
ORIGINAL RESEARCH
published: 10 July 2020

doi: 10.3389/fncom.2020.00050

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 50

Edited by:

Abdelmalik Moujahid,

University of the Basque

Country, Spain

Reviewed by:

Jun Ma,

Lanzhou University of

Technology, China

Daya Shankar Gupta,

Camden County College,

United States

*Correspondence:

Hao Wang

hao.wang@siat.ac.cn

Received: 12 December 2019

Accepted: 11 May 2020

Published: 10 July 2020

Citation:

Wang H, Wang J, Thow XY, Lee S,

Peh WYX, Ng KA, He T, Thakor NV

and Lee C (2020) Unveiling

Stimulation Secrets of Electrical

Excitation of Neural Tissue Using a

Circuit Probability Theory.

Front. Comput. Neurosci. 14:50.

doi: 10.3389/fncom.2020.00050

Unveiling Stimulation Secrets of
Electrical Excitation of Neural Tissue
Using a Circuit Probability Theory

Hao Wang 1,2,3,4*, Jiahui Wang 2,3,4,5, Xin Yuan Thow 5, Sanghoon Lee 2,3,4,5,6,

Wendy Yen Xian Peh 5, Kian Ann Ng 5, Tianyiyi He 2,3,4, Nitish V. Thakor 5 and

Chengkuo Lee 2,3,4,5,7

1 Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of

Sciences (CAS), Shenzhen, China, 2Department of Electrical and Computer Engineering, National University of Singapore,

Singapore, Singapore, 3Center for Intelligent Sensor and MEMS, National University of Singapore, Singapore, Singapore,
4Hybrid Integrated Flexible Electronic Systems, National University of Singapore, Singapore, Singapore, 5 Singapore Institute

for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore, 6Department of Robotics

Engineering, Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, 7NUS Graduate School

for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore

Electrical excitation of neural tissue has wide applications, but how electrical stimulation

interacts with neural tissue remains to be elucidated. Here, we propose a new theory,

named the Circuit-Probability theory, to reveal how this physical interaction happen.

The relation between the electrical stimulation input and the neural response can

be theoretically calculated. We show that many empirical models, including strength-

duration relationship and linear-non-linear-Poisson model, can be theoretically explained,

derived, and amended using our theory. Furthermore, this theory can explain the complex

non-linear and resonant phenomena and fit in vivo experiment data. In this letter, we

validated an entirely new framework to study electrical stimulation on neural tissue, which

is to simulate voltage waveforms using a parallel RLC circuit first, and then calculate the

excitation probability stochastically.

Keywords: electric nerve stimulation, mathematical model, circuit-probability theory, computational modeling,

inductor in neural circuit

INTRODUCTION

Neuromodulation by electrical stimulation has proven itself as an effective treatment for medical
conditions in many therapeutic situations, including deep brain stimulation [e.g., Parkinson’s
disease; Shah et al., 2017], spinal cord stimulation (e.g., chronic pain) and peripheral nerves
stimulation (neuroprosthetics) (Berger et al., 2011; Gilja et al., 2012). Despite these wide
applications, fine details of the mechanism by which electrical stimulation modulates neural
response remains elusive (Howell et al., 2015; Pelot et al., 2017), and a more complete
theoretical model accounting for tissue response to various electrical stimulation parameters
is still an ongoing pursuit (Keener, 1996; Pumir and Krinsky, 1996; Ma et al., 2010; Brocker
and Grill, 2013; Fertonani and Miniussi, 2017). The conventional approach is to study
stimulation of individual neurons based on the Hodgkin–Huxley model (HH model) along with
simulated electric field (E-field) distribution (Hodgkin and Huxley, 1952; Raspopovic et al.,
2011; Capogrosso et al., 2013; Pelot et al., 2017). However, there is a gap in our knowledge
describing the microscopic axon structure leading up to the stimulation and response in complex
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neural (nerve and cortex) and non-neural (muscle) tissues
(Morse et al., 2015). To address this issue, empirical models
and rules have been developed [e.g., Linear-Nonlinear-
Poisson cascade model (LNP model) (Schwartz et al., 2006),
strength-duration curves (Lapicque, 1909; Weiss, 1990), and
stimulation waveforms efficiency difference Offner, 1946; Yuen
et al., 1981; McCreery et al., 1992; Shannon, 1992; Jezernik
and Morari, 2005; Wongsarnpigoon and Grill, 2010]. Still,
some important phenomena, such as the frequency dependent
response of nerve fibers (Evans, 1972; Li and Bak, 1976;
Hartmann et al., 1984; Kral et al., 1998; Howell et al., 2015) and
the stochastically distributed gating pattern of the ion channels
(Sanchez et al., 1986; Aldrich and Stevens, 1987; Bezanilla, 2000;
White et al., 2000), remain unaccounted for.

Here, we propose a new theory, named Circuit-Probability
(C-P) theory, to provide a physical framework, which is
completely different from the conventional way of using H-H
model with E-field modeling. Then, we show that some widely-
used empirical models and rules can be intuitively derived from
the C-P theory.

METHOD TO OBTAIN THE
CIRCUIT-PROBABILITY FRAMEWORK

How should we analyze tissue response to an external
stimulation? To answer this question, we performed a thought
experiment, which ultimately led to our new framework
of Circuit-Probability. When considering the electrode-tissue
interaction, the first question is how the electrode is bridged to
the tissue. We know the activation of action potential is induced
by the gating of the voltage-dependent ion channels. Then, for
electrode-tissue interaction, the key issue is how the electrical
input affects the voltage on these ion channels. Considering
the cell membrane is a capacitor, which is impermeable to
ions, it affects its electrical response in two aspects. Firstly, the
voltage changes on the capacitor, which is induced by charging
and discharging procedures, will generate a different waveform
in response to the input waveform. And the charging and
discharging procedures are not only affected by the capacitor
itself, but also affected by its peripheral circuit. Secondly, the E-
field will always be perpendicular to the plate of the capacitor,
which is the cell membrane surface, and the direction of the
E-field is only determined by the orientation of the capacitor.
Apparently, the correct voltage waveform and correct E-field
direction can be both obtained with a proper circuit involving
the capacitor of cell membrane. This is why we use a circuit to
characterize the electric response on the cell membrane.

With a proper circuit, we can model the voltage waveform.
Then, from this voltage waveform, how can we know the
stimulation strength? In the in vivo testing, the number of
activated action potentials shows a continuous change with the
electric input. However, single channel measurement shows that
an individual ion channel does not display a continuous state
change in response to electric input. It acts like a digital bit,
which only has two states: closed and open. Meanwhile, the
gating pattern of a single ion channel also shows a stochastic

behavior. Then, how can we build a bridge from the microscopic
discrete to macroscopic continuity? The exclusive option is a
probabilistic description of the ion channel gating, just as the
situation of thermal dynamics and quantum mechanics. The
ion channel gating is stochastic and can be described by the
exponential distribution.When a specific electrical field is applied
onto the ion channel, the time duration it takes to open the ion
channel can be described by the exponential distribution. Then
with the voltage waveform simulated using the circuit, it is easy
to calculate the probability of activating an action potential with
a certain electrical input.

Up to here, we have obtained a basic framework of Circuit-
Probability based on pure physical reasoning. The proper circuit
configuration can only be fitted using experimental results, which
is a posteriori, while the probability equation can obtained by
theoretical derivation, which is a priori.

THE METHOD TO OBTAIN THE
PROBABILITY CALCULUS IN
CIRCUIT-PROBABILITY THEORY

Here we firstly show how to theoretically derive the
probability equation.

In the electrical stimulation of a neuron, we assume that
electron transition of the protein causes the opening of sodium
ion channel, which then generates an action potential (AP).
Electron transition is a quantum phenomenon, which is random.
Hence, the generation of APs can be described with an
exponential distribution for quantum event:

f (λ, t) =

{

1− e−λt , t ≥ 0

0 , t < 0
λ > 0 (1)

Here f (λ, t) represents the probability of AP to be generated
within a time duration of t. 1

λ
is the expected time until AP

is generated. Expand the exponential distribution to a general
calculus form:

f (λ, t) = 1− e−
∫

λ(t)dt (2)

then the normal exponential distribution is the special formwhen
λ (t) is a constant.

Meanwhile, 1
λ
is also a function of the voltage V :

1

λ
= g(V) (3)

We have three electrophysiological considerations for g(V):

Consideration 1: 1
λ
to be infinitely large when the voltage, V ,

is more positive than the threshold voltage, VThreshold. In this
condition, the AP cannot be generated.
Consideration 2: 1

λ
to be inversely proportional with the

amplitude of |V − VThreshold|, when V is more negative
than VThreshold.
Consideration 3: 1

λ
to approach a minimal level when

|V − VThreshold| goes to infinite. So 1
λ
should get saturated at

a certain value.
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FIGURE 1 | Parameter illustration of the probability calculus. (A) An illustrative case with multiple effective voltage areas. Red line represents the input current (biphasic

in this case), blue line represents the resultant voltage across the cell membrane, and the green line represents the threshold voltage for action potential generation.

(B) Corresponding λ curve converted from the voltage curve in (A). The probability, P, will change monotonically with the area of the λ curve, Sλ.

With these three considerations, one possible form of g(V) can
be expressed as:

1

λ
= g (V) =

1

α
× (e

β

|V−VThreshold|
n

− c) (4)

The equation can be re-written as:

λ =
1

g (V)
= α ×

1

e

β

(|V−VThreshold|)
n

− c

(5)

Here, α, β , n, and c are adjustment parameters, where α > 0,
β > 0, n > 1, and 0 ≤ c ≤ 1.

To simplify the equation, here we assume that n = 1
and c = 0.

Then the complete expression of λ is:

λ =

{

α × e
−

β

|V−VThreshold| , V < VThreshold

0 , V ≥ VThreshold

(6)

Considering the voltage waveform, V(t), is a function of time, t,
the complete probability calculus equation is:

f (λ, t) = 1− e−
∫

λ(t)dt = 1− e−
∫

λ(V(t))dt

= 1− e−α
∫

e
−

β

|V(t)−VThreshold| dt , V(t) < VThreshold (7)

In this equation, α, β , and VThreshold are three parameters to be
determined by data fitting.

For a specific voltage waveform as shown in Figure 1A,
the voltage waveform can be converted to a λ waveform as
shown in Figure 1B. Then the probability calculus can be further
simplified as:

f = 1− e−
∫

λ(t)dt = 1− e−Sλ (8)

where Sλ is the area of the λ waveform. A detailed analysis of the
probability calculus can be found in Supplementary S1.

METHOD TO OBTAIN A CORRECT
NEURAL CIRCUIT IN
CIRCUIT-PROBABILITY THEORY

Then, we build a proper circuit using the results shown
in Figure 2. Its general configuration and analysis can be
obtained by reasoning (Supplementary S2). Based on the general
configuration, its exact configuration is obtained by fitting the
experiment data. This is a parallel RLC circuit. The capacitor
refers to the cell membrane. The inductor is included to
explain the frequency dependent response observed in the
experiments. We validated this by applying a single-frequency
input (sinusoid wave) to the Common Peroneal (CP) nerve.
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FIGURE 2 | Illustration of the Circuit-Probability (C-P) theory with experiment and modeling results from the Common Peroneal (CP) nerve stimulation with sine-wave

current. (A) The equivalent parallel RLC circuit of the neural tissue; (B) a graph of the applied current (red line) and resulting voltage (blue line) waveforms produced

across the capacitor of the circuit as shown in (A); This response is derived from the probability calculus in equation: P = 1− e−α
∫

e

−
β

|V(t)−VThreshold| dt; (C) the force

mapping result recorded from the TA muscle by nerve stimulation. Four different current amplitudes were used at different frequencies, spanning from 500–9,000Hz;

(D) the corresponding modeling results showing the local minima and maxima predicted by the C-P theory; (E) a detailed probability mapping showing how the shape

of the probability curve changes from low current, which exhibits the resonance effect, to high current, which has monotonically decreasing trend.

Sine wave currents (red curve in Figure 2B) were applied upon
the CP nerve to activate the Tibialis Anterior (TA) muscle
and the resulting force was recorded. The force measured
with respect to frequency forms a curve, here named as
‘force mapping curve’ in this study. With a specific current
waveform, a resultant voltage waveform on the capacitor
can be calculated, shown as the blue curve in Figure 2B

for probability calculation. Similarly, a probability curve with
respect to frequency calculated by modeling is defined as a
probability mapping curve. The detailed experiment procedure
and testing setup can be found in the Supplementary S3.
The force mapping results (force generated by TA muscle)
against the pulse width of single pulses (in Hz) of four
different current amplitudes curves are shown in Figure 2C.
The same data plotted with error bar can be found in the
Supplementary S6.1.

The shapes of these four curves are quite different, showing a
complicated changing trend with increasing current amplitude.
For the curves of 20 and 40 µA, a clear resonance effect can
be observed. However, 80 µA curve shows an initial decline,
before increasing to a resonance frequency. The curve of 200 µA
shows a monotonically decreasing trend without the resonance
effect. Despite these variations, C-P theory can still reproduce
the general shapes of the curves via probability mapping
(Figures 2D,E shows a more detailed probability mapping).
The parameters for the circuit and probability calculus can
be found in Table 1-1(d&e). It clearly shows how the force-
frequency curve changes from one shape to another shape with
increasing current amplitude over a variety of pulse frequencies
and accurately predicts the trend, particularly the existence of
local minima and maxima. The probability mapping from the C-
P theory reproduces the complex changing trends of the testing
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TABLE 1 | Modeling parameters.

No R1(�) R2(�) R3(�) C(F) L(H) α β VThreshold(V)

1 (d&e) 3,45,000 5,000 10,000 9n 1.9545 2,000 0.1 −0.6

3 (b,c) 16,579 100 3,000 12n 2.1109 NA NA From −0.09 to −0.17

S4.1 (b) 16,579 100 3,000 12n 2.1109 1,200 0.01 −0.08

S4.2 (a) 11,052 100 3,000 12n 0.5277 2,000 0.04 −0.048

S5 (a-i) 5,181 100 200 12n 0.1938 2,000 0.1 −0.1

S5 (a-ii) 5,181 100 2,000 12n 0.1938 2,000 0.1 −0.1

S5 (b-i) 10,362 100 200 12n 0.1938 2,000 0.1 −0.1

S5 (b-ii) 10,362 100 2,000 12n 0.1938 2,000 0.1 −0.1

S5 (c-i) 20,723 100 200 12n 0.1938 2,000 0.1 −0.1

S5 (c-ii) 20,723 100 2,000 12n 0.1938 2,000 0.1 −0.1

S6.2.1 (a) 80,000 300 1,700 18n 0.1086 NA NA NA

S6.2.1 (b) 2,656 1,800 800 18n 0.0813 NA NA NA

S6.2.1 (c) 2,656 1,800 800 18n 0.0813 NA NA NA

S6.2.1 (d) 2,000 1,350 500 10n 0.1464 NA NA NA

S6.2.1 (e) 3,701 350 500 10n 0.1464 NA NA NA

S6.2.1 (f) 9,000 1,350 500 10n 0.2326 NA NA NA

S6.3.1.1 (b) 60,286 1,800 2,000 4n 5.2335 600 0.8 −0.7

S6.3.1.2 (b) 72,343 4,600 14,400 4n 5.2335 1,500 0.06 −9.69

S6.3.1.3 (b) 100 100 300 100n 0.1621 45,000 0.0075 −0.006

S6.4.1 (b) 12,384 1,200 18,000 10n 4.9687 13,000 0.5 −0.35

S6.4.2 (b) 5,000 30 200 C1 = 400n; C2 = 5,000n 0.0702 2,000 0.015 −0.009

S6.5.1 (b) 90,000 100 600 12n 0.1629 17,000 0.58 −0.22

results, validating the parallel RLC circuit, probability calculus,
and most importantly, the existence of an inductor.

SIMULATION FITTING TO EXPERIMENTAL
RESULTS BY CIRCUIT-PROBABILITY
THEORY

The C-P framework and the probability calculus equation
is achieved by reasoning, which is a priori, rather than
a posteriori. This is very unusual for biological research.
Meanwhile, the circuit is still of a preliminary configuration.
To validate the correctness of this priori theory, a series of
experiments on four types of non-neural and neural tissues
using a rat model were conducted: the skeletal muscles
(Supplementary S6.3), the sciatic nerve (Supplementary S6.4),
the cortex (Supplementary S6.5), and the pelvic nerve
(Supplementary S6.6). All the testing data can be well-fitted or
explained by the C-P theory: 1. Different current waveforms will
generate force mapping curves with different shapes; 2. Force
mapping curves generated by arbitrary current waveforms can
be fitted by modeling of C-P theory; 3. The resonance frequency
widely exists in nervous systems and can be measured with
proper stimulation parameters. To help readers understand
how various force mapping patterns are generated and affected
by parameters, a general demonstration (Supplementary S5)
and a detailed case analysis (Supplementary S4) of how the
circuit parameters affect the probability mapping pattern
are provided.

Meanwhile, C-P theory can give a unique prediction: the
electrical voltage response by electrical stimulation, which is
conventionally considered as the stimulus artifact, can be well-
fitted by the voltage response of the circuit in Figure 2A. This
voltage response will show the same voltage response as a parallel
RLC circuit. The data by experiment and modeling can be found
in Supplementary S6.2.

THEORETICAL EXPLANATION TO
STRENGTH-DURATION RELATIONSHIP
AND LNP MODEL BY
CIRCUIT-PROBABILITY THEORY

This C-P theory provides a physical understanding of the
electrical nerve stimulation, which is not available in previous
theories and models. Thus, most of the phenomenological
models and theories can be directly derived or even amended
from C-P theory. Here we just show how to derive and correct
two well-known phenomenological models in electrical nerve
stimulation: strength-duration relationship (Lapicque, 1909;
Weiss, 1990) and LNPmodel (Linear-Nonlinear-Poisson cascade
model) (Schwartz et al., 2006).

Firstly, we will derive and amend the strength-duration
relationship. Previously, it is widely believed that charge is the
factor to induce nerve stimulation. In such charge based theory,
there is an empirical linear relationship between the threshold
charge level and pulse duration, which is called Weiss’s strength–
duration equation (Weiss, 1990) for negative monophasic square
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current pulses. This equation describes the threshold charge as a
function of pulse width as follows:

Qth (PW) = Irh × PW + Tch × Irh (9)

where Irh is the rheobase current, Tch is the chronaxie, and PW is
the pulse width. The rheobase current is defined as the threshold
current for infinitely long pulses. The chronaxie is defined as
the pulse duration required for excitation when the current
amplitude is equal to twice the rheobase current. And Lapicque
reiteratedWeiss’s equation for the strength–duration relationship
(Lapicque, 1909), but in terms of the threshold current, and
introduced the rheobase current and chronaxie as the constants:

Ith (PW) = Irh(1+
Tch

PW
) (10)

Apparently, these two equations are just mathematical
descriptions without explaining how Irh happen and why
the curve follows a specific trend.

As follows is the derivation of this relationship with physical
definition of Irh.

Figure 3A shows a typical voltage waveform by applying
negative monophasic square current with difference SPPW
(single phase pulse width). For the voltage waveform of each
SPPW, the peak voltage is denoted as VP, which is a function of
I and SPPW and written as VP(I, SPPW). Based on C-P theory,
nerve excitation can be induced when VP(I, SPPW) ≥ VThreshold.
Then both the threshold current Ith and the threshold charge,
Qth = Ith×SPPW, are defined as the current and charge required
to make the VP reaches VThreshold.

Then the critical condition is:

VP (Ith, SPPW) = VThreshold (11)

Ith and Qth can be written as functions of SPPW and VThreshold:

Ith = f (SPPW,VThreshold) (12)

Qth = Ith × SPPW = f (SPPW,VThreshold) × SPPW (13)

Since VP (Ith, SPPW) cannot be expressed analytically, only
numerical solutions of Ith and Qth, which are calculated with

FIGURE 3 | Derivation of the Strength–duration relationship. (A) Illustrative voltage waveforms generated by negative monophasic square waveform current; (B) the

threshold current amplitude (Ith) decreases as the SPPW increases in a non-linear fashion; (C) the relationship between threshold charge (Qth) and SPPW is linear.
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a set of modeling parameter [Table 1-3(b,c)] are provided in
Figures 3B,C. In Figure 3B, all curves decrease to a constant
value, Irh. This is because the VP will saturate at a maximum
value, VPmax , when SPPW ≥ SPPWPmax , as shown in Figure 3A.

Meanwhile,

Qth = Ith × SPPW = Irh × SPPW when SPPW ≥ SPPWPmax (14)

Since Irh is a constant, Qth increases linearly with SPPW, when
SPPW ≥ SPPWPmax , as shown in Figure 3C.

The physical meaning of Irh is the threshold current when
VPmax = VThreshold. Meanwhile, the non-linear curve of Ith vs.
SPPW, existence of Irh and linear curve of Qth vs. SPPW, can
be directly obtained without any additional hypotheses. The
exact analytical equation for this relationship is not available.
The curves in Figures 3B,C are the numerical solution of
strength–duration relationship. It corrects the relationship in
two aspects:

1. Rather than infinitely approaching to the Irh as
the case in Weiss’s strength–duration equation, the
threshold current curve will be equal to the Irh when
SPPW ≥ SPPWPmax .

2. Rather than being a completely straight line, the threshold
charge curve is linear only when SPPW ≥ SPPWPmax .
When the SPPW is approaching zero, the slope of threshold
charge curve will also approach zero, meaning that the
threshold charge will converge in a constant value at
low SPPW.

These two major special differences with the Weiss’s
equation have already be confirmed by previous research
(Friedli and Meyer, 1984; Su et al., 2017) and now can be
well-explained in the C-P theory.

Moreover, it also explains why such relationship can only
be applied for negative monophasic square current waveform.
Because the voltage waveforms differs with the current
waveforms, inducing a more complicated trend without a

stable Irh, which was observed in other researches (Friedli
and Meyer, 1984). In Figure 4, representative strength–duration
curves of other waveforms including different types of square
waves and sine waves are shown. For the curve of sinewave
current, the threshold current curve increases at high SPPW
range, this phenomenon has been observed in previous
research with triangle current waveform (Rodríguez-Fernández
et al., 2016). But these curves also vary with different
circuit parameters.

Then, we will derive the LNP model. The LNP model
is a simplified functional model of neural spike responses
(Schwartz et al., 2006). It has been successfully used to
describe the response characteristics of neurons in early
sensory pathways, especially the visual system. The LNP
model is generally implicit when using reverse correlation or
the spike-triggered average to characterize neural responses
with white-noise stimuli. The number of action potential
generated can be described by the Poisson distribution in
LNP model.

Actually, the Poisson distribution and exponential
distribution describe the same stochastic process. If the
Poisson distribution provides an appropriate description of
the number of the occurrences per interval of time, then the
exponential distribution will provide a description of the time
interval between occurrences.

The Poisson distribution is as follow:

P
(

x = k; λ
)

=
λk

k!
e−λ (15)

P
(

x = k; λ
)

is the probability of the k times occurrences of
the event in a unit time interval, λ is the expected times
of occurrence.

The exponential distribution is as follow:

P (t; λ) = 1− e−λt (16)

FIGURE 4 | (A) The relationship between the threshold current amplitude (Ith) and the SPPW for different current waveforms; (B) the relationship between threshold

charge (Qth) and SPPW for different current waveforms.
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FIGURE 5 | Derivation of LNP model from C-P theory. (A) A simplified white noise voltage waveform; (B) the corresponding λ curve of the voltage waveform in (A),

this λ curve can be averaged to a λe curve; (C) noise with increasing amplitude; (D) the corresponding λ and λecurves of the noise waveforms in (C); (E) the

non-linear curve of λe vs. the noise amplitude Vw.

P (t; λ) is the probability of the occurrences of the event with the
time interval t, 1

λ
is the expected time interval.

These two distributions share the same λ. Apparently, in
the C-P theory, if the generation of action potential can be
described by exponential distribution, it surely can be described
by Poisson distribution.

As follow is the derivation of LNP model.
The white noise involved in LNP model can be simplified

as a triangle wave series of frequency f and amplitude Vw as
shown in Figure 5A. Actually, any kind of periodical voltage
waveform can be used. The triangle wave is used as an example of
simple waveform.

Only part of the voltage can exceed theVThreshold. As explained
in Figure 1B, the voltage curve can be converted to a λ curve as
shown in Figure 5B. The area Sλ of the λ curve within a period
T = 1

f
can be calculated. Since the λ implemented in the C-P

theory is not a constant value while λ in Poisson distribution can
only be a constant value, an equivalent λe for Poisson distribution
can be calculated based on the Sλ:

λe =
Sλ

T
= Sλ × f (17)

which is the blue straight line in Figure 5B. Apparently, the λ

curve and the λe curve are of the same area, so they will induce
the same statistical results.

So the probability calculus equation can be rewritten as:

P = 1− e−Sλ = 1− e−λet (18)

The corresponding Poisson distribution is:

P
(

x = k; λe
)

=
λe

k

k!
e−λe (19)

By increasing the noise amplitude Vw, Sλ will also increase, result
in an increasing λe as shown in Figures 5C,D. Since Sλ is a
function of Vw, and λe is a function of Sλ, λe is also a function
of Vw, shown as the non-linear curve in Figure 5E. This explains
how a linear increment of Vw induces a non-linear increment
of λe happened in LNP model. Because the expression of Sλ is
a piecewise function of Vw, the exact function λe(Vw) can only
be calculated numerically with a fixed α, β , VThreshold, and f . The
analytical expression of λe(Vw) is not available.

SUMMARY

In summary, we propose a new theory, named the Circuit-
Probability theory, to unveil the “secret” of electrical nerve
stimulation, essentially explain the non-linear and resonant
phenomena observed when nerves are electrically stimulated.
In this theory, an inductor is involved in the neural circuit
model for the explanation of frequency dependent response.
Furthermore, predicted response to varied stimulation strength
is calculated stochastically. Two empirical models, strength-
duration relationship and LNP model, can be theoretically
derived from C-P theory. This theory is shown to explain the
complex non-linear interactions in electrical nerve stimulation
and fit in vivo experiment data on stimulation-responses of
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many nerve experiments. As such, the C-P theory should be
able to guide novel experiments and more importantly, offer
an in-depth physical understanding of the neural tissue. More
detailed discussion about possible issues, such as the inductance
and probability calculus, can be found in Supplementary S7.
As a promising neural theory, we can even further explore the
more accurate circuit configuration and probability equation
to better describe the electrical stimulation of neural tissues in
the future.
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