Cited 0 time in webofscience Cited 36 time in scopus

Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs

Title
Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs
Authors
Ahn, C.W.[Ahn, Chang Wook]An, J.[An, Jin Ung]Yoo, J.-C.[Yoo, Jae Chern]
DGIST Authors
An, J.[An, Jin Ung]
Issue Date
2012
Citation
Information Sciences, 192, 109-119
Type
Article
Article Type
Article
Keywords
Compact Genetic AlgorithmEstimation of Distribution AlgorithmsExtended Compact Genetic AlgorithmGenetic AlgorithmsGlobal SearchLocal SearchModel BuildingsParticle SwarmParticle Swarm Optimization (PSO)Probabilistic Model BuildingProbabilistic ModelsStochastic Models
ISSN
0020-0255
Abstract
This paper presents a novel framework of the estimation of particle swarm distribution algorithms (EPSDAs). The aim is to effectively combine particle swarm optimization (PSO) with the estimation of distribution algorithms (EDAs) without losing their unique features. This aim is achieved by incorporating the following mechanisms: (1) selection is applied to the local best solutions in order to obtain more promising individuals for model building, (2) a probabilistic model of the problem is built from the selected solutions, and (3) new individuals are generated by a stochastic combination of the EDA's model sampling method and the PSO's particle moving mechanism. To exhibit the utility of the EPSDA framework, an extended compact particle swarm optimization (EcPSO) is developed by combining the strengths of the extended compact genetic algorithm (EcGA) with binary PSO (BPSO), along the lines of the suggested framework. Due to its effective nature of harmonizing the global search of EcGA with the local search of BPSO, EcPSO is able to discover the optimal solution in a fast and reliable manner. Experimental results on artificial to real-world problems have adduced grounds for the effectiveness of the proposed approach. © 2010 Elsevier Inc. All rights reserved.
URI
http://hdl.handle.net/20.500.11750/1620
DOI
10.1016/j.ins.2010.07.014
Publisher
Elsevier B.V.
Related Researcher
Files:
There are no files associated with this item.
Collection:
Convergence Research Center for Wellness1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE