Cited 0 time in webofscience Cited 0 time in scopus

Polymer Solar Cells with Micrometer-Scale Engraved Active Nanolayers Fabricated by Pressing with Metal Molds

Title
Polymer Solar Cells with Micrometer-Scale Engraved Active Nanolayers Fabricated by Pressing with Metal Molds
Authors
Lee, S[Lee, Sooyong]Nam, S[Nam, Sungho]Seo, J[Seo, Jooyeok]Jeong, J[Jeong, Jaehoon]Kim, H[Kim, Hwajeong]Woo, S[Woo, Sungho]Kim, Y[Kim, Youngkyoo]
DGIST Authors
Woo, S[Woo, Sungho]
Issue Date
2014-08
Citation
Energy Technology, 2(8), 713-720
Type
Article
Article Type
Article
Keywords
Bulk-Heterojunction (Bhj)Butyric AcidCrystalline NanostructureEngravingEngraving TechnologyEtchingHeterojunctionsMetal PressingMetalsMicrometersMold TemperaturesMoldsNano-StructuresPoly(3-Hexylthiophene)Polymer Solar Cells (PSCs)PolymersPower Conversion EfficienciesPressingPressing (Forming)Roll-to-Roll ProcessingSolar Cells
ISSN
2194-4288
Abstract
A micro-engraved bulk heterojunction (BHJ) nanolayer, which is formed by pressing with a micrometer-scale embossed metal mold, was introduced to fabricate polymer:fullerene solar cells. The embossed metal molds with three different pattern sizes were fabricated by employing a typical lithography/etching process. After the embossed metal molds were pressed onto the BHJ layers, which are made with blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), the size of the resulting engraved patterns in the BHJ layers became smaller than that of the embossed patterns in the metal molds. All devices with the engraved patterns showed remarkably enhanced short-circuit current densities and power conversion efficiencies, which were pronounced even at a low mold temperature of 60°C. The enhanced performance has been attributed mainly to the formation of highly-ordered crystalline nanostructures that are localized within the pressed regions in the BHJ layers. This engraving technology can contribute to the speedy roll-to-roll processing of solar cells by shortening thermal treatment steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
URI
http://hdl.handle.net/20.500.11750/3067
DOI
10.1002/ente.201402034
Publisher
Wiley-VCH Verlag
Files:
There are no files associated with this item.
Collection:
Convergence Research Center for Solar Energy1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE