Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Nandini, Seetharamaiah -
dc.contributor.author Nalini, Seetharamaiah -
dc.contributor.author Sanetuntikul, Jakkid -
dc.contributor.author Shanmugam, Sangaraju -
dc.contributor.author Niranjana, Pathappa -
dc.contributor.author Melo, Jose Savio -
dc.contributor.author Suresh, Gurukar Shivappa -
dc.date.available 2017-07-11T06:14:37Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-11-21 -
dc.identifier.issn 0003-2654 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3001 -
dc.description.abstract In this paper, a simple and innovative electrochemical hydrogen peroxide biosensor has been proposed using catalase (CATpp) derived from Pichia pastoris as bioelectrocatalyst. The model biocomponent was immobilized on gold nanoparticle nanotubes (AuNPNTs) and polythiophene composite using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide (EDC-NHS) coupling reagent. In this present work, we have successfully synthesized gold nanoparticles (AuNPs) by ultrasonic irradiation. The tubular gold nanostructures containing coalesced AuNPs were obtained by sacrificial template synthesis. The assembly of AuNPNTs onto the graphite (Gr) electrode was achieved via S-Au chemisorption. The latter was pre-coated with electropolymerized thiophene (PTh) to enable S groups to bind AuNPNTs. The combination of AuNPNTs-PTh, i.e., an inorganic-organic hybrid, provides a stable enzyme immobilization platform. The physical morphology of the fabricated biosensor Gr/PTh/AuNPNTs/EDC-NHS/CATpp was investigated using scanning electron microscopy and energy-dispersive microscopy. The analytical performance of the bioelectrode was examined using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. Operational parameters such as working potential, pH, and thermal stability of the modified electrode were examined. The beneficial analytical characteristics of the proposed electrode were demonstrated. Our results indicate that the Gr/PTh/AuNPNTs/EDC-NHS/CATpp bioelectrode exhibits a wide linear range from 0.05 mM to 18.5 mM of H2O2, fast response time of 7 s, excellent sensitivity of 26.2 mA mM-1 cm-2, good detection limit of 0.12 μM and good Michaelis-Menten constant of 1.4 mM. In addition, the bioelectrode displayed good repeatability, high stability and acceptable reproducibility, which can be attributed to the AuNPNTs-PTh composite that provides a biocompatible micro-environment. © the Partner Organisations 2014. -
dc.publisher Royal Society of Chemistry -
dc.title Development of a simple bioelectrode for the electrochemical detection of hydrogen peroxide using Pichia pastoris catalase immobilized on gold nanoparticle nanotubes and polythiophene hybrid -
dc.type Article -
dc.identifier.doi 10.1039/c4an01262c -
dc.identifier.scopusid 2-s2.0-84907963263 -
dc.identifier.bibliographicCitation Analyst, v.139, no.22, pp.5800 - 5812 -
dc.subject.keywordPlus FUNCTIONALIZED GRAPHENE -
dc.subject.keywordPlus MODIFIED ELECTRODE -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus NAFION -
dc.subject.keywordPlus ENZYME -
dc.citation.endPage 5812 -
dc.citation.number 22 -
dc.citation.startPage 5800 -
dc.citation.title Analyst -
dc.citation.volume 139 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Advanced Energy Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE