Cited 3 time in webofscience Cited 3 time in scopus

Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

Title
Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish
Authors
Lee, SJ[Lee, Sang Joon]Choi, W[Choi, Woorak]Seo, E[Seo, Eunseok]Yeom, E[Yeom, Eunseop]
DGIST Authors
Seo, E[Seo, Eunseok]
Issue Date
2015-11-12
Citation
PLoS ONE, 10(11)
Type
Article
Article Type
Article
Keywords
Animal CellAnimal ExperimentAnimal ModelAnimal TissueAtherosclerosisBlood FlowCholesterolCholesterol DietControlled StudyHypercholesterolemiaIn Vivo StudyLarvaLipidLipid StorageNon-HumanShear StressZebrafish
ISSN
1932-6203
Abstract
Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. © 2015 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
URI
http://hdl.handle.net/20.500.11750/2579
DOI
10.1371/journal.pone.0142945
Publisher
Public Library of Science
Files:
There are no files associated with this item.
Collection:
New BiologyNanoBio Imaging Laboratory1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE