Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Gee Yeong -
dc.contributor.author Jo, William -
dc.contributor.author Jo, Hyun-Jun -
dc.contributor.author Kim, Dae-Hwan -
dc.contributor.author Kang, Jin-Kyu -
dc.date.accessioned 2018-01-25T01:10:01Z -
dc.date.available 2018-01-25T01:10:01Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-09 -
dc.identifier.citation Current Applied Physics, v.15, no.S2, pp.S44 - S50 -
dc.identifier.issn 1567-1739 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5172 -
dc.description.abstract CuIn1-xGaxSe2 (CIGS) thin-films were deposited by a three-stage co-evaporation process. We obtained an optimum value for the Ga/(In + Ga) ratio of CIGS solar cells of 0.29, which exhibits a band-gap of 1.14 eV and has the highest conversion efficiency. The Ga/(In + Ga) ratio in CIGS solar cells is one of main characteristics that can improve efficiency, but the optimum value is still uncertain. In this study, we investigated the local electrical properties, which are closely related to the device properties, of CIGS according to the Ga/(In + Ga) ratio. We measured the local current of the films using conductive atomic force microscopy. The local current indicates relatively small values for the current ratio and the average current on the film surface, which has a high shunt resistance and a low series resistance in high-efficiency CIGS thin-films. However, low efficiency CIGS exhibits the opposite electrical behavior. Thus, the macroscopic and microscopic electrical behaviors are closely correlated with the conversion efficiency and with the device factors of CIGS thin-film solar cells with a varying Ga/(In + Ga) ratio. These results suggest that the control of carrier transport over the grains will improve the conversion efficiency of CIGS thin-film solar cells. © 2015 Elsevier B.V. All rights reserved. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Macroscopic and microscopic electrical properties of Cu(In,Ga)Se-2 thin-film solar cells with various Ga/(In plus Ga) contents -
dc.type Article -
dc.identifier.doi 10.1016/j.cap.2015.04.036 -
dc.identifier.wosid 000362917600011 -
dc.identifier.scopusid 2-s2.0-84942372598 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.citation.publicationname Current Applied Physics -
dc.contributor.nonIdAuthor Kim, Gee Yeong -
dc.contributor.nonIdAuthor Jo, William -
dc.contributor.nonIdAuthor Jo, Hyun-Jun -
dc.identifier.citationVolume 15 -
dc.identifier.citationNumber S2 -
dc.identifier.citationStartPage S44 -
dc.identifier.citationEndPage S50 -
dc.identifier.citationTitle Current Applied Physics -
dc.type.journalArticle Article; Proceedings Paper -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Cu(ln,Ga)Se-2 -
dc.subject.keywordAuthor Ga/(In plus Ga) -
dc.subject.keywordAuthor Grain boundaries -
dc.subject.keywordAuthor Conductive atomic force microscopy -
dc.subject.keywordPlus EFFICIENCY LIMITATIONS -
dc.subject.keywordPlus GRAIN-BOUNDARIES -
dc.subject.keywordPlus COEVAPORATION -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus CUINSE2 -
dc.subject.keywordPlus DEVICE -
dc.contributor.affiliatedAuthor Kim, Gee Yeong -
dc.contributor.affiliatedAuthor Jo, William -
dc.contributor.affiliatedAuthor Jo, Hyun-Jun -
dc.contributor.affiliatedAuthor Kim, Dae-Hwan -
dc.contributor.affiliatedAuthor Kang, Jin-Kyu -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE