Cited 6 time in webofscience Cited 8 time in scopus

Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of gamma-Al2O3 nanoparticles

Title
Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of gamma-Al2O3 nanoparticles
Authors
Han, SZ[Han, Seung Zeon]Kim, KH[Kim, Kwang Ho]Kang, J[Kang, Joonhee]Joh, H[Joh, Hongrae]Kim, SM[Kim, Sang Min]Ahn, JH[Ahn, Jee Hyuk]Lee, J[Lee, Jehyun]Lim, SH[Lim, Sung Hwan]Han, B[Han, Byungchan]
DGIST Authors
Kang, J[Kang, Joonhee]
Issue Date
2015-11-30
Citation
Scientific Reports, 5
Type
Article
Article Type
Article
ISSN
2045-2322
Abstract
The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled. We uniformly disperse γ-Al2O3 nanoparticles over Cu matrix, and then we controlled atomic level morphology of the interface γ-Al2O3 //Cu by adding Ti solutes. It is shown that the Ti dramatically drives the interfacial phase transformation from very irregular to homogeneous spherical morphologies resulting in substantial enhancement of the mechanical property of Cu matrix. Furthermore, the Ti removes impurities (O and Al) in the Cu matrix by forming oxides leading to recovery of the electrical conductivity of pure Cu. We validate experimental results using TEM and EDX combined with first-principles density functional theory (DFT) calculations, which all consistently poise that our materials are suitable for industrial applications.
URI
http://hdl.handle.net/20.500.11750/2808
DOI
10.1038/srep17364
Publisher
Nature Publishing Group
Files:
There are no files associated with this item.
Collection:
Energy Science and EngineeringETC1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE