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ABSTRACT

Compute Tomography (CT) imaging is mostly used to diagnose abdominal disease. Among many organs
in abdominal CT, the pancreas is one of important regions to diagnose diabetes, pancreatic cancer, and
pancreatitis. Thus, it is important to fin the pancreas area and quantitatively analyze the present of disease.
However, it is difficult to segment the pancreas area due to the size and shape variation depending on patients
and ambiguous boundaries with surrounding organs. A lot of methods have been proposed for the automatic
pancreas segmentation, but the accurate segmentation is still challenging. Recently, deep learning methods have
been achieved better performance than conventional machine learning based segmentation methods for many
applications. Thus, in this paper, we propose a new pancreas segmentation method using deep learning.

Applying a deep learning algorithm to the 3D CT image segmentation is non-trivial due to a memory
limitation. Several deep learning methods address this issue by dividing a 3D medical image into small 3D
patches and then applying 3D Convolutional Neural Networks (CNN) on the patches. However, anatomical
information cannot be considered in this way. To address these issues, in this paper, we propose a Multi-
Dimensional Long Short-Term Memory (MDLSTM) method which can consider the anatomical information
using a sequential learning scheme. MDLSTM is compose of a 3D CNN that performs the patch-wise
segmentation on local regions and a Long Short-Term Memory (LSTM) that propagates information of adjacent
patches. For evaluation, the NIH CT dataset was used to train the MDLSTM model, and Dice-Sorensen
Coefficient (DSC), Precision, and Recall were used to compare performance with other 2D and 3D CNN
methods. When using the proposed method, we can see the DSC and precision were increased by 2%, 16%,
respectively compared to the conventional CNN method.

Keywords: Computed Tomography, Pancreas segmentation, Convolutional Neural Network, Long Short-Term
Memory
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I. INTRODUCTION

1.1 Introduction

Organ segmentation is a fundamental step in analyzing medical image. Among them, the pancreas provides
import information to diagnose diabetes, pancreatic cancer, and pancreatitis. For this reason, it is important to
localize the pancreas, but pancreas segmentation is a difficult task because the size and shape of the pancreas is
more diverse than other organs and difficult to classify with surrounding organs. Radiologists’ manual segmenting
of the pancreas is a time-consuming, tedious, and laborious task. In addition, there are differences in the results
made by radiologists by hand. So, it is required to automatic segmentation algorithm. As machine learning
technology has developed, methods were proposed to extract handcraft features using pre-knowledge and then
perform pancreas segmentation [10], [11]. Recently, as hardware performance and deep learning technology have
been developed, many researches using deep learning have been conducted, and better performance has been
obtained in various applications than previous methods. Among several deep learning algorithms, the
convolutional neural network shows good performance for the problem of segmentation, and it can be used in
pancreas segmentation. However, despite the good performance of the convolutional neural network, pancreas
segmentation is still challenging.

The reasons it is difficult to the pancreas segmentation within a 3D CT image is too large. Therefore, it is
necessary to change the size that can be learned for deep learning through preprocessing. Two methods are
typically used as a preprocessing. It is extracting 2D slices and small 3D images. When segmentation is performed
with 2D images, 3D information is lost, but anatomical information can be used. When segmentation is performed
with 3D images, there is a method to reduce the size of the original image or extract patches from the original
image for deep learning. There is an advantage of using 3D information, but there is a disadvantage of losing a
lot of information while reducing the size, and not using anatomical information when performing segmentation
while using patches. For the 2D image segmentation methods, FCN [13], U-Net [5], and DeepLab v3[14] were
proposed. For the 3D image segmentation methods, 3D U-Net [6] was proposed which is an extended version of
2D U-Net.

In this paper, we propose a Multi-Dimensional Long Short-Term Memory (MDLSTM) to solve the problem
when using 3D U-Net. MDSLTM is composed of 3D U-Net and Convolutional LSTM (CLSTM). The principle
of operation is to use the results from 3D U-Net as input to MDLSTM to learn the relationship with surrounding

patches. For the CT datasets used in the experiment, the NIH pancreas dataset was used. As a result of the proposed



method, it was confirmed that the DSC was improved by 2% and the Precision was improved by 16% compared

to the conventional 3D U-Net.

Figure 1. Axial view CT images from different subjects.

1.2 Related works

The result of the pancreas segmentation for the two basic methods (2D U-Net, 3D U-Net) shows significantly
lower performance than those of other organs. Deep learning model is difficult to learn how to find pancreas area
because the pancreas has different sizes and shapes for each patient. Recently, many previous studies have been
conducted to solve this problem.

H. R. Roth et al. [1] proposed a binary classification method for voxel using small images in axial, coronal, and
sagittal spaces that share a point in a 3D image. It is a method that performs segmenting without using the Fully
convolutional Network (FCN), the performance is not good, but it uses axial, coronal, and sagittal spatial
information and suggests the coarse-to-fine stage method. J. Cai et al. [2] performs pancreas segmentation using
Convolutional Long Short-Term Memory (CLSTM) that learns information between the result of 2D U-Net, and
refinement of segmentation using CLSTM. It helps to reduce the disadvantage of not using 3D spatial information.
However, if a wrong prediction is generated in the previous slice, a problem occurs that incorrectly predicts until
the next slice. Also, since only the information of the previous images is used, the information of the next images
cannot be used. Hao Li et al. [3] to use 3D information, the number of seven slices are stacked as channels and
used for 2D U-Net. Besides, they proposed a structure that learns continuous information between each 2D image
using Bidirectional LSTM (BDLSTM). The structure of using 7 slices as channels and using it for 2D U-Net does
not predict for each image. It shows the results considering the overall information of the 7 slices. Since the
appearance between the stacked slices is not similar, detailed consideration of each image is not possible, and the
performance is reduced.

Zhuotun Zhu, et al. [8] used a coarse-to-fine method with using 3D patches. In the coarse stage, input patches
are randomly extracted from the entire image to find the approximate location of the pancreas. In the fine stage,

bounding boxes are created using the results of the coarse stage, and patches are randomly extracted from the
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bounding boxes for 3D U-Net. Because the unnecessary patch for learning is not used in fine stage, it is possible
to obtain a better segmentation result of the coarse stage, but there is s disadvantage in that anatomical information
cannot be used. Ningning Zhao, et al. [9] also using the coarse-to-fine method, but the entire image of the
abdominal CT is down-sampled and used as the input of the coarse stage. A bounding box is generated based on
the results from the coarse stage, and then up sampled to be used as input for the fine stage to obtain the final
result. However, when learning a 3D U-Net in the coarse stage, there is a problem in that the pancreas is too small
in the original image, and the number of data is not enough to learn well.

The previous studies have a common point that the research was conducted to learn anatomical information and
3D spatial information in the abdominal CT image. It attempted to supplement for the inability to use 3D spatial
information in 2D U-Net, and to supplement the inability to use anatomical information in 3D U-Net. However,
a method of using CLSTM in 2D U-Net does not use all 3D spatial information. This is because the characteristics
of the other axis cannot be considered because information of the 2D image extracted based on one axis is
propagated. In addition, using a coarse-to-fine step in 3D U-Net does not communicate with each other in the
coarse stage and fine stage, the anatomical information of the coarse stage does not propagate to the fine stage. In
this paper, to solve the inability to use anatomical information in 3D U-net, LSTM method is used to improve

performance by delivering information about surrounding patches.



II. METHOD

This section introduces the 3D patch-based pancreas segmentation using MDCLSTM. The overall structure of
MDCLSTM can be seen in Figure 2. The MDCLSTM method consists of two stage. The first stage extracts small
patches from the original image and create a feature map of each patch using 3D U-Net. The second stage is to
deliver feature maps generated in 3D U-Net to adjacent patches using MDCLSTM and perform pancreas
segmentation. Using the proposed method, anatomical information can be used by viewing a wider area compared

using only 3D U-Net while performing pancreas segmentation.
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Figure 2. Overall structure of MDCLSTM

2.1 U-Net

U-Net consists of encoding and decoding stages. In the encoding stage, there are CNN composed of 3x3 kernels,
Relu function, and 2x2 max pooling function. U-Net can be separated into the Encoding and Decoding stages. In
the Encoding stage, there are 3x3 kernel CNN, Relu functions, and 2x2 max pooling functions. In this study, a
batch normalization technique is additionally used to improve learning stability and acceleration. In the Decoding
stage, there are Transposed CNN which makes the larger image using a 3x3 kernel (Up-convolution), CNN using
a 3x3 kernel, Relu function. In the final stage, the final segmentation result is obtained through CNN using a 1x1
kernel. In addition, the feature map generated for each depth in the Encoding stage can be propagated to each
depth in the Decoding stage, thereby reducing information lost in the Encoding stage (Figure 3). In this study, we
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compared the performance of the proposed method using 2D U-Net and 3D U-net. The comparison method used

DSC, Precision, and Recall.
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1 64 64 64 1
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Figure 3. U-Net architecture
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2.2 Convolutional Long Short-Term Memory (CLSTM)

The Neural Network (NN) structure has a disadvantage in that the size of input information must be a constant
value. To alleviate this problem, Recurrent Neural Network (RNN) method is proposed. RNN can be used without
restrictions on the size of input data and it is suitable to use for process continuous data. Long Short-Term Memory
(LSTM) is an improved method of RNN that can learn long-term and short-term information. LSTM is composed
of input gate, forget gate, and output gate. The output of LSTM is hidden state and cell state. To use continuous
information in 3D images, the Convolutional LSTM (CLSTM) method has been proposed. By using this technique
input data from LSTM can be processed in images.

ip = oWy *x; + Wy * he_q + b;) 1)

fe = o(Wys *xp + Wys x hy_y + by) )

c: = [iOci—1 + iy © tanh(Wy * xp + Wy x he_q + by) @)
0 = 0(Wyo * x¢ + Who * he_qy + by) )

h: = 0,®Otanh(c;) ®)

0 () and tanh() mean sigmoid function and hyperbolic tangent function, respectively. * operation means CNN
and © means element-wise product. I; f;, O is input gate, forget gate, and output gate at time ‘t’
respectively. X; means input data, and W, are parameter of CLSTM. h; and ¢; means hidden state and cell
state, respectively. X passes through the CNN and is used as the input of each gate along with the hidden state
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of the previous time. At the forget gate, the decision as to whether to use previous information is calculated using
hidden state and input data (2), (3). The input gate decides how to add the calculated value from the hidden state
and input data to cell state (1), (3). The output gate calculates how much the cell state value will be transferred to

the hidden state (5).
t t t

v

CLSTM fe CLSTM

N S 2l
e @) Hos

Figure 4. CLSTM architecture

2.3 Multi-Dimensional Convolutional Long Short-Term Memory (MDCLSTM)

The 3D patch -based pancreas segmentation method has the disadvantage of not knowing the overall information
of the image. In the case of an abdominal CT image, cannot use the anatomical information is the major cause of
performance degradation because the overall organ structure is similar for each patient. To solve this problem, we
proposed MDCLSTM method that can perform the 3D patch-based pancreas segmentation by using the
information of surrounding patches. 3D patch cannot apply CLSTM method to set one axis like 2D slice. Because
if set based on one axis and apply CLSTM, the information of the other axis cannot be used. Therefore, this study
intends to use a network that can use the information on various directions in 3D using MDCLSTM (Figure 5). In
this study, MDCLSTM using the information in 6 directions, and the total number of 6 CLSTM are used. The
composition of MDCLSTM is as follows.

hi = H*(Wypn * hiy + Wepn * citq + Wypn * 9¢ + bpyn) (6)
6
5= ) (Wang * ) + by ™)
n=1

¥, In this study, MDCLSTM using the information in 6 directions, and the total number of 6 CLSTM are used.
The composition of MDCLSTM is as follows. The composition of MDCLSTM is as follows means the result of
3D U-Net, and H™means hidden state from n direction CLSTM (6). W y,n and byn mean learning parameters
of CLSTM, and MDCLSTM uses the CNN for CLSTM results in 6 direction to generate the final § (6). Wyny
and by mean learning parameters of the CNN to obtain the result (7).
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Figure 5. MDCLSTM architecture

2.4 Forward and Backward propagation for the MDCLSTM

The entire network structure of MDCLSTM is differentiated. Therefore, end-to-end learning is possible, and the
entire network can be trained at once using forward-propagation and backward-propagation. Binary Cross Entropy
(BCE) loss function and Dice-Sorensen Coefficient (DSC loss function were used as the loss function to optimize

the network.

1 N
Ly ==~ > yilog(h(x; 0)) + (1 = y)log(1 - h(x; 0)) ®)
2X|YnY|
g =l - 9
YI+17] ¥
L=AL + (1 —-2A)L, (10)

Equation (8) means BCE loss function, equation (9) mean DSC loss function. In equation (10), the final loss
value is calculated by adjusting the ratio of two loss function values using the A value. MDCLSTM learning

parameters are learned to minimize the loss value.



II1. Experimental result

3.1 Data set

To verify the performance of the proposed method, 82 abdominal CT images from The National Institutes of
Health Clinical Center were used. The size of Ctimages is 512 X 512 X D, D € [181, 466] and the thickness of
the images is 1.5 —2.5 mm. The experiment consisted of 4-fold cross-validation and 82 patient data were randomly

distributed.
3.2 Implementation details

Pytorch was used to implement the proposed network in this paper, and learning was performed on NVIDIA
TITAN Xp (12 GB memory). The optimization algorithm used the Adam optimization method, and the learning
rate was set to an initial value of le-3 and multiplied by le-1 for every 15 epochs out of a total of 40 epochs to
gradually decrease the ratio. DSC loss function and BCCE loss function were used as the loss function, and when
experimented while adjusting the A value in equation (10), the value of A = 0.5 showed the best performance.

The 2D U-Net synthesized the results of the axial, coronal, and sagittal axes to derive the final result, and the
size of the input slice was 512 X 512,256 X 192,192 X 192 respectively. When learning 3D U-Net, 32x32x32
patch was used, and the result of each patch was placed in the proper place on the original CT to get the result.
The 3D U-Net used in MDCLSTM uses the same structure as the comparison method, and the size of the input
patch is set the same. When performing pancreas segmentation of a specific patch in MDCLSTM, create a feature

map for each patch using 3D U-Nets, and use the feature maps as inputs of 6 CLSTM.
3.3 Evaluation metrics

To verify the performance of the proposed method, DSC, Precision, and Recall were used. DSC is a method of
calculating the similarity between the actual pancreatic region and the created pancreatic region by the trained
model (11). Precision is the ratio of the actual pancreatic region to the created pancreatic region by the trained
model (12). Recall is the ratio of the created pancreatic region by the trained model to the actual pancreatic region

(13). In the below equation, TP, FP, and FN mean True Positive, False Positive, and False Negative, respectively.

_2x|yny

= (11)
Y] +1Y|
TP
isi = 12
Precision TP FP (12)
TP
_ 13
Recall TPLFN (13)



3.4 Qualitative and Quantitative Analysis

In the abdominal CT image, the intensity value varies from each patient and often varies within the same organ.
Because of the characteristics of these abdominal CT images, it is important to use anatomical information to
perform pancreas segmentation. 2D U-Net views the entire image on the axial, coronal, and sagittal axes, it can
use the anatomical information to perform pancreas segmentation. When using anatomical information, CNN can
learn about the overall position and shape of organs. Therefore, the error rate of predicting a non-pancreas organ
as a pancreas is small and we can see the precision value is high. 3D U-Net has the advantage of using spatial
information in the abdominal CT image compared to 2D U-Net, but it cannot use anatomical information because
it performs for a single patch. If a patch of a non-pancreas organ has characteristics like the pancreas, it is often
mistaken, and the precision value is significantly lower than that of the 2D U-Net. Using MDCLSTM, it is possible
to reduce the error rate of FP using anatomical information while propagating information of adjacent patches,

and the precision, DSC value increases by 16%, 2%, respectively (Table 1).

DSC (%) Precision (%) Recall (%)
2D U-net 79.40(£7.98) 85.43(%6.07) 75.96(%+7.98)
2D U-net + BDCLSTM 79.99(£7.92) 85.58(£5.91) 76.45(+12.63)
3D U-net 73.04(£8.47) 69.23(£10.6) 78.85(+10.45)
3D U-net + MDCLSTM 75.29(£7.89) 85.86(£5.87) 68.31(£11.36)

Table 1. Segmentation result of the previous segmentation method and purposed segmentation method.

Figure 6 shows the quantitative results of the comparison methods and proposed method. In the case of 2D U-
Net because it uses anatomical information, there are low errors that predict non-pancreas organs as the pancreas.
However, since only 2D information is used, a problem arises that it cannot perform well pancreas segmentation
for real pancreas area where can predict well using spatial information. In the case of 3D U-Net because it does
not use a wide area of anatomical information, it can be seen from Figure 6 that it often makes false predictions
about the non-pancreas area. When using MDCLSTM method, we can see disappear the cases of false predictions,

and it is also solved if it is not predicted as a pancreas in the middle of the predicted pancreas



2D U-net

2D U-net +
BDCLSTM

3D U-net

3D U-net +
MDCLSTM
(proposed)

Ground Truth

corona sagittal

Figure 6. Compare proposed method and previous methods.

Table 2 shows the results of 3D U-Net with different sizes of patches used as input. In 3D U-Net, if the patch
size were changed from 32 to 48, the performance would be better, but in MDCLSTM, the performance would be
lower when the patch size was changed from 32 to 48. As the size of the patch was increased, the amount of
information propagated was excessively increased, and the performance was deteriorated. In addition, further
research on the optimal information propagation method is needed. We can see the DSC value is the best when
the size of the input patch is 48 in 3D U-Net, but the precision value is best when MDCLSTM is added to 3D U-
Net. High precision means there is a false-positive, and it can reduce the leading wrong information to the

radiologist.
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DSC (%) Precision (%) Recall (%)

3D U-net

73.04(£8.47) 69.23(+10.6) 78.85(£10.45)
Patch:32
3D U-net

80.97(+6.48) 80.90(+6.85) 82.04(£9.75)
Patch:48

3D U-net + MDCLSTM

75.29(£7.89) 85.86(+5.87) | 68.31(£11.36)
(Patch:32)

3D U-net + MDCLSTM

67.60(£12.83) | 78.99(£11.27) | 61.19(£16.03)
(Patch:48)

Table 2. Segmentation result of each patch size.

It shows the best performance when using a patch size of 48 in 3D U-Net, but over-segmentation occurs

compare with the patch size is used as 32 in MDCLSTM (Figure 7). When using a patch size of 48 in 3D U-Net,

pancreas segmentation is performed while looking at a larger area than using a patch size of 32, which greatly

reduces the misprediction of non-pancreas areas, but the problem of predicting non-pancreas areas as pancreas

remains.

coronal

sagittal

Ground Truth 3D U-net 3D U-net + 3D U-net
(Patch:32) MDCLSTM (Patch:48)
(Patch:32)

Figure 7. Result of each patch size.
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VI. Conclusion

The pancreas is difficult to perform segmentation because size and shape are varies compared to other organs.
To perform pancreas segmentation well, it is important to use spatial and anatomical information. However,
existing methods do not use this information well, so new method is needed. In this paper, we proposed a method
for performing pancreas segmentation using MDCLSTM. When using the proposed method, the problem of not
using anatomical information in the 3D U-Net is solved through information propagate between patches. Also,
when performing the pancreas segmentation using 3D U-Net, it is possible to reduce the problem of predicting
the pancreas in a non-pancreas area and reduce error that giving false information to radiologists. Therefore, the

proposed method is suitable for medical images and can be easily applied to other 3D images.
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