 >) and c is the contrast

vector. For example, to test if the second coefficient of the β vector is nonzero the contrast

would be c = [0 1] in case of only having two regressors in the design matrix. Consequently,

T -values are corresponded to the correlations of each channel with the selected seed which are

known as connectivity maps [9, 23, 24].
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4. Independent Component Analysis (ICA)

Independent component analysis (ICA) is one the most widely used method among blind source

separation (BSS) techniques. In BSS one of the classic problems is known as cocktail party

problem. In this problem, there are several microphones in a conference hall which collect a

mixture of individuals’ spoken voices. It is of interest to separate each individual signal from

the mixture signals. Solving this problem is the aim of BSS technique [25].

ICA assumes that the sources of individuals’ voices are independent from each other.

In the case of fNIRS, measured signals from fNIRS channels can be regarded as the mix-

ture of the voices recorded by microphones in the cocktail party problem [13]. Suppose

there are N channels which have been measured for T time points. The mixture signals can

be represented by x(t) = [x1(t),x2(t), ...,xN(t)]T : (t = 1,2, ..,T ). The independent sources

s(t) = [s1(t),s2(t), ...,sN(t)]T : (t = 1,2, ..,T ) can be derived using ICA by

x(t) = A.s(t), (2.11)

where A is the mixing matrix. The sources si(t) can be recovered from only the measured

signals xi(t). Incidentally, the reason of describing this technique as blind is that there is no

prior information about the mixing matrix and sources. The estimation of sources, ŝ(t), is

obtained by

ŝ(t) = W.x(t), (2.12)

where W−1 = Â is the un-mixing matrix in which Â represents the estimated mixing matrix.

Figure 2.1 summaries the procedure of ICA technique. In fNIRS, Â includes the RSFC maps

which chapter. III presents more details.

5. Artificial Neural Network (ANN)

Artificial neural network (ANN) is a machine learning technique which can be used to perform

nonlinear statistical modeling. It is basically inspired by the biological model of human brain,

specifically the bioelectrical activity of the neurons in the brain. The interconnected neurons
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of ANN, as they exchange information with each other, they can be a simplified simulations of

how brain regions interact with each other. ANN has been utilized in various domains including

business, engineering, and medicine. ANN offers a number of advantages, including requiring

less formal statistical training, ability to implicitly detect complex nonlinear relationships and

interactions in the data, and the availability of multiple training algorithms [17, 26, 27].

In general, ANN consists of several layers known as input layer, hidden layer(s), and

output layer. Each layer contains one or more neurons (see Fi. 2.2) in which their values

are updated through several forward and backward propagation of training process. Through

Figure 2.1. Independent component analysis (ICA) block diagram. s(t), A, x(t), W , ŝ(t) are the sources, mixing
matrix, measured signals, un-mixing matrix, and estimated signals by using ICA, respectively (adopted form [25]).

Figure 2.2. The structure of ANN consists of input layer, hidden layer(s), and output layer.
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forward propagation, the values of neurons can be determined by

al
i = f (∑

i
wl

jia
l−1
j ) (2.13)

where al
j is defined as the output of the activation function f (.) in which its input is the output

of jth neuron of the lth layer. wl
ji is denoted as the weight for the connection from jth neuron

in the lth layer, to the ith neuron in the (l− 1)th layer. al
0 denotes the bias value. In case of

computing values for the second layer, the Eq. 2.13 will be

a2
i = f (∑

i
wl

jix j) (2.14)

Among various activation functions; i.e. f (.) in Eq. 2.13 and 2.14, here two of them are

presented.

Rectifier Linear Unit (ReLU) activation function is an element-wise function which fil-

ters the negative inputs. In other words, it is off for the negative and on for the positive inputs.

ReLU compared to other activation functions, has major benefit of converging to the optimum

point much faster. Denoting ∑i wl
jia

l−1
j az z, this function is expressed by [28]

f (z) =


0 if z < 0

z if z≥ 0.

(2.15)

Softmax is another activation function which normalized a set of its input to the range of

0 and 1 such that each can be interpreted as the probability. The function is given by

f (z) j =
ez j

∑i ezi
(2.16)

Through training procedure weights and biases can be adopted in order to model the desired

outputs. The training procedure can be repeated for several iterations of forward and backward

propagation with respect to optimizing the loss function. In optimization problems, the loss

function is a function from a set of variables or values [29]. ANN is typically trained using gra-

dient based optimization methods. To be more specific, gradient descent finds a local minimum
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of the loss function by taking steps proportional to the negative of the approximate gradient of

the loss function at the current point. Eventually, gradient descent updates the parameters using

the following rule,

θt+1← θt−η∇θt L(x,θt) (2.17)

where η is called as the learning rate, θ is the parameter which need to be updated, and L

represents the loss function. In recent years, several algorithms have been proposed instead of

gradient descent. The Adam algorithms is one of the most efficient ways in updating parameters

in which it adapts the learning rate of each parameter by scaling them [30]. In the current thesis,

Adam optimization has been utilized. Figure 2.3 shows a schematic of the Adam algorithm.

ANN is basically a supervised learning method in which it is trained based on the given

input data with its labels. The input data is separated to two groups, one for training and the

other one for testing in order to evaluate its performance. However, in this thesis ANN has

been used as a semi-supervised learning techniques. In semi-supervised algorithms, the labels

are not given and they can be derived based on the input data. In the case of fNIRS, the ANN

is trained based on the time series of resting-state of two selected channels and is tested on the

remained channels (see chapter III for more details.)

Figure 2.3. Adam learning algorithm [30].
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6. Receiver Operating Characteristic (ROC) Curve

Receiver operating characteristic (ROC) curve is a fundamental tool for a test evaluation. It is

a graphical plot which illustrates the performance of a test (in here a binary classifier system)

compared to the golden standard of the results. In a ROC curve the true positive rate is plotted

in the function of false positive rate based on different thresholds. Eventually, the area under

the ROC curve (AUC) is the quantitative index for describing the performance [31]. The larger

area under the curve represents better performance. In the case of fNIRS RSFC, the results

of all aforementioned methods for estimating RSFC will be compared with a golden standard

using ROC curve in chapter IV of this thesis.
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III. METHOD

1. Experimental Protocol

The aim of this study is to investigate the resting state functional connectivity of Sensorimotor

area. Therefore, a total of ten young adults (all right handed, mean age 22.8±3.8, four males)

from DGIST University participated in this thesis project. None of the participants had history

of motor or neurological disease or brain injury. All the participants were asked to avoid drink-

ing alcohol or coffee in the day of experiment. Before the experiment, informed consent form

was obtained according to the procedure approved by the DGIST Institutional Review Board

(DGIST 170614-HR-010-02).

Participants underwent an experiment including two runs of fNIRS measurements. In

the first run of the experiment, called as resting-state session, participants were asked to sit

on a comfortable chair in a silent room with dim lighting. The participants were instructed

to stay stable during the measurement with their eyes closed, remain motionless as much as

possible, and try to relax their mind. Resting-state session lasted 8 minutes for each participant.

Through second run, called as task session, participants were instructed to conduct bilateral

finger tapping task which was shown in a laptop with 13-inch display monitor were placed

approximately 80 cm in front of the participant. Task session included seven bilateral finger

tapping blocks in which each of them lasted 28 seconds and followed by a 30 seconds fixation

baseline. Through finger tapping blocks, fourteen random strings containing four characters

were shown for 1.5 seconds followed by a 0.5 seconds fixation point. The characters in each

string could be ”L” or ”R” representing right-hand or left-hand finger tapping, respectively (see

figure 3.1).

During both runs, brain activation was measured using LABNIRS from Shimadzu with

three wavelength (780, 805, and 830 nm) and sampling frequency of 18.51 Hz. 17 transmit-

ters and 16 receivers leading 52 channels were placed on participant’s head using a head cap

which covers the whole brain, however, the fNIRS probes were set to only cover the Sensori-

motor and Motor cortex following 10-20 international system. Figure 3.2 illustrates the channel
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configuration.

2. Concentration Changes of Hemoglobin

The oxy-hemoglobin and deoxy-hemoglobin at each time point from each channel were com-

puted using MBLL (see Eq. 2.1). As the data pre-processing for each aforementioned methods

varies, in the following sections more details for each method will be presented. In this thesis

only oxy-hemoglobin were considered for the data analysis. For simplicity, signal is used to

refer to oxy-hemoglobin signal.

Figure 3.1. Task session includes seven finger tapping and six baseline blocks

Figure 3.2. The configuration of fNIRS transmitters and receivers for an experiment
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3. RSFC Estimation Using Seed-based Correlation Analysis

In the seed-based correlation analysis, first, the channel which was significantly stimulated dur-

ing the task session, was selected as the seed. Next, individual RSFC estimation was performed

using the seed time points in resting-state session. In the following paragraphs, it will be elabo-

rated on the details of data processing for the seed-selection procedure followed by RSFC maps

detection.

Before starting the measurement of task session, to make sure the signal reached its steady

state, participants were asked to be ready and stay stable for 30 seconds. After data acquisi-

tion for task session and MBLL processing, to remove the high-frequency physiological noise

and low-frequency baseline drift, a band-pass filter using discrete wavelet transformation was

exploited as described in chapter II section 2. [22]. The desired high and low cutoff frequen-

cies in fNIRS studies are 0.01 ∼ 0.1 Hz [20]. Figure 3.3 represents the physiological noises

which are contaminated with hemodynamic response. A 10 level wavelet decomposition us-

ing Daubechies (db5) mother function was applied in order to remove undesired high and low

frequency components of physiological noises. Therefore, the combination of detailed compo-

nents d8 and d9 were selected to construct the filtered signal (in Eq. 2.7, S̃[n] = d8+d9) as they

contains the desire frequency range (see Fig.3.4).

Afterwards, GLM (see section 3. of chapter II) was used to infer which channel was sta-

tistically activated during the task session for each participant. The design matrix was obtained

Figure 3.3. Physiological noises in fNIRS signal including heart rate, respiration, mayer wave (M-wave), and
very low frequency oscillations (B-wave). The red square shows the desire frequency range (0.01∼0.1 Hz)for
hemodynamic response [20].
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by the convolution of task onsets with canonical hemodynamic response function. Using the

designed matrix, GLM was applied to the signal of each channel for all participants and yielded

corresponding T-values. Therefore, individual activation T-maps were constructed based on 52

derived T-values [9, 32]. Thereafter, a group-level Wilcoxon Signed Rank test (known as sum-

mary statistics approach [33]) was performed on obtained T-values to find the most activated

channel among all participants defined as the seed for the RSFC analysis. Wilcoxon Signed

Rank is a non-parametric statistical hypothesis test to assess whether a distribution has a me-

dian equal to zero. It can be used as an alternative to the one-sample t-test. The results from

Wilcoxon Signed-Rank are represented in the term of p-values. The lower p-value indicates

Figure 3.4. Each of detailed coefficients from 10 level wavelet decomposition has specific range of frequency
in which d8 and d9 cover the desired frequency range of hemodynamic response. Each color represents the
frequency range of a detailed coefficient.
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higher significance.

The first 2 minutes of resting session data were discarded in order to reach the steady

state. The filtered signals from resting session were extracted using wavelet transformation

as explained above. The GLM was used similar to the above, however, the design matrix

only included the resting data time points from the selected seed. Similarly, 52 T-values as

the individual RSFC maps were derived for each participant. Next, group-level analysis using

one-sample t-test was applied to identify channels that were significantly connected to the seed

channel, defined as the group RSFC-map based on seed-correlation.

4. RSFC Estimation Using ICA

In this thesis, temporal ICA was exploited because of the large number of time points compared

to relatively a small number of channels in fNIRS data [8, 13]. FastICA v2.5 was adopted to

implement ICA analysis [34]. The parameters were chosen as discussed in [13]. For RSFC de-

tection based on ICA only the data from resting session was considered. After MBLL analysis

and excluding the first 2 minutes of the data, in order to filter the linear and bilinear trends from

the remaining data, first and second order polynomial functions were adopted for de-trending

the raw signals [35]. ICA was applied to 52 de-trended signals and yielded to 52 independent

signals with a mixing matrix including the RSFC estimation.

To be more specific, let’s consider x(t), ŝ(t), and Â as the fNIRS signal, estimated inde-

Figure 3.5. Matrix dimensions of estimated independent components and mixing matrix derived from ICA.
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pendent components, and estimated mixing matrix by ICA, respectively. The dimensions of

the input and outputs of ICA can be shown in Fig. 3.5. The power spectrum of all the es-

timated independent components (e.g. signal-1,..., signal-52 in Fig. 3.5) was obtained. The

component of interest was selected if it had a prominent low frequency around the desire range

of frequency for hemodynamic response; i.e. 0.01∼0.1 Hz. The corresponding column of the

selected component of interest in the mixing matrix represents the individual RSFC (e.g. if

Signal− 2 was selected as the component of interest, a(1,2), ..., a(52,2) would represent the

RSFC map). Next, individual RSFC maps were converted to standardized z-scores by

zi j =
a(i, j)−µ

σ
(3.1)

where a(i, j) is the i jth element of corresponding column from the mixing matrix. µ and σ

are the mean and standard deviation of the selected column in the mixing matrix, respectively.

Similar to RSFC estimation using GLM, group-level analysis was conducted on the individual

RSFC z-scores using two-tailed one-sample t-test leading to group RSFC-map based on ICA

analysis.

5. RSFC Estimation Using Artificial Neural Networks

Data pre-procecssing was applied to the resting state data similar to the section 3. of this

chapter. Therefore, the filtered signals were passed through the ANN layers. In this thesis,

a 4-layer ANN including input layer, 2 hidden layers, and an output layer was utilized. The

details of the ANN structure is summarized in the table 3.1 (for more details of ANN please

refer to chapter II, section 5.). In the input layer, number of neurons were equal to the number

of time points of the resting-state data.

For training the ANN, two classes were defined. Based on the selected seed in RSFC

estimation using GLM, ANN was trained considering the seed as the class (a). Channel 11

was chosen as the class (b) based on its anatomical location. For all the participants, ANN

was trained for 20 trials containing 50 epochs in each. In the proposed structure of ANN, the

activation function in input and hidden layers were set to ReLU. Adam optimizer was utilized

in which the learning rate was set to 0.001. Tensorflow platform (https://www.tensorflow.org/)
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based on NVIDIA GPU (GeForce GTX 1070) was used for ANN implementation. After train-

ing the ANN on all the participants, the mean of the channels’ labels were computed in order

to construct the group RSFC map.

6. Performance Evaluation Using ROC Curve

To provide a comparison to the RSFC maps derived from seed-based correlation, ICA, and the

proposed ANN structure, the spatial patterns of all the estimated group maps were qualitatively

compared based on the chosen golden standard. For more comprehensive evaluation, ROC

curve was utilized in order to provide quantitative comparison. The selected golden standard

is shown in Fig. 3.6. One of the fNIRS limitations is its low spatial resolution compared

Table 3.1. Number of neurons and activation function for each layers in the structure of ANN.

ANN Layer No. of Neurons Activation Function

Input
layer 6667 ReLU

Hidden
layer 1 1024 ReLU

Hidden
layer 2 128 ReLU

Output
layer 2 Softmax

Figure 3.6. The selected golden standard for comparison evaluation in which the label of channels with gray and
white background were set to 0 and 1, respectively.
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to functional magnetic resonance (fMRI). Eventually, to localize the area corresponding Sen-

sorimotor and Motor area, the channels which were approximately covering the C3 and C4

based on 10-20 system, were selected in one class (labeled as class (a)) versus the remained

channels were set to the second class (labeled as class (b)) [13]. During the programing, the

class (a) in golden standard for ANN were set to 0, however for seed-based and ICE analysis

were set to 1. As ROC applies threshold values between 0 and 1, all the group RSFC results

from aforementioned methods were normalized to the range of 0 to 1 by

vali =
vali−minimum(val1, ...,val52)

maximum(val1, ...,val52)−minimum(val1, ...,val52)
, (3.2)

where vali is a result of the RSFC estimation method for the channel i. By utilizing ROC, it

can be possible to digitize the real values of the estimated RSFC results. In ROC, the threshold

value is a real number between 0 and 1 in which if the result value of a channel from the RSFC

estimation method is higher than the threshold, then it is set to 1, vice versa, if it is less than

the threshold, it is set to 0. After digitizing the real values, ROC curve can be derived by the

true-positive and false-positive rates based on the golden standard labels.
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IV. RESULTS

In the experiment, extracted resting-state oxygenated hemoglobin signals from the light inten-

sities based on MBLL method, were utilized to estimate resting-state functional connectivity

maps by exploiting seed-based correlation analysis, independent component analysis, and ar-

tificial neural networks. In this chapter, the results of all aforementioned methods will be

elaborated. Furthermore, the performance evaluation method based on receiver operating char-

acteristic (ROC) curve will provide a comparison among all the obtained results.

