Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Noh, Seunghyo -
dc.contributor.author Kang, Joonhee -
dc.contributor.author Kwak, Dohyun -
dc.contributor.author Fischer, Peter -
dc.contributor.author Han, Byungchan -
dc.date.available 2017-07-11T06:22:06Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-04-15 -
dc.identifier.issn 0360-5442 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3098 -
dc.description.abstract Using first principles DFT (density functional theory), we have examined the thermochemical mechanism of electrorefining spent uranium (U) from a LiCl-KCl molten salt on a tungsten (W) surface. We calculated 197 different U/W(110) surfaces to identify the most thermodynamically and electrochemically stable structures as a function of U and Cl coverages. The results indicate that local structures of the double-layer interface between the W(110) surface and the LiCl-KCl salt are the key factors governing the electrorefining performance. The results also provide important thermodynamic properties for the design of efficient recycling systems for spent nuclear fuels, such as pyroprocessing technologies, and may be applicable as well to general electrochemical applications involving strong redox reactions of transition metals exposed to non-aqueous solutions. © 2014 Elsevier Ltd. -
dc.publisher Elsevier Ltd -
dc.title First principles thermodynamic studies for recycling spent nuclear fuels using electrorefining with a molten salt electrolyte -
dc.type Article -
dc.identifier.doi 10.1016/j.energy.2014.02.081 -
dc.identifier.scopusid 2-s2.0-84898029976 -
dc.identifier.bibliographicCitation Energy, v.68, pp.751 - 755 -
dc.subject.keywordAuthor First principles -
dc.subject.keywordAuthor Density functional theory -
dc.subject.keywordAuthor Electrorefining -
dc.subject.keywordAuthor Recycling spent nuclear fuels -
dc.subject.keywordAuthor Molten salt -
dc.subject.keywordAuthor Pyroprocess -
dc.subject.keywordPlus GENERALIZED GRADIENT APPROXIMATION -
dc.subject.keywordPlus ELECTROCHEMICAL STABILITY -
dc.subject.keywordPlus URANIUM -
dc.citation.endPage 755 -
dc.citation.startPage 751 -
dc.citation.title Energy -
dc.citation.volume 68 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Energy Systems Engineering 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE