Cited 0 time in webofscience Cited 0 time in scopus

Enhanced hand part classification from a single depth image using random decision forests

Title
Enhanced hand part classification from a single depth image using random decision forests
Authors
Sohn, MK[Sohn, Myoung-Kyu]Lee, SH[Lee, Sang-Heon]Kim, H[Kim, Hyunduk]Park, H[Park, Hyeyoung]
DGIST Authors
Sohn, MK[Sohn, Myoung-Kyu]; Lee, SH[Lee, Sang-Heon]; Kim, H[Kim, Hyunduk]
Issue Date
2016-12
Citation
IET Computer Vision, 10(8), 861-867
Type
Article
Article Type
Article
Keywords
Algorithm VerificationClassification (of Information)Conventional MethodsFeature ExtractionForestryGesture Recognition SystemsHand Pose RecognitionHuman Computer InteractionImage ClassificationJoint EstimationPixel ClassificationPixelsPose EstimationRobust Feature ExtractionsState of the Art MethodsThree Dimensional (3D) CamerasThree Dimensional Computer GraphicsTrackingdecision Trees
ISSN
1751-9632
Abstract
Hand pose recognition has received increasing attention in an area of human-computer interaction. With the recent spread of many low-cost three-dimensional (3D) cameras, research into understanding more natural gestures has increased. In this study, the authors present a method for hand part classification and joint estimation from a single depth image. They apply random decision forests (RDFs) for hand part classification. Foreground pixels in the hand image are estimated by RDF. Then hand joints are estimated based on the classified hand parts. They suggest a robust feature extraction method for per-pixel classification, which enhances the accuracy of hand part classification. They also propose a tree selection algorithm using legacy trained RDF to classify unseen test data. Selecting trees using the proposed method show better performance than using all the trees as in conventional method. Depth images and label images synthesised by 3D hand mesh model were used for training forests and algorithm verification. The authors' experiments show that the enhanced algorithm outperforms the state-of-the-art method in accuracy. © The Institution of Engineering and Technology.
URI
http://hdl.handle.net/20.500.11750/4291
DOI
10.1049/iet-cvi.2015.0239
Publisher
Institution of Engineering and Technology
Files:
There are no files associated with this item.
Collection:
Division of IoT∙Robotics Convergence Research1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE