Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Woo, Seonghoon -
dc.contributor.author Song, Kyung Mee -
dc.contributor.author Han, Hee-Sung -
dc.contributor.author Jung, Min-Seung -
dc.contributor.author Im, Mi-Young -
dc.contributor.author Lee, Ki-Suk -
dc.contributor.author Song, Kun Soo -
dc.contributor.author Fischer, Peter -
dc.contributor.author Hong, Jung-Il -
dc.contributor.author Choi, Jun Woo -
dc.contributor.author Min, Byoung-Chul -
dc.contributor.author Koo, Hyun Cheol -
dc.contributor.author Chang, Joonyeon -
dc.date.available 2018-01-25T01:05:48Z -
dc.date.created 2017-08-09 -
dc.date.issued 2017-05 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5003 -
dc.description.abstract Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future. © 2017 The Author(s). -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy -
dc.type Article -
dc.identifier.doi 10.1038/ncomms15573 -
dc.identifier.scopusid 2-s2.0-85019848778 -
dc.identifier.bibliographicCitation Nature Communications, v.8 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus Bubbles -
dc.subject.keywordPlus Chiral Magnet -
dc.subject.keywordPlus Domain Walls -
dc.subject.keywordPlus Lattice -
dc.subject.keywordPlus Layer Excitation -
dc.subject.keywordPlus Magnetic Skyrmions -
dc.subject.keywordPlus Microscopy -
dc.subject.keywordPlus Radiography -
dc.subject.keywordPlus Room Temperature -
dc.subject.keywordPlus Torque -
dc.subject.keywordPlus Weak Ferromagnetism -
dc.citation.title Nature Communications -
dc.citation.volume 8 -
Files in This Item:
000401961800001.pdf

000401961800001.pdf

기타 데이터 / 1.79 MB / Adobe PDF download
Appears in Collections:
Department of Physics and Chemistry Spin Nanotech Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE