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Ab‑interno surgical technique 
for the implantation of a wireless 
subretinal prosthesis in mini‑pigs
Kwang‑Eon Choi1, Vu Thi Que Anh2, Hee Won Seo3, Namju Kim3, Sohee Kim3* & 
Seong‑Woo Kim1*

We sought to describe the surgical techniques required in the ab‑interno method to implant subretinal 
prostheses in mini‑pigs and suggest tips to facilitate optimal outcomes. During vitrectomy, the use of 
valved trocar cannulas was essential to stabilize the detached retina and implanted chip. As a first step 
in retinal detachment, a 23‑gauge cannula with very small amount of viscoelastic material was used to 
establish the retinal hole and promote retinal detachment. Then, balanced salt solution was applied 
to increase the retinal detachment and diathermy was used to make opening for subretinal prosthesis. 
For easy positioning of the subretinal prosthesis, a curved laser probe was adopted when handling 
the subretinal prosthesis under the retina. After surgery, the sclerotomy sites were tightly sutured to 
prevent silicone oil leakage. Without special equipment, such as a 41‑gauge tip, retinal detachment 
could be induced easily, while the prosthesis was also successfully inserted and manipulated under 
the retina without an iatrogenic retinal tear. Two weeks after the operation, the oil fully occupied the 
intraocular volume without leakage. The subretinal prosthesis remained stable without complication. 
Understanding the principle of the ab‑interno method and considering several tips for improving 
surgical access may help to enhance surgical success rates of subretinal prostheses implantation.

In degenerative retinas, such as those with retinitis pigmentosa or dry age-related macular degeneration, visual 
loss is the result of damage to photoreceptors. In advanced stages of such retinal degeneration, surgical implanta-
tion of retinal prostheses has been the foremost commercially available treatment  option1–4. Each device requires 
a different surgical approach for implantation because of its design and intended  location5–10. Recently, PRIMA 
implant has been introduced to the market as a wireless subretinal micro photovoltaic chip and can be implanted 
via an ab-interno  approach11–17. Considering interim clinical trial results from Europe and relative ease of the 
 surgery18, development and implantation of this type of retinal prosthesis is likely to rapidly increase the need 
for surgeons to perform the surgery more safely and  comfortably19–29. However, current methods for subretinal 
surgery as well as ab-interno subretinal implantation have not been widely taught to current-generation retinal 
surgeons, with subretinal surgical approaches being more widely discussed and published on in the late 1990s and 
early  2000s30,31. Although ab-interno surgery for subretinal implantation is easier than ab-externo  surgery24,32, this 
surgical procedure still requires an experienced operator and involves the conduct of inconvenient procedures 
using additional instruments, such as connecting a 41-gauge cannula to the vitrectomy machine.

Here, we presented an ab-interno method for the induction of retinal detachment and manipulation of the 
subretinal prosthesis and offer several tips focused on reducing surgical difficulties.

Results
Surgical technique and short‑term results. During vitrectomy, valved trocar cannulas were used to 
stabilize the intraocular  volume33. Three-port, 23-gauge vitrectomy (Associate; Dutch Ophthalmic Research 
Center B.V., Zuidland, the Netherlands) was performed with an indirect BIOM lens (Oculus Biom Ready; Ocu-
lus Surgical, Inc., Port St. Lucie, FL, USA). Three ports were prepared by inserting trocar cannulas into the sclera 
at 3  mm from the limbus on the ventromedial, ventrolateral, and dorsomedial sides, respectively. The vitre-
ous was removed using a vitreous cutter while continually supplying balanced salt solution (BSS) (Alcon, Fort 
Worth, TX, USA). Anterior capsule-saving lensectomy was also performed.
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A small hole was made by pressing the retina lightly with a 23-gauge cannula of viscoelastic material at the 
superonasal peripheral retina, and less than 0.1 cc of viscoelastic material was injected into the retinal hole to 
induce a tiny focal retinal detachment. Next, the cannula with BSS was inserted into the subretinal cavity and 
the BSS was gently injected to increase the size of the retinal detachment (Fig. 1) (see Supplementary Video S1 
and  S2 online). Once the retinal detachment was large enough that it included the peripheral retina, a scleral 
incision was made with a 2.75-mm slit knife at 1.5 mm from the limbus of the dorsolateral or dorsal side. Next, 
an incision approximately measuring 5 mm in length was completed (Fig. 2).

Diathermy was used to create a hole to insert the subretinal prosthesis under the retina and the hole was 
gradually widened by about 4.5 mm (see Supplementary Video S1 online). The retinal prosthesis was inserted 
into the subretinal space with micro-forceps (Fig. 3). During the insertion of the retinal prosthesis under the 
retina, the partial air-fluid exchange was performed to decrease the height of retinal detachment for preventing 
retinal prosthesis from turning over. To mitigate the possibility of an iatrogenic retinal tear, a curved directional 
laser probe tip (23-gauge directional endo ocular laser probe; synergetics USA, Inc., O’Fallon, MO, USA) with an 
expandable fiber or a moving shaft was applied to push the implanted prosthesis forward and adjust its position 
(Fig. 3) (see Supplementary Video S3 and S4 online). Under the detached retina, the retinal prosthesis could 
be driven into the visual streak with the force of inertia created by shaking the eye back and forth (see Supple-
mentary Video S5 online). After confirming that the subretinal prosthesis was located in the desired position, 
air-fluid exchange was performed. Endolaser photocoagulation was carried out around the retinotomy site and 
oil tamponade was completed. All port sites were sutured with 9-0 Prolene (Johnson & Johnson, New Brunswick, 
NJ, USA) to prevent postoperative oil leakage.

The mean age of the four pigs was 9.75 ± 0.96 months and their mean axial length was 20.49 ± 0.71 mm. Two 
weeks after the operation, the retinal prostheses were well maintained in the subretinal space without prolifera-
tive vitreoretinopathy or retinal detachment. On optical coherence tomography, the subretinal prostheses were 
observed to be well located under the retina (Fig. 4).

Discussion
There has been an ab-interno surgical method using a protocol of inducing retinal detachment by first inject-
ing BSS and then continuously infusing viscoelastic material into the subretinal space. When BSS is injected 
manually with a 23-gauge cannula, making retinal detachment without the viscoelastic material is possible in 
some cases (see Supplementary Video S6 online). However, when the retinal hole is large, it is difficult to initi-
ate and continue focal retinal detachment due to the backward flow of the BSS into the vitreous cavity (Fig. 1) 
(see Supplementary Video S7 online). For this reason, a machine-driven fluid-stream injection approach with 

Figure 1.  Schematic images of the initiation and enlargement of the subretinal detachment using various 
methods. (a,b) A 23-gauge cannula was used to approximate the retina. (c) Focal retinal detachment was 
obtained by injecting less than 0.1 cc of viscoelastic material. (d–f) After focal detachment was achieved using 
viscoelastic materials, BSS was injected to fill the subretinal area. (g) Focal retinal detachment was not well-
induced due to the backflow of BSS. (h,i) In the process of widening the subretinal detachment, the initial hole 
inadvertently tore into a large tear when only viscoelastic materials were used to create the retinal detachment.
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a 41-gauge cannula was successfully adopted  instead32. This method is useful but requires a 41-gauge cannula 
connected to the silicone oil infusion pump of a vitrectomy machine to support a controllable, steady, and stable 
procedure. The procedure to connect a BSS-filled 41-gauge cannula to the vitrectomy machine and exchange the 
41-gauge cannula again with a silicone oil syringe during the surgery is quite inconvenient for the surgeon to 
complete. Thus, we induced retinal detachment by slightly pressing with a 23-gauge cannula to create a retinal 
hole and subsequently injected a small amount of viscoelastic material manually to produce a tiny subretinal 
space that would allow the BSS to spread subretinally (see Supplementary Video S1 and  S2 online). The initial 
small retinotomy site could inadvertently become a much larger tear if we continued to inject viscoelastic mate-
rial into the subretinal space to increase the retinal detachment size (Fig. 1) (see Supplementary Video S8 and 
S9 online). In addition, injecting the full amount of viscoelastic material into the subretinal space would limit 
manipulation of the subretinal prosthesis because the implant would be floating in space somewhere between 
the retina and the retinal pigment epithelial layer. In addition, significant time and effort are required to remove 
the viscoelastic material after positioning the subretinal prosthesis. During removal of the viscoelastic material, 
the retinotomy can become enlarged further and inadvertent retinal tissue tear by the cutter or aspiration tip 
is common. Finally, the implanted subretinal prosthesis may inevitably move backward toward the retinotomy 
site or even exit into the vitreous cavity in conjunction with the removal of the viscoelastic material. To avoid 
such difficulties, injecting a large amount of BSS into the subretinal space with or without small amount of the 
viscoelastic material is an adequate mean to facilitate the insertion and positioning of a wireless retinal in the 
desired position (Fig. 1) (see Supplementary Video S1 and S6 online).

Another problem that may be encountered after successful insertion of the subretinal prosthesis involves 
positioning. Although micro-forceps can be used to manipulate a subretinal prosthesis under the retina, retinal 
tears often become unintentionally larger along the shaft of the micro-forceps (see Supplementary Video S10 

Figure 2.  Subretinal prosthesis and insertion. (a) The overall size of the subretinal prosthesis was 
4.5 mm × 5 mm. (b) Through a scleral incision of about 4.5 mm in length, a retinal prosthesis was inserted into 
the vitreous cavity. (c,d) Schematic structures of the subretinal prosthesis.
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Figure 3.  Enlargement of the retinal hole and insertion of the subretinal prosthesis. (a) Diathermy was used 
and the hole was gradually widened by about 4.5 mm. (b) The subretinal prosthesis was inserted into the 
subretinal space with micro-forceps. (c) A curved directional laser probe tip was used to push the implanted 
prosthesis forward and adjust its position. (d) After the oil tamponade, the subretinal prosthesis was settled 
into its desired location. (e–g) Schematic images of manipulation of the plate using a curved laser probe in the 
subretinal space. A directional laser probe with a fixed fiber and movable shaft measuring 3.2 mm in height 
to its tip and 0.54 mm wide at the tip was used. (e,g) Press down the subretinal prosthesis with the laser probe 
without projection of curved fiber (black arrowhead). (f,g) After insertion of the subretinal prosthesis, the 
curved fiber (black arrowhead) of the laser probe was directed away (black arrow) from the actuation button in 
the subretinal space.

Figure 4.  Optical coherence tomography results obtained two weeks after subretinal implantation in both 
successful and failed cases. (a,b) Vertical and horizontal views of optical coherence tomography images indicate 
stable status on the three-dimensional protruded electrodes (white arrowheads) of the subretinal prosthesis. 
(c,d) Vertical and horizontal views of optical coherence tomography images indicate stable status on the base 
(white asterisk) of the subretinal prosthesis.
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and S11 online). Instead, it is preferable to move the subretinal prosthesis with a curved rod; either a directional 
curved laser probe with an expandable fiber or a moving shaft can be used for this procedure. A curved laser 
probe allows the degree of curve tip length to be adjusted by the operator with a button on the handle, enabling 
more minute manipulation of the subretinal prosthesis without contact between the shaft of the instrument and 
retina (Fig. 3) (see Supplementary Video S3 online).

The abrupt uncontrolled fluctuation of eyeball volume during surgery is likely to cause unintended intrareti-
nal damage such as an iatrogenic retinal tear and choroidal detachment. In this regard, we recommend using a 
valved-trocar system to minimize fluid flow inside the eye. Pigs and humans have different corneal and scleral 
thicknesses and scleral elasticity  profiles34–36. It is important to suture every sclerotomy site, although we used a 
sutureless vitrectomy system in our pig experiment. The amount of oil leakage through the sclerotomy sites dur-
ing or after surgery was much larger than what we expected in this study and postoperative retinal re-detachment 
was observed in one case of sutureless oil tamponade.

This study has some limitations. First, we could not show long-term postoperative stability and statisti-
cal significance in a large number of animals. Instead, we aimed to describe the surgical methods of ongoing 
experiments in the present study. We plan to present the long-term outcomes of subretinal prostheses placed 
using this surgical procedure in mini-pigs in a future article. Second, this surgical procedure was performed in 
normal pigs. Surgery in the degenerated retina is much more difficult than that in the healthy retina because the 
remaining inner retina is very atrophic or scar tissue is abnormally adhesive to subretinal tissues. A study on the 
implantation of retinal prostheses in an outer retinal degeneration animal model is being conducted at this time.

It is essential to improve the relevant surgical techniques to facilitate better outcomes in the implantation of 
retinal prostheses. The detailed refined ab-interno approach may constitute a means by which to achieve suc-
cessful wireless retinal prosthesis implantation.

Materials and methods
Animals. Mini-pigs (Micropig; Apures Co., Ltd., Pyeongtaek-si, Korea) were placed under general anesthesia 
by the intravenous injection of alfaxalone (Alfaxan 1 mg/kg; Vetoquinol, Lure, France) into the marginal auricu-
lar vein following premedication with a subcutaneous injection of atropine (0.05 mg/kg) and an intramuscular 
injection of xylazine (Rompun 1 mg/kg; Bayer Corp., Pittsburg, PA, USA) and azaperone (4 mg/kg). Following 
the induction of general anesthesia, each eye was irrigated with 5% povidone iodine and draped for surgery.

All procedures adhered to the Association for Research in Vision and Ophthalmology (ARVO) Statement 
for the Use of Animals in Ophthalmic and Vision Research (ARVO Animal Policy). Approval for this study was 
obtained from the Institutional Animal Care and Use Committee of Korea University’s College of Medicine.

Subretinal prosthesis. The overall thicknesses of three-dimensional electrodes were approximately 
196  μm. The three-dimensional electrodes had the base thickness of 130  μm and protrusions with a height 
of about 20 μm. The materials used were silicon for the electrode sites and polydimethylsiloxane (PDMS) for 
the transparent base of the electrodes. The detailed fabrication procedures are described  elsewhere37. These 
electrodes were combined with a 40-μm-thick polyimide film, using glue. The combined chip was coated with 
3-μm-thick parylene-C to assure the biocompatibility. The overall chip size was 4.5 mm × 5 mm (Fig. 2).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors on reasonable request.
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