Cited 0 time in webofscience Cited 3 time in scopus

Limiting worst-case end-to-end latency when traffic increases in a switched avionics network

Limiting worst-case end-to-end latency when traffic increases in a switched avionics network
Nam, M.-Y.[Nam, Min-Young]Seo, E.[ Seo, Eunsoo]Sha, L.[ Sha, Lui]Park, K.-J.[Park, Kyung-Joon]Kang, K.[ Kang, Kyungtae]
DGIST Authors
Park, K.-J.[Park, Kyung-Joon]
Issue Date
17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2011, 1, 285-294
Article Type
Conference Paper
New features are often added incrementally to avionics systems. This avoids redesign and recertification but still requires verifying the timing constraints of both new and existing applications. We introduce a new switch that facilitates this verification by bounding the latency of end-to-end communication across a network. Our clock-driven real-time switching algorithm is throughput-optimal with a bounded worst-case delay for all feasible traffic. Associated heuristics can verify whether the timing constraints of an avionics network are met, after new features have caused traffic to increase, and then search for alternative network configurations if necessary. We show how these heuristics cope with changes to an example environmental monitoring architecture within an avionics system that incorporates our switch. Our approach to analysis can be used to determine, quickly but rigorously, which system architecture meet timing constraints; and it allows the system architect to manage the cascading effects of component changes in a comprehensive manner. © 2011 IEEE.
Institute of Electrical and Electronics Engineers Inc.
There are no files associated with this item.
Information and Communication EngineeringCSI(Cyber-Physical Systems Integration) Lab2. Conference Papers

qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.