Cited 6 time in webofscience Cited 7 time in scopus

Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for Cu-64 Radiotracers

Title
Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for Cu-64 Radiotracers
Authors
Dale, AV[Dale, Ajit V.]Il An, G[Il An, Gwang]Pandya, DN[Pandya, Darpan N.]Ha, YS[Ha, Yeong Su]Bhatt, N[Bhatt, Nikunj]Soni, N[Soni, Nisarg]Lee, H[Lee, Hochun]Ahn, H[Ahn, Heesu]Sarkar, S[Sarkar, Swarbhanu]Lee, W[Lee, Woonghee]Huynh, PT[Huynh, Phuong Tu]Kim, JY[Kim, Jung Young]Gwon, MR[Gwon, Mi-Ri]Kirn, SH[Kirn, Sung Hong]Park, JG[Park, Jae Gyu]Yoon, YR[Yoon, Young-Ran]Yoo, J[Yoo, Jeongsoo]
DGIST Authors
Lee, H[Lee, Hochun]
Issue Date
2015-09-07
Citation
Inorganic Chemistry, 54(17), 8177-8186
Type
Article
Article Type
Article
Keywords
AnimalAnimal ModelAnimalsBagg Albino MouseChelating AgentChelating AgentsChemical StructureChemistryCopperCopper RadioisotopesMaleMiceMice, Inbred BALB CModels, AnimalMolecular StructureMouseOrganometallic CompoundOrganometallic CompoundsPositron-Emission TomographyPositron-Emission Tomography (PET)Radiopharmaceutical AgentRadiopharmaceuticalsSynthesisTissue Distribution
ISSN
0020-1669
Abstract
Bifunctional chelators have been successfully used to construct 64Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with 64Cu ions in an acetate buffer at 60 C within 60 min. The electrophoresis study revealed that the 64Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of 64Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for 64Cu-based radiopharmaceuticals, especially those involving peptides. (Chemical Equation Presented). © 2015 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/2332
DOI
10.1021/acs.inorgchem.5b01386
Publisher
American Chemical Society
Related Researcher
  • Author Lee, Ho Chun Electrochemistry Laboratory for Sustainable Energy(ELSE)
  • Research Interests Lithium-ion batteries; Novel Materials for rechargeable batteries; Novel energy conversion;storage systems; Electrochemistry; 리튬이차전지; 이차전지용 신규 전극 및 전해액; 신규 에너지변환 및 저장 시스템; 전기화학
Files:
There are no files associated with this item.
Collection:
Energy Science and EngineeringElectrochemistry Laboratory for Sustainable Energy(ELSE)1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE