Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Yang, Sungeun -
dc.contributor.author Chung, Dong Young -
dc.contributor.author Tak, Young-Joo -
dc.contributor.author Kim, Jiwhan -
dc.contributor.author Han, Haksu -
dc.contributor.author Yu, Jong-Sung -
dc.contributor.author Soon, Aloysius -
dc.contributor.author Sung, Yung-Eun -
dc.contributor.author Lee, Hyunjoo -
dc.date.available 2017-07-11T05:46:59Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-09 -
dc.identifier.issn 0926-3373 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2856 -
dc.description.abstract It is very important to improve the mass activity and durability of platinum (Pt) catalysts for oxygen reduction and the oxidation of small organic molecules for fuel cell applications. A strong interaction between Pt and the support materials can change the electronic structures of platinum, enhancing catalytic activity and durability. Here, we deposited various amounts of Pt on TiN supports and characterized these catalysts using electron microscopy, H2 uptake, XANES, XPS, and valence-band XPS. The Pt nanoparticles had very small sizes (<2nm) with a narrow size distribution. Compared to a commercial Pt/C catalyst, the Pt surface in Pt/TiN catalysts was in a higher reduction state, and the Pt d-band center was downshifted. The results of DFT calculations confirmed that Pt could be stabilized on the TiN surface and that the Pt d-band center is downshifted relative to bulk Pt. The activity and durability of the Pt/TiN catalysts was enhanced for the oxygen reduction reaction and formic acid oxidation over that of the Pt/C catalyst. For the oxygen reduction reaction at 0.9V (vs. RHE), the mass activity was 0.29A/mgPt for the 10wt% Pt/TiN catalyst and 0.17A/mgPt for the Pt/C catalyst. After 5000 cycles of an accelerated durability test, the Pt/TiN exhibited a mass activity of 0.24A/mgPt, whereas the Pt/C catalyst exhibited a mass activity of 0.12A/mgPt. The Pt/TiN catalyst followed a direct pathway with fewer surface-poisoning intermediates for formic acid oxidation, which enhanced the activity of the Pt/TiN catalyst over that of the Pt/C catalyst. The modification of the electronic structure of Pt catalysts by interaction with TiN supports can significantly enhance the activity and durability of the catalyst. © 2015 Elsevier B.V. -
dc.publisher Elsevier B.V. -
dc.title Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation -
dc.type Article -
dc.identifier.doi 10.1016/j.apcatb.2015.02.033 -
dc.identifier.scopusid 2-s2.0-84923935867 -
dc.identifier.bibliographicCitation Applied Catalysis B: Environmental, v.174, pp.35 - 42 -
dc.subject.keywordAuthor Titanium nitride -
dc.subject.keywordAuthor Platinum -
dc.subject.keywordAuthor Metal-support interaction -
dc.subject.keywordAuthor Oxygen reduction reaction -
dc.subject.keywordAuthor Formic acid oxidation -
dc.subject.keywordPlus Accelerated Durability Tests -
dc.subject.keywordPlus ALLOY SURFACES -
dc.subject.keywordPlus Carbon -
dc.subject.keywordPlus Catalyst Activity -
dc.subject.keywordPlus Catalyst Poisoning -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus Catalytic Oxidation -
dc.subject.keywordPlus Design For Testability -
dc.subject.keywordPlus Durability -
dc.subject.keywordPlus Electrocatalysts -
dc.subject.keywordPlus Electrolytic Reduction -
dc.subject.keywordPlus Electronic Structure -
dc.subject.keywordPlus Enhanced Catalytic Activity -
dc.subject.keywordPlus Formic ACID -
dc.subject.keywordPlus Formic ACID Oxidation -
dc.subject.keywordPlus Fuel Cells -
dc.subject.keywordPlus MemBRANE FUEL-CELLS -
dc.subject.keywordPlus Metal-Support Interaction -
dc.subject.keywordPlus Metal-Support Interactions -
dc.subject.keywordPlus Methanol -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus Narrow Size Distributions -
dc.subject.keywordPlus Nitrides -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus Oxidation of Small Organic Molecules -
dc.subject.keywordPlus Oxygen -
dc.subject.keywordPlus Oxygen Reduction Reaction -
dc.subject.keywordPlus Platinum -
dc.subject.keywordPlus Platinum Alloys -
dc.subject.keywordPlus Platinum Metals -
dc.subject.keywordPlus Reaction Intermediates -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus Structure Modification -
dc.subject.keywordPlus SUPPORT -
dc.subject.keywordPlus TemPERATURE -
dc.subject.keywordPlus Titanium -
dc.subject.keywordPlus Titanium Compounds -
dc.subject.keywordPlus Titanium Nitride -
dc.subject.keywordPlus TRANSITION-METALS -
dc.subject.keywordPlus X Ray Photoelectron Spectroscopy -
dc.citation.endPage 42 -
dc.citation.startPage 35 -
dc.citation.title Applied Catalysis B: Environmental -
dc.citation.volume 174 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Light, Salts and Water Research Group 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE