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ABSTRACT

PI controller has been widely used in various industrial fields and played important role of eliminating
the tracking error. In PI controlled system with saturation actuator, method called “Anti-windup” has been
used for avoiding undesirable phenomenon such as performance degradation, instability, and windup [2-3]. In
PI controlled systems with anti-windup, tracking loss due to measurement noise has been recently discovered,
where measurement noise persistently triggers anti-windup mechanism in a certain operation range that result
in non-zero steady state tracking error, which was called “Noise Induced Tracking Error (NITE)” [10]. Such a
system was analyzed under both zero-mean Gaussian noise and quantification of the tracking loss is given in
terms of system parameters and noise standard deviation.

In this work, we show that NITE could occur in all P1 controlled systems if both anti-windup and meas-
urement noise exist, regardless of anti-windups. We also extend the existing results to a case with uniformly
distributed noise. Using stochastic averaging approach, we quantify the noise induced tracking error with re-
spect to system parameters and noise characteristics, and shows that the phenomenon of tracking loss occurs
with uniformly distributed noise as well. Conditions under which the tracking loss occurs are derived. The
result is compared with that under zero mean Gaussian noise with the same level of standard deviation.

We suggest two solutions to prevent NITE. One method is using a virtual saturation. We explain how
effective the virtual saturation to mitigate NITE. An analysis of internal stability based on linear matrix ine-
qualities is conducted on the system with a virtual saturation. The other method is changing static P gain to
dynamic P gain. Dynamic P gain plays the role of eliminating an effect of noise in the systems. The result

shows that NITE does not occur due to the two solutions. We also show the differences between two solutions.

Keywords: Noise induced tracking error, Saturating actuator, PI control, Anti-windup, Measurement noise
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I.INTRODUCTION

1.1 Motivation

In linear systems, proportional-integral (P1) controller is used in various industrial applications and one
of necessary methods for eliminating tracking error. It is however, required to consider nonlinear effects
because saturation actuator is present in most of all systems [1]. In the case of Pl controlled systems
with saturation actuator, the phenomenon called Windup occurs due to controller with integral action
and have adverse effects such as instability, and performance degradation on the systems [2-3].

In order to mitigate the phenomenon of windup, Anti-windup strategies can be used in the systems [4-
6]. Various anti-windup strategies has been researched and used widely in industrial fields [7-10].
Recently, In PI controlled systems with anti-windup called back-calculation [11], tracking loss due to
measurement noise has been discovered, where measurement noise persistently triggers anti-windup
mechanism in a certain operation range that result in non-zero steady state tracking error. This non-zero
steady state tracking error was named Noise-Induced Tracking Error (NITE) [10].

In this work, we shows that NITE could occur in all systems with integral controller if both anti-windup
and measurement noise exist, regardless of anti-windups. This fact means that NITE is one of new prob-

lems and important issue in many different fields, where control system can be used.

1.2 Purpose

In this paper, we show that NITE occurs in Pl controlled systems with anti-windup structures shown in
[12-13] and then the quantification of the tracking error is given in terms of system parameters and noise
standard deviation by using stochastic averaging theory introduced in [14]. Such a system is analyzed
under both zero-mean Gaussian noise and uniformly distributed noise and NITE caused by Gaussian
noise is compared with that caused by uniformly distributed noise.

In order to mitigate NITE, some solutions are required. We suggest two solutions to avoid the phenom-
enon of NITE. One solution is a virtual saturation, which has a larger value of saturation bound than that
of actual saturation actuator bound. By using stochastic averaging theory, we quantify NITE in terms of
P1 controlled systems with the virtual saturation and compare it with PI controlled systems without the

virtual saturation.



In addition, we suggest a method determining a stability of the systems with a virtual saturation based
on Linear Matrix Inequalities (LMI). The other solution is transforming static proportional gain into
dynamic proportional gain of controller. Both of two solutions is useful methods to prevent NITE. We
compare these two solutions and show some characteristics of each of them by using MATLAB simu-

lation.

1.3 Outline

The outline of this paper is as follows: the problem statement is given in Chapter II. The analysis for
the systems is carried out using stochastic averaging theory and the result of a case with uniformly

distributed noise is compared with that of a case with Gaussian noise in Chapter III. Key solutions to
Noise Induced Tracking Error are provided in Chapter IV. In chapter V, we show that NITE occurs

by using a specific system. Conclusion is given in Chapter VI.



II. Problem statement

2.1 Anti-windups

Figure 1 shows the PI controlled systems subject to actuator saturation. P(s) is the plant, K,, and
K; are proportional gain, and integral gain. The signalsr, e, y, n, d, u are, respectively, reference, tracking

error, output, measurement noise, disturbance, and control input. satﬁ(u) is saturation actuator, which

is in the first position of the system to be controlled commonly in most previous researches [4][15-17]

and defined by

a u<a
satbwy={ B, u>B oy
u a<us<gf
» K, d
r,e ) + u + y
» K; > 3 satf(u) —> P(s)

+1

Figure 1. PI controlled systems with saturation actuator

There are various anti-windup strategies in order to avoid adverse effects due to actuator saturation.
We show anti-windup structures applicable to PI controlled systems in Figures 2(a), (b), (c) and (d).
Anti-windup structures of Figure2 (a), (b), and (c) are, respectively, called back-calculation, dynamic

full authority, and dynamic external global. Ky, is anti-windup gain, which is marked as K,y ;and



Kaw o in order to distinguish between themselves. K,y ;(s) and Kjy »(s) mean dynamic blocks of
anti-windup gains. Figure 2 (a) shows the anti-windup gain affect to the control system by injecting their
output signals into the state of integral controller. Figure 2 (b) shows the anti-windup blocks affect to
the control system by injecting their output signals into both the controller output and the state of integral
controller. Figure 2 (c) also, shows that the control system is affected by anti-windup blocks only at the
input and output.

Anti-windup structure of Figure 2 (d) is introduced in [13] and the system of Figure 2 (d) is equiv-
alent to Pl controlled system. Unlike anti-windup structures of Figures 2 (a), (b) and (c), the system of

Figure 2 (d) involves anti-windup without specific anti-windup gain such as Ky, .

» h’p d
r, e + 1 +y+ y
—'Q » K; 5 satf(u) —»| Ps) >
r
_ +

/ +1n
Figure 2 (a). PI system with back-calculation anti-windup
> Kp d
r,e ) + u +i+ y
—(- K; - satf(u) > P(s) >
_ 4 + S n
XY+
Kﬂw.z(s) <
Kﬂw.l (S)
+1
O«

Figure 2 (b). PI system with dynamic full authority anti-windup



r,e ) + u + y
» K; " s satf(u) > P(s) >
— +
Y+
Kaw,2(s) <
< Kaw,1(s)
+ +n

Figure 2 (c). PI system with dynamic external global anti-windup

d
J Ky > satf(u) > P(s) >
S 1|
Ki+K,S K, | |
+ 1N

Figure 2 (d). PI system with anti-windup referred to [13]

In Chapter III, we show that NITE could occur in all PI controlled systems with anti-windup struc-
tures through the Figures 2 (a), (b), (c), and (d) and quantify NITE in terms of the characteristic of both

the system parameters and measurement noise.

2.2 Gaussian noise and uniformly distributed noise

The quantification of NITE is provided in terms of the system parameters and noise standard devi-
ation of a,. It is therefore necessary to define the properties of measurement noise. In this section, we
cover both Gaussian distributed noise and uniformly distributed noise. Figures 3 (a) and (b) show the
characteristics of Gaussian distributed noise and uniformly distributed noise respectively.

When the average value of Gaussian distributed noise is zero, the Gaussian probability density

-5-



function (pdf) is defined by

n2

f) = g 2R @

The Gaussian probability curve shown in Figure 3 (a) describes the noise more prone to occur near
zero. The Gaussian probability density function is the famous function most commonly used for the
description of noise and random signal sources, because it has convenient properties in all of science
and mathematics [18-20]. The Gaussian probability density function is however, not a perfect to explain
a realistic noise, because the value of noise variable n is infinite.

On the other hand, The uniformly distributed noise follows the uniform probability density function,

which limits the value of noise variable n to the interval (—o,,v/3, 0,v/3) and is defined by

—— for |n| < 0,V/3
fn) =% . ®)

0 else

The value of noise variable into that interval are equally likely to occur unlike the case of Gaussian
distributed noise [21]. Therefore, the uniformly distributed noise is more useful rather than the Gaussian

distributed noise if we know the value of noise standard deviation of g, exactly.



A
_n
—_— ¢ 20

- 1
f(ﬂ) - V(2m)on

Figure 3 (a). Probability density function of Gaussian distributed noise

4 1
f(n) =< 20,V3

0 else

for |n| < 0,V3

—o,V3 o,V3 n

Figure 3 (b). Probability density function of uniformly distributed noise



III. Analysis

3.1 Transforming the system using stochastic averaging theory

Before analyzing the PI controlled systems with anti-windups shown in Figures 2 (a), (b), (c), and

(d). In order to analyze the systems of Figures 2 (a), (b), (c), and (d), the systems of those can be trans-
formed into that of Figures 4 (a), (b), (c), and (d) respectively. The saturation actuator, satg(u) is re-

placed with h’(i; K,a,,) by applying stochastic averaging theory [14].

A J

hg(ﬁ; Kyon) M P(s)

0
Figure 4 (a). Averaged version of system in Figure 2 (a)
> Kp d
rye€ 1 + u +{+ y
—O-b K, - hE (@ Ky0,) > P(s) 1>
A S +
!
Kaw.z(s) < <
Kaw.l(s) [+
+n
O«

Figure 4 (b). Averaged version of system in Figure 2 (b)



> K, d
rié +{+ y
> Ki > hg(ﬁ; Kpo-n) > P(S) >
Y+
Kaw.z(s) <
< Kﬂw.l(s)
+
+ 1
O«
Figure 4 (c). Averaged version of system in Figure 2 (c)
d
r4+ € u 8 + gt y
J K, ¥ he (W Kyo,) T P(s) >
S 1
Ki+K,S K, | J
+n
O«

Figure 4 (d). Averaged version of system in Figure 2 (d)

The function hﬁ (ﬁ; Kpan) of the systems of Figures 4 (a), (b), (c), and (d) is defined differently
depending on distribution characteristics of measurement noise. In the next section, we explain the

meaning of the function hg(ﬁ; K,0,).

3.1.1 Case 1: Gaussian noise

It is required to define the function hg (a; Kpan) depending on Gaussian distributed noise. When
the systems of Figures 2 (a), (b), (c), and (d) have Gaussian distributed noise as shown in Figure 3 (a),

the function hg(ﬁ; K,0,) is defined as below:



B(~. _at p u—a i—a
hga(u, KpO'n) 2 + > erf \/EKpo-n
2 2
U 5 u-a u-p
_i-F erf( u-p ) + Kyn e_<ﬁKpan) _ e<ﬁkpan> @
2 V2K,0,) 2m

Where, the function hgg(ﬁ; K,0,) indicates the function ht (a; K,0,) of the systems of Figures 4 (a),
(b), (c), and (d) affected by a Gaussian distributed noise [10]. The function hgi(a; Kpan) is defined as

the conditional expected value of satﬁ(u) with regard to Gaussian distributed noise n and (4) can be

obtained by calculating (5) [10].

2

hgi(ﬁ;Kpan) =f sat(ﬁ—Kpn)\/%a e 20hdn (5)
—oo n

3.1.2 Case 2: uniformly distributed noise

Similarly, the function hﬁ (a; Kpan) should be defined depending on uniformly distributed noise.
When the systems of Figures 2 (a), (b), (c), and (d) have uniformly distributed noise as shown in Figure

3 (b), the function hg (a; Kpan) is defined as below:

1
1) In case of o, < K73

h, 2 (@ K,0,) is defined by

-10-



a ﬁSa—Kpan\/g

2
(T+a+KponV3) —4au
2KponVi2

hufi(ﬁ; Kpo'n) =9 u a+ Kpan\/§ <u<gp- Kpan\/§ (6)

a—KpUn\/§< u< a+Kp0'n\/§

—(ﬁ+ﬁ—KpUn«/§)2+4ﬁﬁ

B —K,o,V3 <t <P +K,0.\3

2KponV12
B B+ Kyo,V3<u
1
2) In case of o, = P
h.2 (W K,p0,) is defined by
( a u<a-— Kpan\/§

(@+Kpony3)  +a(a-2u+2K,003)
2KponV12

_ —2U+2Ky,00V3)-B(B-2U-2KyonV3 _
hly (% Kp0,) = 5 i poz\l/;;)an/i/(lﬁz o) p-KonV3<i<a+Kon3 ()

a—Kpan\/§<ﬁ S,B—Kpan\/g

—(ﬁ+KpUn\/§)2—/3’(,8—217—4Kp0'n\/§)
2Kpon V12

B B +K,o,V3 <

a+Kpan\/§<ﬁ SB+Kpan\/§

Where, the function &, ” (% K,0,) indicates the function hE(; K,0,,) of the systems of Figures 4
(@), (b), (c), and (d) affected by uniformly distributed noise. The function hug(ﬁ; Kpo—n) is also, defined

as the conditional expected value of satﬁ(u) with regard to uniformly distributed noise n. Both (6)
and (7) can be obtained by calculating (8). Unlike the case of Gaussian distributed noise, evaluating
integral in (8) gives (6) and (7) depending on the values of the standard deviation of o,, of measurement

noise.

g i3 1
h’ (@ K, 0,) = t(@ - Kyn) ——=d 8
ua(u pO'n) _Unﬁsa (u pn) Zo-n\/g n ( )

-11 -



To compare effects between Gaussian distributed noise and uniformly distributed noise, Figure 5

shows the plot of hgi(ﬁ; K,0,) and h,” (@ K,0,). 0, =0.1 is an arbitrary value that satisfy the

and g, = 0.3 is an arbitrary value that satisfy the condition a,, = —_ The

condition g, < P

1
Kp\3

functions hy” (% K,0,) and h,f5(;K,a,) are differently determined by noise characteristics.

! ! : ! ! ! ! ! !
. =
7 NN SO SO - . -
TR S N A 7 S -
VIR S S 0728 W -
YT S 74 - -
TS S S -
P 0 W S0 DU . -
| . ) A R n -------------- a ------- S— satf(ﬂ) zezr
7)1 - AR W— EL---._- - . ;E ....... S hﬂg(ﬁ;o's) —
: ; b0 (5 0.5)
L i A <l . e T heP@15) "7
4 : : s s 1, B (0;1.5) -
| l l | l l | | l
5 4 3 2 4 0 1 2 3 4 5
u

Figure 5. h,” (& K,0y,), hgi(ﬁ; K,a,), and sat? (@) with a = -1, B=1 for K, =5, 0, = 0.1

and 0.3

3.2 Quantifying NITE

In order to analyze the phenomenon of NITE and figure out the amount of the steady state track-
ing error, we quantify NITE. Analyzing the systems of Figures 4 (a), (b), (c), and (d) provides the

quantification of NITE given in (9). The derivation of (9) is provided in Appendix I.

-12 -



(ass - hg (ﬁss; Kpan)) Kaw,1
K;

i)The system of Figure 4 (a)

(ass - hg (ﬁss; Kpo-n)) Kaw,1(0) . .
X ii) The system of Figure 4 (b)
5 i

€ss = C))
(ﬁss — hg (Tss; Kpan)) K,,1(0) iii) The system of Figure 4 (c)

(ﬁss - hg (ass; Kpo-n))

Ky

iv) The system of Figure 4 (d)

Where, i, and j;, are respectively, the steady state value of % and y, and ey is the steady state
value of tracking error, which indicates the amount of NITE. K,,,,(0) is the d.c gain of K, ,. Ac-
cording to (9), the result on e, gives the conditions under which NITE occurs and we realize that NITE
occurs when two conditions must be satisfied at the same time.

The first condition is about measurement noise. According to (9), NITE is never present without
measurement noise, regardless of anti-windups. g, — hg (Tss; Kpan) approaches zero as the standard

deviation of measurement noise goes to zero because the function hg(ﬁ; K,a,) is transformed into

satg(ﬁ). Thus, it can be shown that &,; = 0, which means that NITE hardly exists.

The second condition is about the gains of anti-windup structures. In the systems without anti-
windup structures, NITE is not induced by measurement noise. This fact is very clear as you can see in
9). If Kgyp =0 or Kgy,1(0) =0, &5, =0 regardless of the system parameters and noise character-
istics such as integral gain, proportional gain, noise standard deviation, and distribution characteristics
of measurement noise. As shown in (9), we figure out that NITE is not caused by K,,,,(s). In other
word, anti-windup gains that act as a cause to occur NITE are only K,,, 1 and Kg,,1(0).

Those two conditions show that NITE occurs if both measurement noise and anti-windup exist at
the same time regardless of anti-windups. NITE is therefore, likely to occur in all P controlled systems

with anti-windup structures because measurement noise is inevitable.

3.3 Example

In this section, we show that NITE occurs in the PI controlled systems with anti-windup structures
shown in Figures 4 (a), (b), (c), and (d) by using MATLAB simulation. The system parameters of Figures

4 (a), (b), (c), and (d) are arbitrarily set to any values that do not make those systems unstable. The

-13-



system parameters are given in r = 0.9, Ky 1 =1, Kqy1(S) = i Kaw 2(s) = f K;=3, K,=5,

1 )
d=0.01,P(s) = 552: Thevaluesof a and B for saturation actuator is -1 and 1 respectively. The simulation results

are shown in Figure 5 and Figure 6. The standard deviations of measurement noise are setto ¢, = 0.1 and a,, =
0.3 respectively because the function hug (ﬁ; Kpcrn) is divided into two different definitions depend-
ing on the standard deviation of noise. As shown in Figures 6 and Figures 7, the values of &, depends
on the standard deviation of measurement noise.

When g,, = 0.1, green solid line is the response of the systems of Figures 2 (a), (b), (c), and (d)
and red dotted line is the response of the systems of Figures 4 (a), (b), (c), and (d). When ¢,, = 0.3, blue
solid line is the response of the systems of Figures 2 (a), (b), (c), and (d) and magenta dotted line is the
response of the systems of Figures 4 (a), (b), (c), and (d). The outputs in Figure 6 and Figure 7 are

specified as below.
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(a) : when g,, = 0.1 (left) and 0,, = 0.3 (right)
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——— Reference : Reference
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04p-- (1 S P T T TCTTTT PETTPIY FPPPPTT FPRPE PRPPTR PR

1 1 1 1 1 L 1

0
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(b) : when g;,, = 0.1 (left) and 0,, = 0.3 (right)
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when g,, = 0.1 (left) and g,, = 0.3 (right)

Figure 6. The responses of the systems with (a) : Figure 2(a), (b) : Figure 2 (b), (c) : Figure 2 (c) and

(d) : Figure 2 (d) under Gaussian noise.
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Figure 7. The responses of the systems with (a) : Figure 2(a), (b) : Figure 2 (b), (c) : Figure 2 (c) and

(d) : Figure 2 (d) under uniformly distributed noise.
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These results show that the response of the systems of Figures 2 (a), (b), (c), and (d) are the same
with those of Figures 4 (a), (b), (c), and (d). In other word, the systems of Figures 4 shows high accuracy
of the analysis method. These results also implies that NITE occurs in all PI controlled systems regard-

less of anti-windup structures. Thus, the phenomenon of NITE has to be consider significantly in all the
industrial systems with anti-windups.

-17 -



IV. Solution

4.1 Virtual saturation

The phenomenon of NITE is one of significant issues in all Pl controlled systems with anti-windups
and it is a problem to be solved. In this section, we suggest two solutions to mitigate the phenomenon
of NITE. The First solution is to put another saturation called virtual saturation as the input of actual
saturation in the systems. In order to avoid the phenomenon of NITE, the virtual saturation has to have
bigger saturation bound than actual saturation bound shown in Figures 2. The reason will be referred to
section 4.1.1.

The virtual saturation is defined by

r

o, u<ao

B’ _ ’ ’

sat (W) =91 B u>f (12)
u o<su<sp

Where, u is control input of the virtual saturation and the values of o' and B’ should satisfy o’ < a
and B> B respectively.
By putting the virtual saturation, the systems of Figures 2 (a), (b), (c), and (d) can be described in the

systems of Figures 8 (a), (b), (c), and (d) respectively. Actual saturation is described in satf (satf ,’ (w))

because actual saturation is affected by the virtual saturation satfj (u).
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> Kp d
rye + 1 , .| y
— (> k; > = sat?, (u) sat? (sat?, () Ps) >
_ A Y S a a
+ 1
O
Figure 8 (a). The system of Figure 2 (a) with virtual saturation
K
12
d
+ , NELG y
K; sat?, (w) satf (sat?, (u)) P(s) >
_ r H a a
Kmv.z(s)
Kaw.1(s)
4N
f) ¢
Figure 8 (b). The system of Figure 2 (b) with virtual saturation
K, d
, , +y+ y
K; satf,(u) satf(satf,(u)) P(s) >

K aw,2 (5 )

Kawa(s)

+1L|
?

Figure 8 (c). The system of Figure 2 (c) with virtual saturation
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TS " B’ B(satl N Y
Y K, ¥ sat’, (u) TP satg (satl, (u)) P(s) >
s 1|
K;+K,S K, |
+n
O+

Figure 8 (d). The system of Figure 2 (d) with virtual saturation

In order to figure out how effective the virtual saturation is to prevent the phenomenon of NITE,

we quantify the systems of Figures 8 (a), (b), (c), and (d). We transforms the systems of Figures 8 (a),
(b), (c), and (d) into the systems of Figures 9 (a), (b), (c), and (d) by applying stochastic averaging

theory. The process for this is provided in Appendix II.

L e + 1 + u + ¢t
— 0 K 0> = » nf(wK,0,) P(s)
A + + a p
" 1 (@ Kyon)
Kaw,l(s) <
+

Figure 9 (a). System with virtual saturation equivalent to Figure 8 (a)
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Kaw-2(s <
2() "
Kaw,l(s)

Figure 9 (b). System with virtual saturation equivalent to Figure 8 (b)

i

»> Kp
- _ d
€ 1] +y+  u + 3+
Y K < —>| hf (@ Ky0,) »O—>{ A5
3 S| +
l » 1’ (@ Kyon)
Kaw2(5) [ U:'+
Kaw,1(s) [«
Figure 9 (c). System with virtual saturation equivalent to Figure 8 (c)
d
u i y
—0—0—> K, S ACTES Pls) >
F
S 1 g, o
K+ K,5 K, hee (@ Kp0y) [
+1

Figure 9 (d). System with virtual saturation equivalent to Figure 8 (d)
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As already mentioned through Figures 6 and Figures 7, stochastic averaging theory is reliable
method for transforming the systems with respect to measurement noise and the system parameters. The

quantification of NITE of the systems of Figures 9 (a), (b), (c), and (d) are defined by

(ﬁss - hg/, (ﬁss; Kpo-n)) Kaw,l
K;

i)The system of Figure 4 (a)

(ass - hg: (ass; Kpan)) Kawn (0)

€ = 1 ki

ii) The system of Figure 4 (b)
(13)

(ﬁss — hg:(ﬁss; Kpan)) K,,1(0) iii) The system of Figure 4 (c)

(ﬁss - hg: (ﬁSS; KP a"))

Ky

iv) The system of Figure 4 (d)

The derivation of (13) is given in the Appendix IlI.

The equation of (13) is very similar with (9). Difference are #,; and hgf (uss; Kpoyn). According to (9)
and (13), if both integral gain and anti-windup gain of the systems of Figures 9 (a), (b), (c), and (d) are
the same with those of the systems of Figures 4 (a), (b), (c), and (d), the amounts of NITE of Figures 4

(@), (b), (c), and (d) are determined by both input and output of actual saturation actuator while the

amounts of NITE of Figures 9 (a), (b), (c), and (d) are determined by those of the virtual saturation. In
other word, |iiss — hg,’ (ss; Kpay)| should be smaller than that of |z, — hf (@ss; K,pa,)| in order to
mitigate NITE. We show that %, — hgf(ﬁss; K,0,) issmaller than s, — hg (Uss; Kpoy) in Appendix
V.

As shown in (13), the virtual saturation provides clue to reduce NITE. We therefore, need to determine

the values of both o' and B’ in order to reduce NITE. In the next section, we determine the values of

both o' and B'.

4.1.1 Virtual saturation limit

In this section, we determine the values of the virtual saturation bound o' and B’ in order to mit-
igate NITE. According to (13), e, is small if @, — hgf(ﬁss;Kpan) is small. That is, g is in the

region where u ~ hgf(ﬁ; K,a,). As plot of such region, Figure 10 shows the Function hﬁﬁ(ﬁ; K,0p)
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! !, — —_ . -
along with satf, (). There exists a region of % where hﬁ,(u; K,0,) and @ are almost identical. As

shown in Figure 10, the region can be characterized by two inequalities of (14) and (15).

1 ! T 1 T T 1
2.5 [-r=mmene T DD S A T e S R e .
| T S - SR —— B L
h ’ ' ; : - Y o ’ '
111 SRR SRRV S IS S— S— i 0 NOVS NS —
N I B SR NN SUD AU 7 A W T
. : : . ‘ ——pi
L i e S S SR & o i G e b e
' P, ; ' 18K0,: |
L D S e DT R $----- pn' ------- -
I & i 740 T
1—-—":“-“-“'““:-":-'—' L SEEEETEEY BT EREE ERCETREE RS T -1
T s SV 48 S b (i)
Y I S . R i . : S— hgij(ﬁ;Kpan) stz
' 0 . ! 5 H sEsEEm Sﬂt.l_'l(l_l}
T R e e S
1 L= 1 | 1 1 1 |
-5 4 -3 -2 -1 0 1 2 3 4 5
u

Figure 10. Plot of satf,’(ﬁ), sat!, (&), and hgg:(ﬁ; K,0,) under Gaussian distributed noise

u—a' >3K,0, (14)
B -1 > 3K,0,, (15)

Where, the margin of 3K, 0, is determined using the Gaussian distributed noise and is useful range to
prevent anti-windup activation from measurement noise. That is, & remains in the linear region, and
doesn’t activate the anti-windups with a probability larger than 0.99 because approximately 99% of the
values from Gaussian distributed noise are within 3K,,.

According to (14) and (15), é,s goes to zero because of u =~ hgf(ﬁ; K,0,). That is, NITE can be
avoided when o' and B’ satisfy the range of o’ < a —3K,0,, and B’ = B + 3K,0,. This fact can

be applied to the systems under uniformly distributed noise. Figure 11 indicates the systems of Figure 9

under uniformly distributed noise.
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Figure 11. Plot of sat?! (), sat!,(#), and hgi:(ﬁ; K,0,,) under uniformly distributed noise

4.1.2 Stability based on LMI

In order to show the stability of Pl controlled systems with virtual saturation, we analyze the sta-

bility of the systems with virtual saturation by using Linear matrix inequalities (LMI). LMI techniques

have been especially, used to determine the stability of linear systems subject to actuator saturation. We

here, show the internal stability of the system of Figure 8(a) with static full authority anti-windup strat-

egy, which is the same as back-calculation anti-windup due to the algebraic loop in here.

The state space forms of the system of Figure 8(a) is shown as below.

X, = Apx, + Bpsat,(u)
Yo = Cpxp
u= Kp(—yp) + x;

X = Ki(_yp) + Kaw,l (Satl(u) - u)

=24 -
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Here, x,, x;, u,and y, are the state of the plant, the state of the integral controller, the control input,
and the output of the plant respectively. sat,(w) is a virtual saturation and sat,(u) is a actual satura-
tion actuator.

We introduce the deadzone nonlinearity to arrive at LMI when checking the internal stability of the
systems with saturation actuator. The basic idea is to inscribe the saturation or deadzone into a conic
region (the space between the two red-dotted lines) shown in Figure 12. The left side of Figure 12 is the
graph of the saturation function and the deadzone nonlinear is shown in the right side of Figure 12. The
graph of saturation function is contained in a conic sector and the deadzone nonlinearity is contained in
this sector. We utilize the deadzone nonlinearity, because it doesn’t degrade the system performance and
is useful to express LMI technique. This sector has the property that its output y always the same sign

as its input u and the amount of y is not bigger than that of u [22-23].

sat(u) t ,/

Figure 12. The saturation function(left) and the deadzone function (right)

Here, the output of deadzone function of actual saturation and that of virtual saturation are referred to as

q, and g, respectively. The output of deadzone function is defined by

q1 = u —saty(u)

qz = sat,(u) — sat,(u) 17)
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This sector can be mathematically expressed using inequality y(u —y) = 0, which becomes
q(u —¢q) = 0 in case of the deadzone nonlinearity where y = gq.

In case of vector deadzone nonlinearity, q(u — g) can be written as

q{Wl(u —-q) =0 (18)

GWo(u—q,—q;) 20 (19)

Where W, and W, are a diagonal matrix which consists of arbitrary positive weighting. (18) is the
deadzone nonlinearity of virtual saturation and (19) is that of actual saturation.

According to (16) and (17), the state space form of the system of Figure 8 (a) is written as

Xp = (Ap - BprCp)xp +Byxi — Bpq' — Byq
Yo = CpXxp
X = _Kicpxp - Kaw,lq’ (20)

u=—-K,Cpxp +x;

By selecting x = [x; xl-T]T and q = [q,7 q,"]" , (16) is rewritten in the form of linear matrix in-

equalities as below

x = Ax + Bq

u=Cx 21)

Ap - BprCp Bp

where, A = ~K,C, 0

-B -B
| B=te 1= 7 7| e =1KG
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By depending on quadratic Lyapunov function V = xTPx with P > 0, it is desirable for the time de-
rivative of V' to be negative except at the origin. The time derivative can be determined from the direc-

tional derivative of V' in the direction Ax + Bq, which is provided by [12],[23]

V =xT(ATP + PA)x + 2x"PBq < 0 (22)

The nonlinear elements is required to consider the sector conditions in (18) and (19). Therefore, we can

use the following sufficient condition to guarantee (22):

xT(ATP + PA)x + 2x"PBq + 2¢*W,(u — q;) + 2¢X W, (u — q;) (23)

This inequality (23) can be rewritten as

ATP +PA C"W, +PB, PB,+CTW,
BIP + W,C ~W, —2W,

If the above LMI is feasible, then the system with virtual saturation is said to be internally stable.

In other words, there exist the free variables P, which satisfy the condition in (24).
Although the Internal Stability is determined by technique based on LMI, both virtual saturation bound

and actual saturation bound have to be considered in order to guarantee the internal stability.

4.2 Dynamic P gain

In PI controlled systems, Proportional gain block of PI controller is commonly static, which means
the block with no memory, while the proportional gain block is said to be dynamic if the block has

memory. Changing the proportional gain block into dynamic is helpful to mitigate NITE and we call the
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dynamic block dynamic P gain. Figures 13 (a), (b), (c), and (d) show the systems containing dynamic P

gain with anti-windups.

Y

satf (w)

d

+ y

—»| P(s) >
0

Figure 13 (a). Block diagram of the system of Figure 2 (a) with dynamic P gain controller

Y

Ky (s)

é
A 4

Kaw.z (5)

satf (w)

Kaw.l (5)

P(s)

A4

+ 1

)e—

Figure 13 (b). Block diagram of the system of Figure 2 (b) with dynamic P gain controller

A4

Ky (s)

Y

Kaw,2(s)

satf (w)

+

JL+

»

+

Kaw,1(s)

Y

P(s)

4

+ 1

Oe—

Figure 13 (c). Block diagram of the system of Figure 2 (c) with dynamic P gain controller
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) K, (s) » satf () > P(s) >
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Ki+K,S K, | J
+n

e

Figure 13 (d). Block diagram of the system of Figure 2 (d) with dynamic P gain controller

Figures 13 (a), (b), (c), and (d) are respectively, PI controlled systems similar with Figures 2 (a),
(b), (c), and (d). The only difference between Figures 13 and Figures 2 is the proportional gain of PI
controller. Actually, although the controller in Figures 13 is not PI controller anymore because the pro-
portional gain is not static, the controller in Figures 13 acts as Pl controller which has the role of elimi-
nating tracking error in systems.

By applying stochastic averaging theory, the systems of Figures 13 (a), (b), (c), and (d) are respec-
tively, transformed to the averaged systems of Figures 14 (a), (b), (c), and (d). The averaged systems is

used to quantify NITE, so we can check whether NITE occurs or not.

> d
ry ¢ +y+ y
—» (> K; satg(u) —»| P(s) >
F 3

Figure 14 (a). Averaged version of system in Figure 13 (a).
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Kp(s) d

ry € 1 + u +{+ y
—»(— K, — satf (w) —> P(s) >
_ F 3 + S +
Y+
Kaw.z (5) <
Kaw.l (S)
Figure 14 (b). Averaged version of system in Figure 13 (b)
> Kp (5) d
ryé 1 + u +{+ y
> K a satf (u) > P(s) >
— +
Y+
Kaw,2(s) <
< Kaw,1(s)
+
Figure 14 (c). Averaged version of system in Figure 13 (c)
d
r4+ e u +yt y
Y K,(s) » satf () » P(s) >
S 1 ]
Ki+K,S K, |

Figure 14 (d). Averaged version of system in Figure 13 (d)

However, there is a difference here between the systems of Figures 14 and Figures 4. Generally,

function hg(ﬁ; K,0,) is substituted for the saturation nonlinearity by applying stochastic averaging

theory, but the saturation nonlinearity of the systems of Figures 14 is defined as satﬁ(ﬁ) instead of
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hg(ﬁ; K,0,). It means that noise does not affect to the saturation nonlinearity. The reason for this is
proved in Appendix V.

According to (9), NITE exists due to a gap between % and hg (u; Kp0y,). In other words, & is zero

because a gap between % and satg(ﬁ) does not exist. Consequently, NITE does not occur in the sys-

tems of Figures 14. We shows the results of the systems of Figures 14 in the next section.

4.3 Result

We suggest two methods to mitigate NITE so far. In this section, we show that the results of the
systems of both Figures 9 and Figures 14 and compare the results of the systems of Figures 9 with that
of Figures 14. The systems parameters of both Figures 9 and Figures 14 are referred to [10] and given
in Table 1.

Table 1. Simulation parameters in the systems of Figures 9 and Figures 14

The systems of Figure 9 The systems of Figure 14
i 3 3
v 5 5
Kawn 1 1
Kaw,z(s) 1 1
s+1 s+1
Kaw,l(s) 1 1
s+1 s+1
B 25 Not applicable
o -2.5 Not applicable
B 1 1
o -1 -1
P(s) 2 2
55+ 2 55+ 2
Op, 0.1 0.1
K,(s) Not applicable 5
s+1
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The parameters of o' and B is determined based on section 4.1.1. The parameter of K,,(s) is
decided arbitrary without making the stability of the systems of Figures 14 unstable. Using the parame-
ters in Table 1, The simulation is carried out and the results are shown in below.

Figure 15 is the response of the systems of Figures 9 (a), (b), (c), and (d) under Gaussian distributed
noise. Figure 16 is the response of the systems of Figures 9 (a), (b), (c), and (d) under uniformly distrib-

uted noise.

! ! ! ! ! ! ! ' '
T e 137 MR s I S
S o A S S ET S S
- ' Reference
a E i i s The response of Figure 9(a)
5 05 T C P ===== The response of Figure 9(b) [
- ===== The response of Figure 9(c)
===u= The response of Figure 9(d)
04p--1--4f----- gresaniy peseas posases Foesoes R Feeeess FEssiaa Freseow
T s S S O A S e
0 | | | | | i i i i
0 2 4 6 8 10 12 14 16 18 20

Time(s)

Figure 15. The responses of the systems of Figures 9 under Gaussian distributed noise
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Figure 16. The responses of the systems of Figures 9 under uniformly distributed noise

As the results of the Figures 15 and Figures 16, putting virtual saturation in the system with anti-
windups mitigates the phenomenon of NITE. In comparison with the outputs of the systems of Figures
4, the steady state tracking errors of Figures 9 (a), (b), (c), and (d) are smaller than that of Figures 4 (a),
(b), (c), and (d) respectively. It means that NITE hardly exists in the systems of Figures 9 (a), (b), (c),
and (d).

Figure 17 shows the responses of the systems of Figures 14 (a), (b), (c), and (d), which mean the

controlled systems containing dynamic P gain.
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Figure 17. The responses of the systems of Figures 14

Like the systems of Figures 9 (a), (b), (c), and (d), Figure 17 indicates that NITE can be avoided in
the systems of Figures 14 (a), (b), (c), and (d). The outputs of the systems of Figure 14 (a), (b), (c), and
(d) are 0.9 because the saturation actuator satﬁ(ﬂ) in the systems of Figure 14 (a), (b), (c), and (d) are
not replaced with hg (u; K,0,,) despite applying stochastic averaging theory. That is, &, of the sys-
tems of Figures 14 (a), (b), (c), and (d) are all zero.

Two above mentioned solutions are useful methods to prevent the phenomenon of NITE, but they
have different characteristics as in shown Figures 15, 16, and 17.

i) The overshoot of the systems of Figures 9 (a), (b), (c), and (d) are generally bigger than that of
Figure 14 (a), (b), (c), and (d).

ii) There are a little oscillations of the systems of Figures 14 (a) and (b) unlike the response of the
systems of Figured 9 (a) and (b)

iii) Without measurement noise, anti-windup effect become weaker in the systems of Figures 9,

which cause the overshoot.
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V. Application

5.1 Electro-active polymer

The phenomenon of NITE was originally discovered in toner concentration control of digital print-
ing [10]. Besides the toner concentration control, NITE could occur most of all P1 controlled systems in
industrial applications. One example is electro-active polymer (EAP). The EAP is a kind of materials
made up of polymers, metals, and other elements that show unique properties. The EAP can be used to
produce a mechanical motion depending on electric voltage and utilized as a sensor by measuring the
output voltage generated by imposed mechanical deformation [24].

Through this application, precision position control of the EAP actuator is shown by using a digital
PID controller with an integrator anti-windup structure that prevent performance degradation due to
saturation nonlinearity. Figure 18 is a diagram of the EAP actuator system in order to show working
principle of the EAP actuator. A working principle of the EAP actuator is a simple. When the EAP
actuator is affected by an electric field, the total charge inside the EAP strip actuator in response to the

electric field causes the bending motion [24].

Electrode

CPU dSPACE EAP Actuator strip
i

Electrode

Power
Supply

Sensor

Figure 18. A diagram of the experimental setup.

Here, dSPACE contains 16-bit analogue to digital (A/D) converter channel of a digital-signal-processing

(DSP) board. Details are referred to [24].
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Figure 19 show a block diagram for the closed-loop digital position control of the EAP actuator
with an integrator anti-windup scheme. The parameters of the system of Figure 19 is provided in [24].
We assume that measurement noise is Gaussian distributed noise of which standard deviation of a,, set
to 0.3.

. 2(z- 1)
" Ka T,z — 1)
> Kp
+
r+ e . » +lu y
—O—=0— K [ U safw) T PO

ot

h\
T3
=

Figure 19. A block diagram of the closed-loop position control of the EAP actuator.

Simulation result of the EAP actuator is shown in Figure 20. The black line indicates a 0.8 mm
reference of the system of Figure 19 and the red line presents a step response of the system of Figure
19. As presented in Figure 20, the phenomenon of NITE could occurs in the EAP actuator system. This

result means that NITE is very significant issue to most of all controlled systems with anti-windup.
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Figure 20. Simulation result of the position control of EAP actuator under Gaussian distributed noise

5.2 Applying the solutions in the system

We have suggested two solutions in this paper. One solution is called virtual saturation and the
other solution is called dynamic P gain. Virtual saturation affects saturation actuator by increasing range
in the input of saturation actuator, While dynamic P gain affects proportional gain of PI controller by
changing static proportional gain to dynamic one. Figure 21 (a) shows the position control system of

EAP actuator with virtual saturation and Figure 21 (b) shows the system applying the dynamic P gain.

0.004K, .
P is the
z—0.996

According to (12) and (13), the values of o’ and B’ are respectively, set to -1 and 1.

block of dynamic P gain. K, is the same value of the position control system of the EAP actuator in

[24].
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Figure 21 (a). A block diagram of the position control system of the EAP actuator with

virtual saturation.

. 2(z-1)
Kq 17.z-D
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Figure 21 (b). A block diagram of the position control system of the EAP actuator with

dynamic P gain.
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Figure 22 (a). The response of the system of Figure 21 (a)
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Figure 22 (b). The response of The system of Figure 21 (b)
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The effects of both virtual saturation and dynamic P gain are demonstrated in Figure 22. The red
line is the response of the position control system of the EAP actuator of Figure 21 (a). The blue line
indicates the response of Figure 21 (b). As you can see, both of methods are effective solutions to miti-
gate NITE. By applying the stochastic averaging, it is possible to analyze NITE of the EAP position
control system. However, we didn’t deal with it because the EAP position control system is described

as discrete system.
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VI. Conclusion

Recently, In PI controlled systems with anti-windup called back-calculation, steady state tracking
error due to measurement noise has been reported and this steady state tracking error was named NITE.
In this study, we showed that Noise induced tracking error (NITE) could occur in all PI controlled sys-
tems with anti-windup structures as well. In other words, NITE could occur in all the systems if both
anti-windup and measurement noise exist, regardless of anti-windups.

Using stochastic averaging theory, we quantified the noise induced tracking error in terms of system
parameters and noise characteristics, and showed that NITE occurred with uniformly distributed noise
as well as Gaussian distributed noise

We suggested two solutions to mitigate NITE. One method is using Virtual saturation, which act as
the input of actual saturation and has bound bigger than actual saturation has. We analyzed how virtual
saturation affect to the systems likely to NITE. An analysis of internal stability based on linear matrix
inequalities was conducted on the system with two saturation actuators. The other method is changing
static P gain to dynamic P gain. We checked that dynamic P gain played the role of eliminating an effect
of noise in the systems.
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VII. Appendix I

i) The system of Figure 4 (a) (Pl controlled system with back-calculation anti-windup)

Let the state space realization of the system of Figure 4 (a) be

%, = Ap%, + B,hk (@ K,0,) + B,d
J‘?i =K@ -y + Kaw,l(hg(a; Kpan) - ﬁ)
y = Co%, (25)

u=Kp(r—}7)+)Ei
Where, X, %;, %,d,and ¥, and are the state of the plant, the state of the integral controller, the control

input, the disturbance of the system and the output of the system of Figure 4 (a) respectively.

The steady state of this system is defined by

0 = A,%, + B,h (@ K,0,) + B,d

0 = K;(r — 7) + Ko, (hE (5 Ky0,) — ) (26)
Assuming that the asymptotically stable equilibrium exists
0= Ki(r - yss) + Kaw,l(hg (ass; Kpan) - ﬁss) (27)

Should be satisfied in the steady state, where y,, and g, are the steady state values of ¥ and .

Therefore, e is defined as below

s =1 — Yss = Kt;::'l (ﬁss - h’g (ass; Kpan)) (28)

ii) The system of Figure 4 (b) (PI controlled system with dynamic static full authority anti-windup)

Let the state space realization of the system of Figure 4 (b) be
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%, = A,%, + B,hs (@ K,0,) + B,d
y =G
Zaws = AawiFawi + Baw1 (he (T Kya,) — )
Yaw1 = Caw,1%aw,1
Zawz = AawaFawz + Baw2 (he (T Kyay) — 1)
Yawz = Caw2Xaw,2 (29)
X = K;(r = %) + Caw1%awn

u= Kp(‘i" - )_7) +Xx + Caw,zfaw,Z

Where, x,,, and X, , are the state space form of the dynamic anti-windup gain K, ,(s) and

Kaw,2(s) respectively. The steady state of this system is defined by

0 = A,%, + B,ht (@ K,0,) + B,d
0= Aaw,lfaw,l + Baw.l(hg (ﬁ; Kpan) - ﬁ)
0 = Aaw,2%aw2 + Baw2 (ha (& Kyoy) — ) (30)

0= Ki(T - }_") + Caw,lfaw,l
Assuming that the asymptotically stable equilibrium exists

0=Ki(r—ys) + Caw,1%aw1
0= Aaw,lfaw,l + Baw.l(hg (ass; Kpo-n) - ﬁss) (31)

Yaw1 = Caw1Xaw,1
According to (31), ¥4, 1 iswritten as below
yaw,l = _Caw,IAE\}/,lBaw,l (_ﬁss + hg (ass; Kpo-n)) = Kaw,l(o) (ﬁss - hg (ﬁss; Kpan)) (32)

Where, K,,,1(0) is dc gain of the anti-windup gain K,,,1(s). Replacing C,y 1%4,,1 With (32), &g

can be defined as below

s =1 — Yss = KaWK—'l(O) (ﬁss - hg (ass; Kpo-n)) (33)

iii) The system of Figure 4 (c) (PI controlled system with dynamic external global anti-windup)

The state space form is as below
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%, = ApX, + Bhl (@ K,0,) + B,d
y=06%p
faw,l = AgwiXaws + Baw.l(hg (ﬁ; Kpffn) - ﬁ)
Yaw,1 = Caw,1Xaw,1
Zawz = AawaFawz + Bawz (he (T Kya,) — 1)
Yawz = Caw2Xaw,2 (34)
x; = Ki(r -y+ Caw,1faw,1)

ft = Kp(T - J_/) + fl + CaW,ZfaW,Z
The steady state of this system is defined by

0 = Ap%, + Bhl (& K,0,) + B,d
0=A4aw1%aw1 + Baw.l(hg (ﬁ; Kpo-n) - ﬁ)
0= Aaw,zfaw,z + Bawz (hg (ﬁ; Kpan) - ﬁ) (35)

0= Ki(r -y+ Caw,lfaw,l)
Assuming that the asymptotically stable equilibrium exists

0=K, (T —Yss + Caw,lfaw,l)
0= Aaw,lfaw,l + Baw.l(hg (ﬁss; Kpgn) - ﬁss) (36)

Yaw,1 = Caw,lxaw,l

According to (36), 4,1 is written as below
Fawa = ~Caw1Aab1Baws (~Tss + A (o5 Kp0n) ) = Ko (0) (T — b (Tssi Kyo))  (37)
Replacing Cuy1Xaw1 With (37), égs can be defined as below
Eos =1 = Fss = Kau1 (0) (s — B (15 K, 03,) ) (38)

iv) The system of Figure 4 (d) (PI controlled system with anti-windup introduced in [13])

control input u is defined as below
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_ = Bz, s 1
1=Ky (5 ) (7 )

The steady state of this system is defined by

— — — 1
Ugs = Kp (T — Vss — hg (uss; Kpo-n) <_ K_p)>

_ _ — 1
Uss = Kp <ess - hg (uss; Kpan) (_ KT;))

Therefore, e, is defined as below

8ss =7 — Yss = K_lp (ass - hﬁ(ﬁss; Kpgn))
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VII. Appendix II

The state space form of Figures 8 (a) is written by

X, = Apx, + Byd + Bpsatg (satf,’ (u))
y = Cpxp
X =K(@r—y—n)+ Ky (satf, (w) — u) (43)

u=K,(r—y-n)+x
Applying stochastic averaging theory, (43) is transformed into (44)

%, = ApX, + B,d + B,ht (@ K,0,)
y = 0%,
% = K,(r — 7) + K1 (he) (@ K, 0,) — ) (44)

u=K,r—y +x

According to (44), the block diagram of the system of Figure 8 (a) is replaced with that of Figure 9 (a).

Similarly, the state space form of Figures 8 (b) is written by

X, = Apx, + Bpd + Bpsatf (sats,, (u))
y = Cpxp
% = Ki(r =y =) + Koy (sath () — u) (45)

u=K,(r—y—n)+x; + Kaw; (satf, (w) - u)
Applying stochastic averaging theory, (45) is transformed into (46)
%, = A,%, + B,d + B,ht (@ K,0,,)
y =G

% = K,(r — 7) + K1 (he) (@ K, 0,) — ) (46)
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w=Ky(r —7) + % + Koy (he) (@ Kpo,) — 1)

According to (46), the block diagram of the system of Figure 8 (b) is replaced with that of Figure 9 (b).
The state space form of Figure 8 (c) is written by

X, = ApXx, + Bpd + Bpsatf (satf,’ (u))
y = Cpxp
iy = Ko (1= + Kaua (sa2f @) =) (47)

u=K,(r—y)+x;+ Ko, (satf, (w) — u)

Applying stochastic averaging theory, (47) is transformed into (48). According to (48), the block dia-
gram of the system of Figure 8 (c) is replaced with that of Figure 9 (c).

%, = ApX, + B,d + B,ht (@ K,0,)
y=0GpXp
% = Ki (1 = 7 + Ko, (WS (T Ky0,) — ) ) (48)

u= Kp(r - +x+ Kaw,z(hgr’(a; Kpo-n) - ﬁ)

The state space form of Figures 8 (d) is written by

X, = ApXp + Bpd + Bpsatg (satf,’ (u))
y = Cpxp
u=K,(r—y—-n)+ys (49)

Vr = Crxp

Where, x; is the state of the function = +51< - Ki and y¢ is the output of the function. Applying sto-
iT8p 14

chastic averaging theory, (49) is transformed into (50)
%, = ApX, + Byd + B,hl (@ K,y0,)

y = CpXp

u=K,(r—y) + (50)
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Vr = CrXs

According to (50), the block diagram of the system of Figure 8 (d) is replaced with that of Figure 9 (d).
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IX. Appendix I

i) The system of Figure 9 (a) (PI controlled system with back-calculation anti-windup)

Let the state space realization of the system of Figure 9 (a) be

%, = Ap%, + B,hk (@ K,0,) + B,d
X =K(r—y+ Kaw,l(hg:(a; Kpan) - ﬁ)
y = Cp¥, (51)

u=Kp(r—}7)+)Ei
Where, X, %;, %,d,and ¥, and are the state of the plant, the state of the integral controller, the control

input, the disturbance of the system and the output of the system of Figure 9 (a) respectively.

The steady state of this system is defined by

0 = A,%, + B,h (@ K,0,) + B,d

0 = Ki(r = 7) + Kaw, (hE, (@ K,0,) — ) (52)
Assuming that the asymptotically stable equilibrium exists
0 =K, (r— }_}ss) + Kaw,l (h£: (ass; Kpo-n) - ﬁss) (53)

Should be satisfied in the steady state, where y,, and g, are the steady state values of ¥ and .

Therefore, e, is defined as below

Css =T — Vo5 = K‘;(V:'l (ﬁss - hg: (ﬁss; Kpo-n)) (54)

ii) The system of Figure 9 (b) (PI controlled system with dynamic full authority anti-windup)

Let the state space realization of the system of Figure 9 (b) be
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%, = ApX, + Bhl (@ K,0,) + B,d
y=06%p
faw,l = AgwiXaw1 + Baw1 (hg:(ﬁ} Kpo'n) - ﬁ)
Yawa = Caw,1Xaw,1
Zawz = AawaFawz + Baw2 (ho) (@ Kyoy,) — 1)
Yaw,2 = Caw2Xaw,2 (59)
X = K;(r =) + Caw1%awn

u= Kp(T - J_/) +x + Caw,zfaw,z

Where, x,,, and x,,, are the state space form of the dynamic anti-windup gain K, 1(s) and

Kaw2(s) respectively. The steady state of this system is defined by

0 = Ap%, + Bhl (& K,0,) + B,d
0 = Agw1%aw,1 + Bawa (hgll(ﬁ; Kpan) - ﬁ)
0= Aaw,Zfaw,Z + Baw.z (hg,’(ﬁ; Kpo-n) - ft) (56)

0=K(T-y)+ CawXaw
Assuming that the asymptotically stable equilibrium exists

0=K; (r— yss) + Caw,lfaw,l
0= Aaw,lfaw,l + Baw.l(hg (ass; Kpan) - ﬁss) (57)

yaw,l = Caw,lfaw,l
According to (57), ¥,,,1 IS written as below
Vaws = —Caw1Aam1Baw1 (—ss + hbr (Tss; Kp0) ) = Ka1 (0) (—Tss + ) (Gss; Kpay))  (58)
yaw,l aw,1'aw,1Paw,1 uss al uss' pan aw,1 uss al uss' po-n

Where, K,,,1(0) is dc gain of the anti-windup gain K,,,1(s). Replacing C,y 1%4y,1 With (56), ég

can be defined as below

€ss =17 — Vo5 = KaWTZ(O) (ﬁss - hg:(ass; Kpan)) (59)

iii) The system of Figure 9 (c) (PI controlled system with dynamic external global anti-windup)
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Let the state space realization of the system of Figure 9 (c) be

%, = AyX, + B,hl (@ K,0,) + B,d
y=0%p
faw,l = Aaw,lfaw,l + Bawa (hg:(ﬁ; Kpo'n) - ﬁ)
Yaw1 = Caw,1%aw,1
faw,z = Agw2Xaw,2 + Baw2 (hg:(ﬁ} Kpo'n) - ﬁ)
Yawz = Caw,2Xaw,2 (60)
fi = Ki(T —-y+ Caw,1faw,1)
u=K,(r—y) + % + CawoXaw,2

The steady state of this system is defined by

0 = A, %, + B,h (@ K,0,) + B,d
0 = Aaw,lfaw,l + Baw.l (hg:(ﬁ; Kpan) - ﬁ)
0= Aaw,zfaw,z + Baw.z (hg,’(ﬂ: Kpo'n) - 1_1) (61)

0= Ki(r -y+ Caw,lfaw,l)

Assuming that the asymptotically stable equilibrium exists

0= Ki(T —Yss + Caw,lfaw.l)

r

0= Aaw,lfaw,l + Baw.1 (hg, (ass; Kpo-n) - ﬁss) (62)

Yaw1 = Caw1Xaw,1

According to (62), ¥,,,1 iswritten as below
Fawa = ~Cawa Az Bawa (~Tss + Ml (Tssi Kp0u) ) = Kaw1(0) (~Thss + (T3 Ky)) (63
Replacing C,y 1%,y 1 With (63), e can be defined as below
Eos = Kaw1(0) (T — ) (55 K 0)) (64)

iv) The system of Figure 4 (d) (PI controlled system with anti-windup introduced in [13])

control input u is defined as below
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_ _ Br(—. N 1
u =K, (r -y —nhgy, (u, Kpan) <1<l+—1<ps - K—p)) (65)

The steady state of this system is defined by

— — 1f— 1
Uss = Kp <T — Vss — hg, (uss; Kpo-n) <_ KT;)) (66)
_ _ (= 1
Ugs = Kp (ess - hg/ (uss; Kpo-n) (_ K_p)> (67)
Therefore, e, is defined as below

_ 1

Cos =T — Vo5 = K_p (ﬁss - hg:(ass; Kpan)) (68)
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X. Appendix IV

i) Assume that K; # 0, r # 0 and d # 0, Let the steady state realization of the system of Figure 4 (b) be

0 =%, = A%, + B,hE (% K,0,) + B,d
y=Cpo¥p
0 =Xgp1 = AgwiXaw1 + Baw.l(hg(ﬁ; Kpan) - ﬁ)
Yaw,1 = Caw,1Xaw,1
0 = Xau2 = Aaw2%awz + Baw: (hg(ﬂ; Kpo-n) - ﬁ)

Yaw,z = Caw,2Xaw,2 (69)

0

fi = Ki(r - 3_’) + Caw,lfaw,l

u= Kp(T - }_7) + fi + Caw,ZfaW.Z

Vaw,a and y are written as below

yaw,l = _Caw,lA;vlv,lBaw,l (—1_1 + hg(ﬁ; KpUn)) = Kaw,l(o) (l_l - hg (l_l; Kpo-n)) (70)

¥ = ~Cawa A 1Baws (hf (T K,04)) (72)
By using (70) and (71), X; is defined by
Kaw1 0V = Kit = KiCaw1 A 1Baws (hE (T Kp03) ) + K1 0) () (T Ky0,)) (72)
Similarly, Let the steady state form of x; of the system of Figure 9 (b) be
Kaw1(0)7 = Kit = KiCav1 Aty 1Baws (M5 (T Kp0) ) + Kan 0) (W (W Kpo))  (73)

By comparing between (72) and (73), the value of @ that belongs to (72) is greater than that belongs to (73).
Therefore, let @ that belongs to (72) be 7; and # that belongs to (73) be #,. By replacing with %, and ,,

(72) and (73) are written as below
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Kaw1 (01 = Kit = KiCaw 1A 1Baws (hf (3; Kp0w) ) + Kaw (0) (S (T Kpo))  (74)

Kaw,l (O)ﬁz - Kir = Kicaw,lAz;vlv,lBaw,l (hg (ﬁzi Kpan)) + Kaw,l (0) (hg' (ﬁzi Kpo-n)) (75)
By using (74) and (75) and Assuming that the asymptotically stable equilibrium exists, we can obtain (76)

Caw,lAavlv,lBaw,l (hg(ﬁl,ss; Kpo-n) - hg (ﬁz,ss; KpUn))

K ,1(0) _ _ _ re_
= aWT (ul,ss —Uzss — hg (ul,ss; KpUn) + hgl (uZ,ss; Kpo-n)>
i

Kav:(j(())( 1,58 —h (u1ss,K Un)) Kaw—l(o)( Uz,ss hal(uZSS’K 0")) (76)

Where,

K“WTl(O)( Uy g5 — R (u1 s K Un)) is e, of Figure 4 (b) with dynamic full authority anti-windup and

K“WTI(O)( Tiges — ho) (T 55 K Un)) is &, of Figure 9 (b) with dynamic full authority anti-windup. According

L

to (72) and (73), @, is greater than @, which means that h%(i; K,a,,) is also greater than h’ (ui,; K,ay,).
Since Caw14gzs 1Baw, 1S Negative value, Cay1Az5 1Baw1 (hg (tiys5; Kpoy) — hE (ﬁz,ss;Kpon)) >0 there-

fore, (76) satisfy

o (05, W Ky) =2 s~ (i Im)) >0 )
o0 1, ) > 222 (1 () 9

ii) Assume that the plant of the Figure 4 (b) has a pole at the origin. Since the plant has a pole at the origin, for

an equilibrium to exist, the input to the plant should be zero in the steady state, that is,

d + hf (G55 Kpn) = 0 (79)

d + hf (@56 Kpon) = 0 (80)

where, A% (T Ky0,) = —d and hb (i, K,y0,) = —d which means that @@, ¢ = i, Therefore, using

(77),

KawTj(O)( 1,ss h (ultK O-n)) KaW—I(O)( Zss h (uZJK Un))

= Kt (48 1, 5 0,) W (i 5 K,)) > 0 @)

Ki
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(78) and (81) are completed even when K, is static anti-windup gain because K, ;(0) is the same with
Kow 1

We can figure out that |z, s — k% (@y; Ky, )| is bigger than |ﬁ2,ss - hg:(ﬁz;Kpan)| through Figure 4 (b)
and Figure 9 (b), and this fact is applicable to the others. In conclusion, |&; s, — k% (Ty; K,0,,)| of Figures 4

(@), (b), (), and (d) are bigger than |ﬁ2,ss - hg: (ﬁz; Kpan)| of Figures 9 (a), (b), (c), and (d) respectively.
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XI. Appendix V

Let the state space realization of dynamic P gain controller in the system of Figures be

Xkp = AgpXp + Bip(r —y — 1)

Vip = Ckpxkp (82)

Where, xy,, is the state of dynamic p gain block and y,, is the output of dynamic P gain block. Unlike
static P gain controller, a term of K,n doesn’t exist anymore due to dynamic P gain. According to (5)
and (8), The function hgg(v; Kpan) is defined as the conditional expected value of satﬁ(u) in terms

of Gaussian distribted noise [10].

_n?
L ¢ z2dhdn (83)

V2mop

hgi(v; K,0,) = Ep[sathw)] = I sat(v — K,n)

Similarly, hug (v; Kpan) is defined as the conditional expected value of satg(u) with respect to uni-

formly distributed noise.

hug(v; K,0,) = E, [sath ()] = ff:ﬁgsat(v — K,n) m;ﬁdn (84)

Where, u is decomposed into u = v — K,n. v means the portion of u not directly replying on n.

As shown in (82), u is decomposed into u = v therefore, Evaluating the integral in (83) and (84)
gives (85) and (86).

2

hgg(v; Kpan) = En[satg (u)] = fjooo sat(v — Kpn) \/%6 e 20hdn = sat(v) (85)
hus(v; K,0,) = E, [satf W] = ff;ﬁgsat(v - Kpn)z%;ﬁdn = sat(v) (86)

Therefore, sat(v) isnot replaced with either hy” (v; K,0,) or hy” (v K,0,) inspite of applying sto-

chastic averaging theory.
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