For better comprehensive visualization of the filtered oxy-hemoglobin fluctuations during

the resting-state, Fig. 4.1 shows the time series of the channel 24 and 29 versus 11 and 52

for one subject. The selected channels for visualization is based on their location in the con-

figuration of fNIRS transmitters and receivers in which channels 24 and 29 cover the bilateral

Sensorimotor, whereas channels 11 and 29 cover the Temporal areas. It is obvious that chan-

nels 24 and 25 has similar fluctuations. Same phenomenon happens for channels 11 and 21.

(a)

(b)

Figure 4.1. Oxy-hemoglobin of (a) channels 24, 29 and (b) channels 11, 52 for one subject.

20



The aim of all aforementioned methods is to detect similarity among time series fluctuations,

though there is no pair of channels that fluctuate exactly the same.

1. Seed-based Correlation RSFC Results

From the Wilcoxon Signed-Rank group analysis on the individuals’ GLM T-values of the task

session, channel 24 (with lower p-value) showed the most significant activation based on the

finger tapping task. Figure 4.2(a) shows the group activation map which was derived from

implementation of GLM on the task session data. Consequently, the RSFC map from resting-

state session based on selected channel is shown in Fig. 4.2(b). In this figure, the range of the

t-values obtained by the statistical t-test, indicates the level of connectivity with channel 24.

Warm colors represent the channels who had significant connectivity with the Sensorimotor

seed.

For better visualization of the RSFC map, the empty spaces surrounded by channels were

set to the mean value of the surrounding values (e.g. the space among channel 12, 24, 25,

(a)

(b)

Figure 4.2. (a)Group activation map derived from task session using GLM. The lower p-value shows higher
activation. (b) Group RSFC map derived from resting-state session based on the selected seed (i.e. channel 24)
using GLM. The higher t-value shows higher connectivity with the seed.
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and 35 is equal to the mean of them). In general, the RSFC pattern derived from seed-based

correlation analysis using GLM, demonstrates similar pattern as expected based on the golden

standard presented in Fig. 3.6. To be more specific, channels which are inside of the red square

as the desire Sensorimoto region of interest (ROI) of Fig. 3.6 have significant correlation with

the seed (p < 0.0005, critical t-value = 3.291).

2. ICA RSFC Results

As discussed in chapter II section 4., for each participant’s resting-state time series the compo-

nent of interest was selected based on its power spectrum.

Figure 4.3 illustrates two examples of the power spectrum derived from two independent

components (IC). The red square in Fig. 4.3(a) demonstrates the desired range of frequency in

which hemodynamic response fluctuates. Eventually, the RSFC corresponding to the IC1, the

first column of the mixing matrix (i.e. Â) in this case, is shown in Fig. 4.3(c). Consequently, the

group t-test analysis result from individual’s ICA RSFC analysis can be found in Fig. 4.3(d).

Same as the results derived from seed-based correlation analysis, the channels which are inside

of the desire Sensorimotor ROI of Fig. 3.6 present more significant connectivity (p < 0.001,

critical t-value = 3.091) compared to other channels covering Temporal areas of the brain.

3. ANN RSFC Results

In this section, the connectivity pattern based on training artificial neural network is presented.

The time points of the filtered oxy-hemoglobin signals were used as the input layer for the

proposed structure of the artificial neural network. Figure 4.4 represents the group level con-

nectivity pattern derived from the proposed ANN structure. As discussed in section 5. of

chapter II, the neural network was trained for 20 trials. Therefore, the output result for each

channel was a value between 0 and 20 which represents the number of times that a specific

channel was labeled for class (b). In Fig. 3.6, class (b) includes the channels outside of the

desire Sensorimotor ROI (i.e. the area excluding Sensorimotor area). Afterwards, for better

comprehensive comparison with the golden standard, the results were normalized to the range

of 0 and 1 as shown in Fig. 4.4. In this figure, the channels with warmer color were labeled as
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class (b) more frequently, whereas the channels with colder color were mostly set to class (a)

during the testing procedure.

(a) (b)

(c)

(d)

Figure 4.3. An example of the power spectra of (a) 1st and (b) 8th independent component derived from ICA
analysis of one subject. (c) The corresponding RSFC map of IC1. (d) Group RSFC map derived from resting-state
session using ICA.
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4. ROC Evaluation Results

To provide a comparison to the group results from all the above mentioned methods, ROC

curve is presented in Fig. 4.5. The group results were normalized to the range of 0 and 1 and

their similarity with the golden standard was determined by ROC. In the golden standard for

seed-based and ICA analysis the channels inside of the desire Sensorimotor ROI were labeled

as class 1, whereas for ANN analysis, they were labeled as class 0. As in this thesis the aim is

only finding two classes (or clusters), the labels were selected only in order to distinguish the

classes.

Figure 4.4. Group RSFC map derived from resting-state session using ANN.

Figure 4.5. ROC curve. The area under the ROC curve of each method demonstrates their similarity to the golden
standard.
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The area under the ROC curve (AUC) illustrates a quantitative value of the similarity of the

resting-state functional connectivity results with the golden standard. The AUC for seed-based

analysis, ICA, and ANN are 0.93, 0.89, 0.96, respectively. Based on AUC performance eval-

uation, the proposed method for estimating functional connectivity based on artificial neural

networks showed relatively better performance compared to the conventional methods.
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V. Discussion and Conclusion

An accumulating body of evidence from previous studies suggest that resting-state functional

connectivity is an important tool for exploration of brain diseases. The advances of several

progressive methodologies in detecting RSFC patterns have been mentioned in previous stud-

ies. In this study, a new methodology based on artificial neural network was presented and its

performance was compared with two widely used methods in RSFC studies.

Inspired by human brain system and regarding to the capabilities of artificial neural net-

works in system identification, this study focused on the feasibility of artificial neural network

for resting-state functional connectivity detection. The spatial maps derived from the two con-

ventional methods as well as proposed ANN-based method followed the connectivity patterns

of the Sensorimotor area which were obtained in previous studies [8, 9, 13]. Eventually, the

results highlighted the successful detection of RSFC by artificial neural networks.

ANN yielded slightly better performance in detection of the RSFC maps compared to the

conventional methods. One important reason of the better performance of ANN in RSFC detec-

tion is that ANN can learn the behavior of a signal through its time points and set the learning

weight values based on the difference of the values in each time point. Collectively, ANN was

proposed as a promising approach in resting-state functional connectivity analysis. However,

in order to train the network, two classes were chosen manually. Recent machine learning

approach known as semi-supervised learning will be considered for choosing the classes auto-

matically.

In seed-based analysis, as previously was reported, the results basically depend on the

selection of the seed. However, in some studies the connectivity between specific ROI and non-

ROI regions is the aim of the study in which seed-based analysis can be a suitable approach [8].

On the other hand, ICA-based analysis showed more localized connectivity patterns in previous

studies [13], however, caution is needed in visually detection of the component of interest.

To date, it is not known which method is the most suitable approach in connectivity detec-

tion [8]. Despite all the above mentioned metrics, it should be noted that future investigations
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should be taken into the consideration to understand the connectivity maps in both resting-state

and task-based experiments including other brain regions as well.
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neural networks as a powerful numerical tool to classify specific features of a tooth based

on 3d scan data,” Computers in biology and medicine, vol. 80, pp. 65–76, 2017.

[28] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the 27th international conference on machine learning (ICML-10),

pp. 807–814, 2010.

30



[29] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[30] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[31] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating

characteristic (roc) curve.,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[32] Y. Gu, S. Miao, J. Han, K. Zeng, G. Ouyang, J. Yang, and X. Li, “Complexity analysis

of fnirs signals in adhd children during working memory task,” Scientific Reports, vol. 7,

2017.

[33] M. Okamoto, M. Matsunami, H. Dan, T. Kohata, K. Kohyama, and I. Dan, “Prefrontal

activity during taste encoding: an fnirs study,” Neuroimage, vol. 31, pp. 796–806, 2006.

[34] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applica-

tions,” Neural Networks, vol. 13, no. 4, pp. 411–430, 2000.

[35] H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer,
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