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Abstract

Age-related macular degeneration (AMD) is the main cause of irreversible blindness among

the elderly and require early diagnosis to prevent vision loss, and careful treatment is essen-

tial. Optical coherence tomography (OCT), the most commonly used imaging method in the

retinal area for the diagnosis of AMD, is usually interpreted by a clinician, and OCT can help

diagnose disease on the basis of the relevant diagnostic criteria, but these judgments can

be somewhat subjective. We propose an algorithm for the detection of AMD based on a

weakly supervised convolutional neural network (CNN) model to support computer-aided

diagnosis (CAD) system. Our main contributions are the following three things. (1) We pro-

pose a concise CNN model for OCT images, which outperforms the existing large CNN

models using VGG16 and GoogLeNet architectures. (2) We propose an algorithm called

Expressive Gradients (EG) that extends the existing Integrated Gradients (IG) algorithm so

as to exploit not only the input-level attribution map, but also the high-level attribution maps.

Due to enriched gradients, EG can highlight suspicious regions for diagnosis of AMD better

than the guided-backpropagation method and IG. (3) Our method provides two visualization

options: overlay and top-k bounding boxes, which would be useful for CAD. Through experi-

mental evaluation using 10,100 clinical OCT images from AMD patients, we demonstrate

that our EG algorithm outperforms the IG algorithm in terms of localization accuracy and

also outperforms the existing object detection methods in terms of class accuracy.

Introduction

Deep learning is of growing importance in many applications, such as image recognition and

image localization. A number of efforts have been made to classify medical images with regard

to disease using deep learning models, and accordingly, the explainability of such models has

become an important topic of research in the medical imaging field. Because of the critical
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nature of medical applications, not all decisions should be left to models. As in previous

research such as [1–3], it is safer to use the models only to support clinicians’ decisions.

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in

people 50 years of age or older in the developed world. It is known that damage to the retinal

pigment epithelium and a chronic inflammatory response can lead to deposit yellow or white

accumulations of extracellular material between Bruch’s membrane and RPE and develop

choroical neovascularization (CNV) or retinal atrophy. The expression of angiogenic cytokines

such as vascular endothelial growth factor can also induce retinal degeneration [4]. Most of

these changes can be detected by taking macular images using optical coherence tomography

(OCT). OCT is also a critical modality for retinal evaluation before the initiation of anti-VEGF

therapy and for the assessment of the subsequent therapeutic effect [5]. Interpretation of OCT

images is usually performed by a clinician, and it can aid in the diagnosis and selection of treat-

ment modalities of AMD on the basis of the relevant criteria. However, these judgments can

require a great deal of human efforts and be somewhat subjective. Thus, an accurate com-

puter-aided diagnosis (CAD) system for AMD detection is needed for resolving this situation.

There have been proposed a number of methods to diagnose AMD using OCT images [6–

9]. In particular, the deep learning-based methods, [6] and [7], have utilized well-known con-

volutional neural network (CNN) models, VGG16 [10] and GoogLeNet [11], and achieved the

accuracies of 93.45% and 94%, respectively. However, they only can do prediction, but cannot

localize suspected AMD lesions in OCT images and so might not be very useful as a CAD sys-

tem. In addition, they can predict only two or three classes, but clinicians in hospitals require

predicting four classes in many cases, normal, dry AMD, wet AMD (observation only) and wet

AMD (anti-VEGF injection required), which are more difficult to discriminate among.

Meanwhile, several algorithms [12–15] have been proposed to explain what a model consid-

ers and predicts from input images. In particular, the guided-backpropagation method [14]

and the Integrated Gradient (IG) algorithm [15] have been proposed to find the attributes of

the input that most strongly contribute to predicting the class of the input data. For image

data, they can find an attribution map, in which the pixels in the image that are important for

prediction are highlighted. For the attribution map, guided-backpropagation calculates the

pixels that have a positive effect on a class label by using the gradients of the model and consid-

ering the activation functions of the model. On the other hand, IG integrates all the gradients

computed at the points along the path from the input image vector to the baseline (e.g., black)

image vector. In general, IG calculates and exploits more gradients than guided-backpropaga-

tion to find the attribution map. These methods have been proven to be effective for general

images like ImageNet. However, they tend to be less effective for medical images of relatively

small amount of information, e.g., OCT images.

In this paper, we propose an end-to-end weakly supervised deep learning-based method for

predicting the class of AMD and locating its lesions in OCT images. The term weakly super-
visedmeans that our algorithm only uses weakly-labeled (i.e. image-level labeled) datasets

which do not contain any region information to localize lesions in images. That is, our method

does not need any bounding box information, unlike object detection methods [16, 17]. End-
to-endmeans that our method can be performed and improved jointly according to the perfor-

mance of the CNN model used.

The proposed method consists of the following two components: a new concise CNN

model for OCT images and so-called the Expressive Gradients (EG) algorithm. Our CNN

model outperforms the existing models for AMD detection regardless of its 20X fewer parame-

ters. Our EG algorithm exploits not only the gradients with respect to the input image, but also

the gradients with respect to all the intermediate feature maps, for conjugating gradient back-

propagation as much as possible. From such enriched gradients, we can find good attribution
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maps in the images having relatively small amount of information (e.g., OCT images). As a

result, it can localize the lesions better than the conventional guided-backpropagation method

and the IG algorithm, which are exploiting only the gradients with respect to input image, for

OCT images. It improves both coverage and hit rate compared with the guided-backpropaga-

tion method and IG algorithm. To support the field compatible CAD system, our method pro-

vides two kinds of visualization options: image overlay and bounding boxes. For the latter

option, the number of boxes (i.e., top-k) can be controlled by clinicians.

CNN model for OCT images

In this section, we present our CNN model for predicting the presence of AMD from OCT

images. Since our EG algorithm is solely based on the weights and gradients of the CNN

model used for explaining the lesions, it is important to use a concise CNN model of a higher

accuracy for better explainability. However, most of the existing CNN models for OCT images

are built using the CNN architectures for general image datasets like ImageNet, and so, tend to

be very large and contain unnecessary weights and features for explaining the lesions of AMD.

Thus, we propose a concise and accurate CNN model for OCT images.

Fig 1 presents the architecture of our CNN model, which consists of six convolutional layers

and four dense layers. The last layer contains four neurons, which correspond to the four clas-

ses for input OCT images. We acquire a total of 10,100 clinical OCT images from a national

university hospital for training and testing our model and other models, where are 5,075 nor-

mal images, 2,225 dry AMD images, 650 wet AMD (observation only) images, and 2,150 wet

AMD (anti-VEGF injection required) images. For the images, each macular scan was per-

formed as vertical and horizontal 25-line raster macular scan from 224 patients over age of 50,

and every image was extracted from each macular OCT scan. The dimension of an original

image is about of 380 × 1000 of RGB (i.e., three) channels, which does not contain personal

information such as name. Our model takes a downscaled image having the dimension of

128 × 342 of RGB channels. We use the same three channels for the input of the model

although the original input images look like gray-scale ones since we consider using the model

for the CAD system. We perform batch normalization to achieve the robustness for the case in

which a batch is biased toward a specific class and to prevent gradient vanishing. Our model is

composed of three convolutional blocks, each of which has two consecutive convolution layers

followed by a max pooling layer. The former convolution layer is with padding, while the latter

one is without padding. The kernel sizes are of 3 × 3, and the stride is one. The first dense layer

is the flattening layer, and the numbers of neurons in the last three dense layers are 200, 20,

Fig 1. The architecture of our CNN model for AMD prediction on OCT images.

https://doi.org/10.1371/journal.pone.0215076.g001
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and 4, sequentially. Right after the second dense layers, there is a batch normalization layer. In

the last two connections, dropout operations with 0.5 are applied. We use the ReLU as activa-

tion function for all the layers except the output layer, where we use the sigmoid. The channel

size of each convolutional layer are listed in Fig 1.

For evaluation, we separate a total of 525 images of eight patients from 10,100 input images.

We randomly selected those eight patients for separate test data, in particular, two normal

patients, two dry AMD patients, one wet AMD (observation only) patient, and three wet AMD

(anti-VEGF injection required) patients. We use 10, 100 − 525 = 9,575 images for training

both our model and other existing models. For training data, we track the validation loss and

accuracy using 5-fold cross-validation.

For training our model, we use a cross-entropy loss function and the Adam optimization

algorithm. We initialize the weights using the Xavier initialization [18]. We note that the

model is trained using only OCT images with their class labels, without additional information

or supervision such as bounding boxes or segmentation information. We perform a total of

200 epochs, where we use the learning rates of 0.01, 0.001, and 0.0001, for the first 100 epochs,

the next 50 epochs, and the last 50 epochs, respectively. The batch size for both training and

validation is 101.

Table 1 shows the accuracies of the existing models for predicting AMD severity labels for

OCT images and our proposed model. Since most of the existing models are evaluated using

their own data, which are not publicly available, we evaluate those models using our data. In

detail, we consider the models in [6–9], where [8, 9] are non-deep learning models, and [6, 7]

are deep learning ones. Among the models, we cannot evaluate the model in [9] since there is

no codes available and no information for implementation such as the dictionary of visual

words which they used for preprocessing of OCT images. Deng et al. [8] uses a histogram of 11

bins from 40 Gabor filters and feeds the abstracted features of images to the classifier. Lee et al.

[6] uses the VGG16 architecture of 130 M parameters with the Xavier initialization. Karri et al.

[7] uses the GoogLeNet model of 6.8 M parameters with transfer learning. For all the models

in [6–8], we modified their output layer such that they can predict four classes instead of two

Table 1. Performance evaluation of AMD prediction models for OCT images (STD = standard deviation).

Method Performance on their data Performance on our data

# of classes to predict # of images Reported

accuracy

Test

accuracy

Validation

accuracy

5-fold CV

STD

VGG16 [6] 2 (Normal, AMD) 2.6M 93.45% 71.81% 80.70% 0.0154

RF‡ with BoW§

[9]

5 (Normal, Early AMD, Intermediate AMD, Advanced AMD

GA, Advanced AMD CNV

3,265 80.4% - - -

RF with GFET¶

[8]

3 (Normal, Dry AMD, Wet AMD) 420 88.7% 49.25% 57.92% 0.0089

SVM with

GFET¶ [8]

3 (Normal, Dry AMD, Wet AMD) 420 94.4% 51.50% 62.28% 0.0147

NN with GFET¶

[8]

3 (Normal, Dry AMD, Wet AMD) 420 78.1% 52.50% 51.81% 0.0902

GoogLeNet [7] 3 (Normal, Dry AMD, DME#) 3,231 94% 80.18% 82.61% 0.0182

Our model 4 (Normal, Dry AMD, Wet AMD with observation only, Wet

AMD with anti-VEGF injection required)

9,575 (training), 525

(testing)

- 94.86% 96.05% 0.0035

‡RF: Random Forest,
§BoW: Bag of visual Words,
¶GFET: Gabor Filtering Energy Transform,
#DME: Diabetic Macular Edema.

https://doi.org/10.1371/journal.pone.0215076.t001
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or three classes since our data is of four classes. We train those models using the same 9,575

training images with tracking the validation accuracy using 5-fold cross-validation and test

using the same 525 separate test images.

Table 1 shows the performance of the existing models on both their data and our data and

the performance of our model. Our model achieves 94.86% test accuracy and 96.05% valida-

tion accuracy with the standard deviation 0.0035. The full list of validation accuracies is

95.55%, 96.48%, 95.87%, 96.20% and 96.15%. It outperforms the existing models, in particular,

49.25-52.50% in [8], 71.81% in [6], and 80.18% in [7] in terms of test accuracy. The reported

accuracies of the existing models in Table 1 all are the validation accuracies on their own data.

Moreover, these accuracies are the results when the number of output classes is only two or

three. On the contrary, our data is much more complex than the data used in the existing

studies since it consists of four classes which are more difficult to discriminate among. These

results suggest that constructing a new concise CNN model for complex OCT images can be

more effective for AMD detection than using the well-known models constructed for general

images such as VGG16 or GoogLeNet. OCT images usually look gray, that is, the amount and

variety of information in the images are much smaller than those of general images such as

ImageNet. In addition, the class patterns (i.e., lesions) in OCT images are usually subtle to dis-

criminate compared with those in general images.

Expressive Gradients (EG) algorithm

EG is a fully weakly supervised localization algorithm for finding suspected AMD lesions in

OCT images. The conventional guided-backpropagation method [14] and the IG algorithm

[15] exploit the backpropagation of gradients, in particular, the gradients with respect to the

input image. However, this approach tends to lose a considerable amount of gradient informa-

tion during backpropagation as a neural network model has more ReLU and maxpooling lay-

ers or becomes deeper. ReLU solves the gradient vanishing problem of the sigmoid activation

function, but has a dying ReLU problem [19] where a neuron is not longer learned once its

value becomes zero. The zero values of dead neurons are propagated to the next layers, and so,

their gradients are not available during backpropagation, which can degrade the explainability

of guided-backpropagation and IG that exploit only the gradients with respect to the input

image. The low quality of OCT images, that is, a relatively small amount and variety of infor-

mation, worsens this tendency. To alleviate this problem, our EG algorithm exploits not only

the gradients with respect to the input image, but also the gradients with respect to all the

intermediate feature maps. This proposed approach can be very useful for conjugating the gra-

dient backpropagation as much as possible even for the medical images of low quality.

The conventional IG algorithm calculates the attribution map as in Eq (1) [15], where x is

an input image, b the baseline image, and F: Rn! [0, 1, 2, 3] the CNN model classifying x into

four classes. Here, the baseline image is the input image satisfying F(�) = 0. The IG algorithm

calculates an attribution map by integrating all computed gradients at all points along the path

from the input image vector to the baseline image vector. In Fig 2, the blue line above the

CNN model indicates the operation flow of the IG algorithm.

IGðxÞ ¼ ðx � bÞ �
Z 1

a¼0

@Fðbþ a� ðx � bÞÞ
@x

da ð1Þ

The EG algorithm can be formulated as in Eqs (2) and (3), where Eq (2) means calculation

of an attribution map for a given feature map (fi), and Eq (3) means calculation of the expres-

sive gradients. In Eq (2), b indicates the baseline image, fi the feature map from the i-th

Weakly supervised lesion localization for AMD detection using OCT images
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convolution layer, and Fi the partial CNN model consisting of all the layers from the i-th con-

volution layer to the last layer of the model. We note that Eq (2) does not consider pooling lay-

ers, but only considers convolution layers, as the IG algorithm does. For instance, in Fig 1, f3 is

the feature map of the third convolution layer of the channel size (16/32), and F3 indicates the

partial CNN model from the third convolution layer to the output layer. Here, f0 means the

input image, and F0 the entire CNN model.

EGiðfiÞ ¼ ðfi � bÞ �
Z 1

a¼0

@Fiþ1ðbþ a� ðfi � bÞÞ
@fi

da ð2Þ

Intuitively, EG in Eq (3) is calculated as a weighted sum of the attribution maps {EGi(�)} of

all feature maps {fi}. In Eq (3), L indicates the number of convolution layers in the model, N(�)

the 0-to-1 normalization of a given attribution map, and the βi the hyperparameters that deter-

mine the weights of each normalized attribution map (0� βi� 1). For the CNN model in Fig

1, L becomes six. N(�) makes the values in each attribution map in the same range. In Fig 2, the

red solid line under the model indicates the operation flow of EG algorithm, the red double

line Eq (2), and the red dotted line Eq (3).

Eq (3) performs the summation of the attribution maps having different channel dimen-

sions. Since each feature map fi has a different channel dimension, and EGi(fi) has the same

dimension with fi, {EGi(�)} cannot be summed directly. Thus, we reduce the number of

channels of all the intermediate attribution maps to the same dimension, in particular,

Fig 2. Operations of Integrated Gradients and Expressive Gradients.

https://doi.org/10.1371/journal.pone.0215076.g002
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three (i.e., RGB) for the visualization of those maps on the input images. We introduce

the termWGi([: ωi]) (i> 0) in Eq (3) in order to change the dimension of each attribution

map. Let ωi be the weights between the (i − 1)-th and i-th layers, di−1 be the dimension of

(i − 1)-th layer, and di be the channel dimension of i-th layer. Then, oi 2 R
di ;di� 1 ;m;m, where di

indicates the output dimension of ωi, di−1 the input dimension of ωi, andm ×m the kernel

size. We defineWi as a series of multiplications of ωi from the input layer to the i-th layer

with marginalization of the kernel, i.e.,Wi ¼
Qi
l¼0

Pm;m
o
dl ;dl� 1 ;m;m
l . We note thatWi 2 R

di ;3,

since d0 = 3 (i.e., RGB). Then, we defineWGi as a transpose ofWi, i.e.,WGi ¼WT
i , which

can be used to convert the dimensions of the attribution maps to the dimension of input

image.

EG ¼
XL

i¼0

bi � NðEGiðfiÞ �WGið½: oi�ÞÞ ð3Þ

Algorithm 1 presents the pseudo code for computing N(EGi(fi) ×WGi([: ωi])) in Eq (3),

which also considers not only convolution layers, but also pooling layers. It first calculates

the attribution map attMap for a feature map fi as in Eq (2) (Line 1). Then, it adjusts the

dimension of attMap by multiplying attMap with the marginalized weights of ωi, i.e., wg
(Lines 5-7), or upools attMap for dealing with a pooling layer (Lines 3-4), until it reaches the

input layer (Line 2). The unpooling operation in Line 4 is different from the conventional

unpooling operation used in CNN backpropagation. To deal with maxpooling, we unpool

the attribution map without a maxpooling index and copy the same value to all indexes.

This allows us to preserve the information of higher-level attribution maps in all receptive

fields in the input image. When calculating EGi in Line 1, we approximate it through discre-

tization as in the IG algorithm [15], in particular, by using 50 steps for the Riemann sum

approximation.

Algorithm 1: Computing N(EGi(fi) ×WGi([: ωi]))
Input: fi, feature map of the i-th layer

[: ωi], all weight matrices from ω1 to ωi
1 attMap  EGi(fi);
2 while i > 0 do
3 if di == di−1 then
4 Unpool attMap;
5 else
6 wg  

Pm;m
o
di ;di� 1 ;m;m
i ;

7 attMap  attMap × wg;
8 end
9 i  i − 1;
10 end
11 return N(attMap);

Based on the resulting attribution maps, we localize the lesions by the following three steps:

finding the pixels in the attribution maps that have positive values; normalizing the attribution

maps to the range [0, 1]; and finding the pixels larger than a given threshold τ. There are two

options for visualization of the pixels found. The first option visualizes the highlighted image

with an overlay. The second option visualizes the lesions as the top-k bounding boxes. In

detail, we construct circles around the pixels found and draw the boxes containing the circles.

We calculate a sum of pixel values for each bounding box and sort the boxes such that only the

top-k boxes can be visualized by clinicians with interactively changing k. For the purpose of

CAD, the first option, i.e., the overlay option would be preferred. We mainly use the bounding

box option for performance comparison in this paper.

Weakly supervised lesion localization for AMD detection using OCT images
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Experimental evaluation

We set b in Eq (2) to black image and set the hyperparameters {βi} (0� i� 6) to the values of

[1, 0.166, 0.166, 0.166, 0.166, 0.166, 1]. If we give a high weight to the input attribution map,

i.e., β0, the overlay visualization option tends to highlight broader areas of low intensity, and

so, it becomes difficult to find clear and distinct bounding boxes. By contrast, giving a high

weight to the high-level attribution map, e.g., β6, results in the overlay images that highlight

biased intense areas and large bounding boxes. We give high weights to both β0 and β6 since it

shows overall good results. We leave the optimization of hyperparameters for future work.

For evaluation of our EG algorithm and other two methods (i.e., guided-backpropagation

and IG), we use the same CNN model proposed in Fig 1 and trained using our 10,100 OCT

images. Although the CNN model is trained using only class labels without annotations like

bounding boxes, all three methods, guided-backpropagation, IG, and EG can localize the

lesions as highlighted images or bounding boxes based on their resulting attribution maps. To

measure the localization accuracy of those methods, we use a total of 1,057 images which two

skilled ophthalmologists annotated dry AMD and wet AMD with bounding boxes based on

disease judgments. The number of boxes contained in 1,057 images is 3,761. They are used for

the ground truth to measure the localization accuracy. The boxes contain drusen, choroidal

neovascularization membrane, subretinal fluid, intraretinal fluid, and intraretinal hyperreflec-

tive material. We use bounding-box-level annotation instead of pixel-level annotation since

the latter is too difficult to obtain in high resolution OCT images. Moreover, we could obtain

only 1,057 annotated images since it costs a lot for skilled ophthalmologists to annotate the

images. All procedures have been supervised by an experienced retinal specialist. For measur-

ing the localization accuracy, we define and use the coverage and the hit rate, which will be

described in detail later. Here, we empirically set the threshold τ, the hyperparameter for deter-

mining the degree of highlighting, to 0.3 for our experiments. Fig 3 shows the results in the

overlay and bounding box options while varying τ from our EG algorithm.

We conduct another kind of experiment, comparing our method with the existing object

detection methods. In particular, we compare the class accuracy of our method with that of the

well-known object detection methods, Single Shot Multibox Detector (SSD) [17] and Faster

R-CNN [16]. We use the above 1,057 annotated images for training of the methods with 5-fold

cross-validation. Here, we train our CNN model in Fig 1 using the 1,057 images with the class

labels of the images. On the contrary, we train the detection methods using 3,761 bounding

boxes in 1,057 images with the class labels of the bounding boxes. If we train the object

Fig 3. Variation of τ in wet AMD case.

https://doi.org/10.1371/journal.pone.0215076.g003
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detection methods and test their localization accuracy using the ground-truth bounding boxes

through cross-validation, their accuracies would be very high (almost 100%) due to overfitting.

In contrast, our method finds the bounding boxes for lesions based on the model trained not

using any bounding box information at all. Thus, it would be unfair to compare our method

with the object detection methods in terms of the localization accuracy. Instead, we can com-

pare them in terms of the class accuracy since they all utilize class information when training

their models.

Localization accuracy

We compare our EG algorithm with the guided-backpropagation method and the IG algo-

rithm by using the same CNN model in Fig 1, in terms of the localization accuracy. We evalu-

ate the performance of our method both quantitatively and qualitatively. For quantitative

evaluation, we use two measures, coverage and hit rate. They are formulated as in Eqs (4) and

(5), where Npixel(area) is the number of pixels in a given area, Bproposed the set of the proposed

bounding boxes, Bground the set of the ground-truth bounding boxes, and the operator \ finds

the intersection area between given two operands. In general, there are multiple bounding

boxes indicating the lesions in each image.

coverage ¼
NpixelðBproposed \ BgroundÞ

NpixelðBgroundÞ
ð4Þ

hit rate ¼
NpixelðBproposed \ BgroundÞ
NpixelðBproposedÞ

ð5Þ

Table 2 shows the results of the coverage and hit rate of the three methods. Our EG algo-

rithm outperforms both guided-backpropagation and IG in terms of both coverage and hit

rate. We note that the coverage and hit rate of our method are not so high due to the difference

in between the way of making the ground-truth bounding boxes by ophthalmologists and the

way of proposing the bounding boxes by our method. The ophthalmologists tend to make

boxes largely such that even background pixels are contained in the ground-truth bounding

boxes, whereas our method tends to propose the boxes compactly. In S4a and S4b Fig show

that the ground-truth boxes contain lots of background pixels. The performance of the

guided-backpropagation method in Table 2 is very poor, which seems to be due to the charac-

teristics of the OCT images. Guided-backpropagation quickly extracts the positive gradient

values by considering the relu activation function during forward pass and backward pass.

Although the amount of computation of this approach is much smaller than those of IG and

EG, it may be effective for general images, which contain a relatively large amount and variety

of information. However, OCT images have a relatively small amount and variety of informa-

tion, where the methods that can accumulate gradients like IG or amplify gradients like our

EG can be more effective.

For qualitative evaluation, we compare the overlay images and the bounding boxes found

by guided-backpropagation, IG, and EG for various classes and images. Fig 4 shows the result

Table 2. Quantitative localization analysis (STD = standard deviation).

Method Mean of Coverage STD of Coverage Mean of Hit Rate STD of Hit Rate
Guided-backpropagation 0.076262 0.133901 0.071629 0.129572

Integrated Gradients (IG) 0.423445 0.307058 0.283803 0.240317

Our method ( EG) 0.497719 0.375928 0.367342 0.293104

https://doi.org/10.1371/journal.pone.0215076.t002
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for the wet AMD case with anti-VEGF injection, where our method produces a clearer and

more specific overlay image than the IG algorithm, and at the same time, detects fluid in the

wet AMD case where the IG algorithm cannot detect well. Guided-backpropagation usually

localizes the background and cannot find the legion properly. Fig 5 shows the result for the dry

Fig 4. Qualitative analysis for the wet AMD (with anti-VEGF injection required) case.

https://doi.org/10.1371/journal.pone.0215076.g004

Fig 5. Qualitative analysis for the Dry AMD case.

https://doi.org/10.1371/journal.pone.0215076.g005
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AMD case, where our method can detect drusen in the image that the others cannot. In partic-

ular, the left side of the image is more highlighted than the other side. Such a difference in

detection performance is that our EG algorithm exploits not only the input-level attribution

map, but also the high-level attribution maps for detection and visualization of lesions. Since

the prediction is done in the dense layers of the model based on the high-level features of a

image, there is inherent benefit in using the high-level attribution maps, especially for medical

images having a small amount of information. The more results for qualitative evaluation are

presented in S1–S3 Figs.

Class-level accuracy

We compare our method with the object detection methods, SSD [17] and Faster R-CNN [16],

in terms of the class accuracy. We use the MobileNet [20] and ResNet50 models [21], which

are widely used for the object detection methods, for SSD and Faster R-CNN, respectively, and

train the models using 3,761 bounding boxes with their class labels. We use the Tensorflow

object detection API [22] for implementing our experimental framework. SSD and Faster

R-CNN may detect multiple objects with their class labels, and so, we decide the class label of a

image by majority, i.e., the class label of the largest number of boxes. If two different class labels

have the same number of boxes, we decide the class label of the box having the largest area.

Table 3 shows the mean and standard deviation of validation accuracy with 5-fold cross-vali-

dation. The number of failures with no class in the table means the number of images that the

method cannot detect any bounding box and so fail to decide the class label. In the results, our

method significantly outperforms both SSD and Faster R-CNN in terms of class accuracy. For

our data, we found that SSD and Faster R-CNN tend to predict the dry cases as wet cases

incorrectly. Fig 6 shows the three images that the object detection methods fail to classify the

label correctly. From the results, we can see that the object detection methods can detect the

bounding boxes themselves more correctly than our method, but fail to identify what each

box detected means in many cases.

Conclusions

In this paper, we have proposed a weakly supervised deep learning-based method for predict-

ing the class of AMD and locating its lesions in OCT images. Our proposed CNN model for

OCT images achieves a higher accuracy for AMD detection than the existing large CNN mod-

els. The compactness of our model is beneficial to the gradient-based methods such as EG

algorithms since it can reduce the loss of gradients during backpropagation. Our EG algorithm

outperforms the conventional guided-backpropagation method and IG algorithm in terms of

coverage and hit rate due to its exploitation of high-level attribution maps. Our method also

can localize lesions only using class labels without ground-truth bounding boxes. To the best

of our knowledge, our method is the first method to localize AMD lesions for OCT images in a

weakly supervised manner. It has an advantage of low cost over the existing object detection

methods that explicitly require preparing ground-truth bounding boxes, which might be very

Table 3. Comparison of class-level accuracy with object detection methods (STD = standard deviation).

Method Class-level accuracy 5-fold CV STD # of failures with no class

SSD 33.98% 0.1351 23 images

Faster R-CNN with ResNet50 68.96% 0.0923 9 images

Our CNN model 94.55% 0.0104 -

https://doi.org/10.1371/journal.pone.0215076.t003
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expensive. Since the number of ground-truth bounding boxes is usually limited due to its high

cost, the object detection methods tend to show bad performance in terms of the class accuracy

and cannot detect any lesions in some cases. We have shown that our model outperforms

object detection methods such as SSD and Faster R-CNN using 1,057 bounding boxes anno-

tated by ophthalmologists for the dry AMD and wet AMD cases in terms of predicting the

class labels. For future work, we will investigate the optimization of hyperparameters {βi} for

better performance and the real-time EG algorithm for supporting real-time CAD systems.

Supporting information

S1 Fig. Qualitative analysis S1: Dry AMD case. (a) is showing the input image that we feed

the CNN model, (b) is showing overlay visualized attribution map and bounding boxed locali-

zation image from the guided-backpropagation method, (c) is showing ground truth image

defined by skilled ophthalmologist, (d) is showing overlay visualized attribution map and

bounding boxed localization image from the IG algorithm, and (e) is indicating the result

from the our method (EG). Our model predicts the input image as dry AMD with score of

0.982668. As seen in this figure, EG generates bounded boxes with a more ordered along with

retinal layer than guided-backpropagation or IG.

(TIF)

S2 Fig. Qualitative analysis S2: Wet AMD (with anti-VEGF injection required) case. (a)

is showing the input image that we feed the CNN model, (b) is showing overlay visualized

attribution map and bounding boxed localization image from the guided-backpropagation

method, (c) is showing ground-truth image defined by skilled ophthalmologist, (d) is showing

overlay visualized attribution map and bounding boxed localization image from the IG algo-

rithm, and (e) is indicating the result from the our method (EG). Our model predicts the input

image as wet AMD (with anti-VEGF injection required) with score of 0.99987. As seen in this

Fig 6. Misclassified images of the object detection methods.

https://doi.org/10.1371/journal.pone.0215076.g006
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figure, EG produces the more clearer overlay map and focuses on fluids in the image where

guided-backpropagation method and IG algorithm do not.

(TIF)

S3 Fig. Qualitative analysis S3: Wet AMD (with anti-VEGF injection required) case. (a)

is showing the input image that we feed the CNN model, (b) is showing overlay visualized

attribution map and bounding boxed localization image from the guided-backpropagation

method, (c) is showing ground truth image defined by skilled ophthalmologist, (d) is showing

overlay visualized attribution map and bounding boxed localization image from the IG algo-

rithm, and (e) is indicating the result from the our method (EG). Our model predicts the input

image as wet AMD (with anti-VEGF injection required) with score of 0.99941. As seen in this

figure, EG produces the more specific overlay map and detect a fluid in the image where

guided-backpropagation method and IG algorithm cannot.

(TIF)

S4 Fig. Examples of ground-truth bounding boxes containing background pixels.

(TIF)
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