Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kang, Joonhee -
dc.contributor.author Yu, Jong Sung -
dc.contributor.author Han, Byungchan -
dc.date.available 2017-07-05T08:36:25Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-07 -
dc.identifier.issn 1948-7185 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2234 -
dc.description.abstract Using first-principles density functional theory (DFT) calculations, we demonstrate that catalytic activities toward oxygen reduction and evolution reactions (ORR and OER) in a Li-O2 battery can be substantially improved with graphene-based materials. We accomplish the goal by calculating free energy diagrams for the redox reactions of oxygen to identify a rate-determining step controlling the overpotentials. We unveil that the catalytic performance is well described by the adsorption energies of the intermediates LiO2 and Li2O2 and propose that graphene-based materials can be substantially optimized through either by N doping or encapsulating Cu(111) single crystals. Furthermore, our systematic approach with DFT calculations applied to design of optimum catalysts enables screening of promising candidates for the oxygen electrochemistry leading to considerable improvement of efficiency of a range of renewable energy devices. © 2016 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title First-Principles Design of Graphene-Based Active Catalysts for Oxygen Reduction and Evolution Reactions in the Aprotic Li-O-2 Battery -
dc.type Article -
dc.identifier.doi 10.1021/acs.jpclett.6b01071 -
dc.identifier.scopusid 2-s2.0-84979500117 -
dc.identifier.bibliographicCitation Journal of Physical Chemistry Letters, v.7, no.14, pp.2803 - 2808 -
dc.subject.keywordPlus Adsorption Energies -
dc.subject.keywordPlus ALLOY CATALYST -
dc.subject.keywordPlus ARCHITECTURES -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus Catalyst Activity -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus Catalytic Performance -
dc.subject.keywordPlus CATHODE CATALYSTS -
dc.subject.keywordPlus DENSITY-FUNCTIONAL THEORY -
dc.subject.keywordPlus Density Functional Theory -
dc.subject.keywordPlus Design For Testability -
dc.subject.keywordPlus Doping (Additives) -
dc.subject.keywordPlus Electric Batteries -
dc.subject.keywordPlus ELECTROCATALYTIC ACTIVITY -
dc.subject.keywordPlus Electrochemical Performance -
dc.subject.keywordPlus Electrode -
dc.subject.keywordPlus Electrolytic Reduction -
dc.subject.keywordPlus First Principles -
dc.subject.keywordPlus First Principles Density Functional Theory (DFT) Calculations -
dc.subject.keywordPlus Free-Energy Diagrams -
dc.subject.keywordPlus Free Energy -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus Lithium -
dc.subject.keywordPlus LITHIUM-AIR BATTERIES -
dc.subject.keywordPlus Lithium Batteries -
dc.subject.keywordPlus N-DOPED GRAPHENE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus Oxygen -
dc.subject.keywordPlus Oxygen Reduction and Evolution Reactions -
dc.subject.keywordPlus Rate Determining Step -
dc.subject.keywordPlus Redox Reactions -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus Renewable Energy Devices -
dc.subject.keywordPlus Single Crystals -
dc.citation.endPage 2808 -
dc.citation.number 14 -
dc.citation.startPage 2803 -
dc.citation.title Journal of Physical Chemistry Letters -
dc.citation.volume 7 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Light, Salts and Water Research Group 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE