Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hong, Sungwook E. -
dc.contributor.author Zoe, Hee Seung -
dc.contributor.author Ahn, Kyungjin -
dc.date.accessioned 2018-01-11T13:06:36Z -
dc.date.available 2018-01-11T13:06:36Z -
dc.date.created 2018-01-01 -
dc.date.issued 2017-11 -
dc.identifier.issn 2470-0010 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4855 -
dc.description.abstract We study the impact of thermal inflation on the formation of cosmological structures and present astrophysical observables which can be used to constrain and possibly probe the thermal inflation scenario. These are dark matter halo abundance at high redshifts, satellite galaxy abundance in the Milky Way, and fluctuation in the 21-cm radiation background before the epoch of reionization. The thermal inflation scenario leaves a characteristic signature on the matter power spectrum by boosting the amplitude at a specific wave number determined by the number of e-foldings during thermal inflation (Nbc), and strongly suppressing the amplitude for modes at smaller scales. For a reasonable range of parameter space, one of the consequences is the suppression of minihalo formation at high redshifts and that of satellite galaxies in the Milky Way. While this effect is substantial, it is degenerate with other cosmological or astrophysical effects. The power spectrum of the 21-cm background probes this impact more directly, and its observation may be the best way to constrain the thermal inflation scenario due to the characteristic signature in the power spectrum. The Square Kilometre Array (SKA) in phase 1 (SKA1) has sensitivity large enough to achieve this goal for models with Nbc 26 if a 10000-hr observation is performed. The final phase SKA, with anticipated sensitivity about an order of magnitude higher, seems more promising and will cover a wider parameter space. © 2017 American Physical Society. -
dc.language English -
dc.publisher American Physical Society -
dc.title Small-scale effects of thermal inflation on halo abundance at high-z, galaxy substructure abundance, and 21-cm power spectrum -
dc.type Article -
dc.identifier.doi 10.1103/PhysRevD.96.103515 -
dc.identifier.scopusid 2-s2.0-85037118386 -
dc.identifier.bibliographicCitation Physical Review D, v.96, no.10 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus SUPERSTRING MODELS -
dc.subject.keywordPlus DARK-MATTER -
dc.subject.keywordPlus COSMOLOGICAL IMPLICATIONS -
dc.subject.keywordPlus GAUGE-SYMMETRY -
dc.subject.keywordPlus GALACTIC HALOS -
dc.subject.keywordPlus MODULI PROBLEM -
dc.subject.keywordPlus MASS -
dc.subject.keywordPlus BARYOGENESIS -
dc.subject.keywordPlus REIONIZATION -
dc.subject.keywordPlus BREAKING -
dc.citation.number 10 -
dc.citation.title Physical Review D -
dc.citation.volume 96 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE