Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Lee, Ho Chun -
dc.contributor.author Lee, Jun Min -
dc.date.accessioned 2017-05-10T08:50:10Z -
dc.date.available 2016-05-18T00:00:00Z -
dc.date.issued 2013 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002262506 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1340 -
dc.description.abstract While the lithium-ion batteries (LIBs) are expanding their application area from mobile IT devices to the large scale power sources for electric vehicles and renewable energy storages, the limited cycle life of the present LIBs has been pointed out as the main obstacle. The degradation of LIBs employing LiMn2O4 and LiCoO2 cathode materials is known to be initiated by the metal dissolution from the cathode materials. Owing to the slow kinetics of the metal dissolution behavior, the quantitative analysis of the trace amounts of dissolved metal ions has been relied on the spectroscopic techniques such as the inductive coupled plasma (ICP) or the atomic adsorption spectroscopy (AAS). These conventional methods take at least several days and fail to provide any information on the cathode surface properties. We herein report that the SFE of cathode materials is closely related to their metal dissolution behavior. The SFEs of various types of LiCoO2 and LiMn2O4 are obtained by the contact angle measurement: the liquid adsorption method for powder samples and the sessile drop method for electrode samples. We confirm that the metal dissolution is determined dominantly by the polar component of the SFE of the cathode surface. We also found that the Al2O3 coating suppresses the metal dissolution, which is ascribed to the deceased polarity of cathode surface. The basic polarity of cathode electrodes is smaller than that of powders, which suggests a possibility that the metal dissolution can be suppressed through the optimization of the composite electrode components (binders and conductive carbons). We also confirmed the correlation of the SFEs with the types of crystal structures, which was examined by using SEM and XRD analysis. ⓒ 2013 DGIST -
dc.description.tableofcontents 1. Introduction 1
--
1.1 Overview 1
--
1.2 Theory of surface free energy calculation by contact angle measurement 2
--
1.3 Capillary rising method for porous materials 8
--
1.4 Dissolution mechanism of cathode materials for Li-ion batteries 10
--
1.5 Influence of cathode crystal structure to metal dissolution 11
--
1.6 Examples of surface free energy usages to analyze the characteristics of Li-ion batteries 12
--
2. Experimental 13
--
2.1 Sessil drop method 13
--
2.2 Adsorption method 15
--
2.3 Measurement of metal dissolution 18
--
3. Results and discussion 19
--
3.1 Correlation of the surface free energies of LiMn2O4 powder with Mn dissolution 19
--
3.2 Correlation of the surface free energies of LiMn2O4 electrode with Mn dissolution 21
--
3.3 Analysis the crystal structures of LiMn2O4 23
--
3.4 Correlation of the surface free energies of LiMn2O4 by increasing Al2O3 coating amount with Mn dissolution 26
--
3.5 Acid and base part separation of polar surface free energy of LiMn2O4 28
--
3.6 Correlation of the surface free energies of LiCoO2 powder with Co dissolution 30
--
3.7 Correlation of the surface free energies of LiCoO2 electrode with Co dissolution 32
--
3.8 Correlation of the surface free energies of LiCoO2 by increasing Al2O3 coating amount with Co dissolution 33
--
3.9 Acid and base part separation of polar surface free energy of LiCoO2 35
--
4. Conclusions 36
--
References 37
--
Summary (국문요약) 38
-
dc.format.extent 36 -
dc.language eng -
dc.publisher DGIST -
dc.subject Lithium-ion batteries -
dc.subject LiMn2O4 -
dc.subject LiCoO2 -
dc.subject Metal dissolution -
dc.subject Surface free energy -
dc.subject Polarity -
dc.subject 금속용출 -
dc.subject 표면자유에너지 -
dc.subject 결정구조 -
dc.subject 최적화 -
dc.subject 극성 -
dc.title Characterization of Surface Free Energy of Cathode Materials for Lithium-ion Batteries -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2262506 -
dc.description.alternativeAbstract Li-ion 이차전지 양극재인 LiMn2O4는 성공적으로 상업화되었고, EV 및 HEV용 양극재 후보로서 각광을 받고 있으나 금속용출로 인한 비가역용량의 증가가 걸림돌이 되고 있다. 금속용출특성은 주로 ICP 혹은 AAS를 이용하여 측정되고 있는데, 짧게는 일주일에서 길게는 수주까지 시간이 소요되었고 간접적인 양극재의 특성을 알 수 밖에 없었다.
본 연구에서는 측정시간이 수시간에서 수일 내이며 양극재의 직접적인 특성을 알 수 있는 표면자유에너지 분석을 통하여 용출특성을 예측하고자 실험을 진행하였으며, 표면자유에너지와 금속용출간의 강한 상관관계를 확인하였다. 전극은 Sessil drop 방식으로 파우더는 Adsorption 방식으로 접촉각을 측정하여 표면자유에너지를 계산하였는데, Polarity(Acidity, Basicity)가 Dispersity에 비해 주도적으로 금속용출에 영향을 미치는 것을 확인할 수 있었다. Polarity는 Al2O3의 코팅량이 증가할수록 감소하는 것을 뚜렷이 확인할 수 있었으며, Dispersity는 Al2O3 의 특성에 근접하는 것을 확인하였다. 파우더에서 전극으로 코팅되면서 Basicity가 감소하는 것을 확인할 수 있었는데 코팅시 조건을 최적화하여 금속용출량을 감소시킬 수 있을 것으로 생각된다. 결정구조에 따른 표면자유에너지와 용출과의 상관관계도 분명히 확인할 수 있었다.
결론적으로 본 연구에서는 양극재의 표면자유에너지특성분석으로 용출특성 예측 및 표면(코팅, 결정구조) 변화에 따른 특성변화 분석이 가능하며, 특성최적화의 척도로서 이용될 수 있다는 사실을 확인하였다. ⓒ 2013 DGIST
-
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Choi, Su An -
dc.date.awarded 2013. 8 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-05-18 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Lee, Jun Min -
dc.contributor.affiliatedAuthor Lee, Ho Chun -
dc.contributor.alternativeName 이준민 -
dc.contributor.alternativeName 이호춘 -
dc.contributor.alternativeName 최수안 -
Files in This Item:
000002262506.pdf

000002262506.pdf

기타 데이터 / 1.99 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE