Cited 0 time in webofscience Cited 2 time in scopus

Path planning algorithm for UGVs based on the edge detecting and limit-cycle navigation method

Title
Path planning algorithm for UGVs based on the edge detecting and limit-cycle navigation method
Authors
Lim, Y.-W.[Lim, Yun Won]Jeong, J.-S.[Jeong, Jin Su]An, J.-U.[An, Jin Ung]Kim, D.-H.[Kim, Dong Han ]
DGIST Authors
An, J.-U.[An, Jin Ung]
Issue Date
2011
Citation
Journal of Institute of Control, Robotics and Systems, 17(5), 471-478
Type
Article
Article Type
Article
Keywords
AlgorithmsEdge DetectingEdge DetectionEdge Detection MethodsHough TransformsIntelligent Vehicle Highway SystemsIR SensorLimit-CycleLocal MinimumsLocal VisionMotion PlanningNavigationNavigation MethodsPath-PlanningPath-Planning AlgorithmSimple AlgorithmStatic ObstaclesUGVUnmanned Ground VehiclesVirtual Walls
ISSN
1976-5622
Abstract
This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently beingresearched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in thenavigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destinationwhile avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is muchshorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with theobstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and alimit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, andthe limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novelalgorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithmthrough simulations and experiments. © ICROS 2011.
URI
http://hdl.handle.net/20.500.11750/1707
DOI
10.5302/J.ICROS.2011.17.5.471
Publisher
Institute of Control, Robotics and Systems
Related Researcher
Files:
There are no files associated with this item.
Collection:
Convergence Research Center for Wellness1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE