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Due to their enormous surface area compared to other cell types, neurons face
unique challenges in properly handling supply and retrieval of the plasma membrane
(PM)—a process termed PM turnover—in their distal areas. Because of the length and
extensiveness of dendritic branches in neurons, the transport of materials needed for
PM turnover from soma to distal dendrites will be inefficient and quite burdensome
for somatic organelles. To meet local demands, PM turnover in dendrites most
likely requires local cellular machinery, such as dendritic endocytic and secretory
systems, dysregulation of which may result in dendritic pathology observed in various
neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature
provides evidence to suggest the pathogenic contribution of dysregulated PM turnover
to dendritic pathology in certain NDs. In this article, we present our perspective view
that impaired dendritic endocytic and secretory systems may contribute to dendritic
pathology by encumbering PM turnover in NDs.

Keywords: plasma membrane turnover, dendritic pathology, neurodegenerative diseases, Rab GTPases, dendritic
secretory pathway, dendritic endocytic pathway

INTRODUCTION

Dendrites are neuronal compartments essential for receiving electrochemical signals from
presynaptic neurons through formed synapses. Accurate neuronal wiring relies critically on the
proper establishment of the dendritic field that is achieved by both structural build-ups of dendritic
arbors and functional maturation of synapses (Jan and Jan, 2010). The establishment of the
dendritic field is by nature a dynamic process as it is inevitably accompanied by dramatic changes
in the morphology of entire dendritic arbors. Even after the establishment of the dendritic field,
neuronal connections can be rewired in response to changes in the external environment by
dynamically altering dendritic morphology and readjusting formed synapses. Therefore, disruption
of dendritic morphology will invariably lead to failed synapse formation and communication
between neurons.
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To maintain dendritic morphology and dynamics, neurons
need a constant turnover of plasma membranes (PMs). This
process of PM turnover is mediated primarily by endocytic
and secretory pathways. However, due to its highly elaborate
dendrites, a typical neuron has a 10,000 times larger surface
area than does a typical epithelial cell (Horton and Ehlers,
2004). Thus, a neuron will undoubtedly face a staggering
challenge to grow and maintain those dendrites if it were to rely
solely on somatic endocytic and secretory systems (Pfenninger,
2009). Thankfully, neuronal dendrites showcase various types
of endocytic and secretory components, which participate in
dendritic growth andmaintenance, as well as a local supply of PM
proteins (Jan and Jan, 2010; Puram and Bonni, 2013; Kennedy
and Hanus, 2019).

Dendritic changes are frequently observed in animal models
of various neurodegenerative diseases (NDs), such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), polyglutamine (polyQ)
diseases, and amyotrophic lateral sclerosis (ALS; summarized in
Table 1). Consistently, dendritic pathology has been reported
in post-mortem brain samples of patients with these diseases
(Mehraein et al., 1975; Graveland et al., 1985; Nakano and
Hirano, 1987; Patt et al., 1991; Ferrer, 1999; Kulkarni and
Firestein, 2012). Although affected neuronal cell types and
the patterns of dendritic changes vary depending on the
disease, NDs generally share common pathological features
such as decreased dendritic complexity and impaired synaptic
maturation (Kulkarni and Firestein, 2012; Herms and Dorostkar,
2016). Previous studies identified several molecules and cellular
processes involved in dendritic pathology in NDs. For example,
a recent study identified a transcription factor Forkhead Box
O (FOXO) whose sequestration by nucleus-accumulated toxic
polyQ proteins inDrosophila sensory neurons results in dendritic
defects (Kwon et al., 2018). In AD, β-amyloid (Aβ) has been
reported to cause dendritic spine loss and to decrease expression
of AMPA receptor on the synaptic surface by enhancing
endocytosis in CA1 pyramidal neurons (Hsieh et al., 2006).
In a PD model, knockout of Pink1 showed a shortening of
dendritic lengths presumably through disrupting mitochondrial
transport in mouse primary cortical and midbrain neurons
(Dagda et al., 2014). In a UBQLN2-P497H mouse model of
ALS, impairment of the protein degradation system led to
dendritic spinopathy accompanied by synaptic dysfunction, and
cognitive deficits (Gorrie et al., 2014). Besides what we have
described so far, many other molecules have been identified
whose dysregulation interferes with cellular components such
as cytoskeletons, mitochondria, endosomes, ER, and Golgi
that may be linked to dendritic pathology (Jan and Jan,
2010; Lei et al., 2016; Kweon et al., 2017; Kelliher et al.,
2019). Currently, how these cellular components contribute to
dendritic pathology is being worked out in many labs. Here,
we propose that dendritic endocytic and secretory pathways,
when disrupted, may contribute to dendritic pathology in
several NDs.

In this review article, we will first describe the general
mechanisms of PM turnover mediated by endocytosis and
exocytosis. Next, we will provide an overview of dendritic
endocytic and secretory pathways. Afterward, we will discuss

how local molecular machinery might regulate dendritic
endocytic and secretory pathways for PM turnover and how
their dysfunction might contribute to dendritic pathology in
several NDs. Finally, we will propose how dendritic endocytic
and secretory pathways might be linked to selective dendritic
vulnerability in NDs.

BASIC MECHANISMS OF PM TURNOVER
IN NEURONS: ENDOCYTOSIS AND
EXOCYTOSIS

PM turnover is defined as the process by which membranes are
continuously cycled to and from the PM. Through this process
a cell can: (1) expand or reduce its size; (2) alter its shape; and
(3) insert or remove from its PM the membranous lipids and
proteins needed to convey both intra- and extra-cellular signals.

How is PM turnover regulated in neurons? Exocytosis and
endocytosis are thought to be the primary means by which
expansion and retrieval of the PM are mediated, respectively
(Pfenninger, 2009; Peng et al., 2015). In a typical cell, materials
that comprise the PM are first synthesized in the endoplasmic
reticulum (ER) and then are modified and sorted in Golgi,
from where vesicles bud and are inserted into the PM by
exocytosis. In yeast, exocytosis of these PM-expanding vesicles
requires tethering to PM by exocyst, without which soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complexes required for the membrane fusion do not
form (TerBush et al., 1996; Grote et al., 2000). In neurons, their
contribution to the growth of neurites (Vega and Hsu, 2001;
Murthy et al., 2003)—andmore specifically dendrites (Peng et al.,
2015; Zou et al., 2015; Lira et al., 2019)—has been observed
in Drosophila and cultured mammalian neurons. Interestingly,
exocyst seems to be dispensable for neurotransmitter secretion
in Drosophila (Murthy et al., 2003; Mehta et al., 2005), but not
in primary hippocampal neurons (Lira et al., 2019). Generally,
for membranes to fuse, SNARE proteins must be present on both
membranous systems (Südhof and Rothman, 2009). For instance,
Urbina et al. (2018) showed that VAMP2-positive exocytic
vesicles contribute to PM expansion in neurites of mouse
cortical neurons. Another SNARE protein, tetanus neurotoxin-
insensitive (TI)-VAMP, has been shown to contribute to both
axonal and dendritic growth without affecting synaptic vesicle
fusion in primary neuronal cultures (Coco et al., 1999; Martinez-
Arca et al., 2000, 2001). However, a knockout of TI-VAMP in
mice only partially limited neurite outgrowth, suggesting that
other SNARE proteins may mediate PM expansion (Meldolesi,
2011; Sato et al., 2011). In 2014, another group showed that
the exocytosis of VAMP4-positive vesicles seems to contribute
to the neurite growth in PC12 cells (Colombo et al., 2014).
Interestingly, another SNARE protein, Sec22b, has been shown
to contribute to PM expansion in neurons probably by
mediating lipid transfer from ER to PM without vesicular fusion
(Petkovic et al., 2014).

Endocytosis is the primary means by which PM is
internalized, which may offset the functions of exocytosis.
In Drosophila C4 dendritic arborization (da) neurons, defects
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TABLE 1 | Dendritic pathology characterized in animal models of neurodegenerative diseases (NDs).

Neurodegenerative
diseases (NDs)

Disease
models tested

Phenotypes Species Neuronal cell types References

Alzheimer’s
disease (AD)

APP-695
O/E

Decreased dendritic spine
density.

Mouse CA1 pyramidal neurons Hsieh et al. (2006)

APP-K670N/
M671L,
PS1 M146V
O/E

Decreased dendritic length,
dendritic surface area, and
numbers of dendritic branches.

Mouse CA1 pyramidal neurons Šišková et al. (2014)

APP-695 O/E Decreased dendritic spine
density and increased dendritic
spine elimination.

Mouse Cortical neurons Spires et al. (2005); Spires-Jones
et al. (2007)

APP-OSK O/E Loss of dendritic spines. Mouse Hippocampal neurons Umeda et al. (2015)
Tau-P301L O/E Degeneration of dendrites. Mouse CA1 pyramidal neurons Jaworski et al. (2011)
Tau-P301S O/E Decreased dendritic spine

density.
Mouse Cortical pyramidal neurons Hoffmann et al. (2013)

Parkinson’s
disease (PD)

LRRK2-G2019S
O/E

Dendritic degeneration. Fly Dendritic arborization neurons Lin et al. (2010)

PINK1 KO Decreased dendritic length. Mouse Primary cortical neurons Dagda et al. (2014)
SNCA-A30P
O/E

Decreased branching of
dendritic spines.

Mouse Adult-born
granule cells

Neuner et al. (2014)

Huntington’s
disease (HD)

Htt-47Q
O/E

Loss of dendritic spines. Mouse Primary hippocampal neurons Richards et al. (2011)

Htt-69Q O/E Decreased number of dendritic
spines.

Mouse Cortical/hippocampal neurons Murmu et al. (2013)

Htt-115Q O/E Decreased number of dendritic
spines.

Mouse Medium spiny neurons and
pyramidal neurons

Spires et al. (2004)

Amyotrophic
lateral sclerosis
(ALS)

SOD1-G93A
O/E

Increased dendritic arbor length
in early stages and decreased
dendritic arbor length in late
stages.

Mouse Brainstem XII MNs Fogarty et al. (2017)

Decreased dendritic length. Mouse Lumbar spinal cord MNs
TDP-43 KD Decreased dendritic branches

and complexity.
Mouse Primary hippocampal neurons Schwenk et al. (2016)

C9orf72 KO Decreased dendritic arborization
and spine density.

Mouse Primary hippocampal neurons Ho et al. (2019)

UBQLN2-
P497H O/E

Decreased density of dendritic
spines.

Mouse Granule cell layer of the dentate
gyrus

Gorrie et al. (2014)

Frontotemporal
dementia (FTD)

CHMP2B-
Intron5 O/E

Increased dendritic branches. Mouse Primary cortical neurons Clayton et al. (2018)
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in exocytosis-mediated dendritic growth were mitigated
by blocking clathrin-mediated endocytosis (CME) using a
temperature-sensitive dominant-negative allele of shibire (shits1,
Peng et al., 2015). Urbina et al. (2018) also showed that CME
contributes to the retrieval of PM in shaping neurite growth
in mouse cortical neurons and suggested that exocytosis-
mediated PM expansion in neurites can be counterbalanced
by CME. Some of these endocytic vesicles, once internalized
via endocytosis, may directly fuse with medial/trans-Golgi, at
least in yeast (Day et al., 2018). In general, however, most other
endocytic vesicles fuse with early endosomes (EEs), wherein
sorting of the PM components takes place. Those components
may be rapidly recycled back to the PM from EEs or slowly
via recycling endosomes (REs; Taguchi, 2013). As EEs mature
into late endosomes (LEs) en route to degradation (Huotari
and Helenius, 2011), some of the PM components are recycled
back to Golgi via retromers (Chen et al., 2019). Collectively,
these two processes—endocytosis and exocytosis—regulate
PM turnover in a typical cell, likely including
neurons (Figure 1).

THE PRESENCE OF DENDRITIC
ENDOCYTIC AND SECRETORY PATHWAYS
AND THEIR POTENTIAL LINK TO
DENDRITIC MORPHOLOGY IN NEURONS

Although it is fairly well established that the endocytic and
secretory pathways, in general, regulate dendritic morphology

via PM turnover, the extent to which dendritic endocytic and
secretory pathways partake in regulating dendritic morphology
via local PM turnover is less clear. Although the endocytic
organelles have been fairly well delineated in dendrites, secretory
organelles in dendrites have remainedmore elusive. Here, we will
briefly discuss several dendritic endocytic and secretory units and
their potential relevance to dendritic morphology.

Dendritic Endocytic Pathway
All the major types of endosomes—EEs, LEs, and REs—have
been shown to exist in dendrites. Endocytosis in dendrites has
been reported to play a major role in Drosophila dendritic
pruning by triggering dendritic thinning via internalizing PM
(Kanamori et al., 2015) and through internalizing specific
cell adhesion molecule, Neuroglian (Zhang et al., 2014).
Although endocytosis is one of the means by which EEs
are produced (Mellman, 1996), blocking endosomal transport
from soma to dendrites leads to depletion of EEs in dendrites
of Drosophila da neurons (Satoh et al., 2008; Zheng et al.,
2008), suggesting that most of the EEs in dendrites may be
derived from the soma. Intriguingly, a recent study shows
that the trans-Golgi network (TGN), but not endocytosis, is
indispensable in forming Rab5-labeled EEs in yeast (Nagano
et al., 2019). However, whether EEs can be synthesized
from TGN in neurons, let alone neuronal dendrites, has not
been shown.

LEs and REs, which are thought to be derived from EEs
(Mellman, 1996), are also detected in dendrites and/or dendritic

FIGURE 1 | A schematic illustration of the plasma membrane turnover in neuronal dendrites. This illustration describes three pathways for plasma membrane (PM)
turnover: rapid endosomal recycling via early endosomes (EEs); slow endosomal recycling via recycling endosomes (REs); and secretion via the dendritic
secretory pathway.
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spines (Cooney et al., 2002; Cheng et al., 2018; Yap et al.,
2018). LEs are well known for their role in sorting ubiquitinated
proteins for degradation via lysosomes (Hu et al., 2015). In
dendrites, they transport dendritic cargos towards the soma
for degradation via lysosomes (Cheng et al., 2018; Yap et al.,
2018). However, one study showed that LEs translocate to and
fuse with the PM after making repeated contact with the ER.
This process was shown to contribute to neurite growth in
PC12 cells (Raiborg et al., 2015). REs have been shown tomediate
PM turnover process in dendrites and dendritic spines, thereby
mediating their growth in rat hippocampal or cortical neurons
(Park et al., 2006; Bowen et al., 2017). Interestingly, REs have
been shown to exchange cargoes and make physical contact with
Golgi inDrosophila, sea urchin embryos, and mammals (Mallard
et al., 1998; Fujii et al., 2020a,b). However, their interaction in
neuronal dendrites has not been reported. Further examining the
potential interplay between these different types of endosomes
and secretory organelles, such as ER and Golgi, in dendrites
may provide significant insight on the mechanisms underlying
PM turnover.

Dendritic Secretory Pathway
The ER that localizes in the dendritic spine, called spine
apparatus (SA), has a specializedmembrane-stackedmorphology
similar to that of Golgi (Gray, 1959a,b). Based on its morphology,
SA was speculated to play a role in dendritic secretory function,
though it did not garner any significant experimental support
for a long time. In 2001, through post-embedding immunogold
labeling in adult rat tissue, Pierce et al. (2001) showed in neuronal
dendrites the presence of a repertoire of proteins that localize
to ER, ER-Golgi intermediate compartment (ERGIC), and
Golgi, indicative of a presence of dendritic secretory pathway.
Interestingly, although some of those proteins were found nearby
SA in dendritic spines, others were found within dendrites away
from SA. In contrast, a couple of subsequent studies were not
able to verify this finding in cultured neurons (Hanus et al., 2014;
Bowen et al., 2017). Whether or not the difference in sample type
is accountable for this apparent discrepancy remains to be tested.

Another distinct secretory organelle found in dendrites
is termed Golgi outpost (GOP), which was first defined in
cultured hippocampal neurons (Horton and Ehlers, 2003). A
correlation between the localization of GOPs at branch points
and dendritic growth in both Drosophila (Ye et al., 2007; Lin
et al., 2015) and mammals (Horton et al., 2005; Ye et al.,
2007) supports the purported function of GOPs in dendritic
growth via PM supply. In the branch points, GOPs have been
shown to function in supplying PM proteins, such as BDNF
(Horton and Ehlers, 2003), ADAM10 (Saraceno et al., 2014),
Kainate receptors (Evans et al., 2017), and NMDA receptors
(Jeyifous et al., 2009) in mammalian hippocampal neurons. The
potential role of GOPs in the dendritic pathology of neurological
disorders has been recently discussed in a review article (Caracci
et al., 2019). However, GOP seems to be relatively rare in
mammalian neurons (Horton et al., 2005; Hanus et al., 2014;
Bowen et al., 2017), and even absent in mouse Purkinje cells
2 weeks after birth (Liu et al., 2017). Therefore, the importance

of GOPs in dendritic morphology in adult neurons remains to be
further elucidated.

Relatively recently characterized dendritic secretory units
further complicate our understanding of the dendritic secretory
pathway. ERGIC is normally sandwiched in between ER and cis-
Golgi but is scattered all over the dendrites of rat hippocampal
(Hanus et al., 2014) or cortical neurons (Bowen et al., 2017).
In dendrites, ERGIC seems to perform a secretory function,
bypassing Golgi entirely (Hanus et al., 2014; Bowen et al.,
2017). However, by using a highly specific Golgi marker, pGolt,
another study provides evidence that a small (200–1,000 nm in
diameter) Golgi membrane compartment, termed Golgi satellite
(GS), exists in between ERGIC and retromer in dendrites and
participates in local PM turnover in rat hippocampal primary
neurons (Mikhaylova et al., 2016). The authors further show
that GSs are more numerous than GOPs and are positive for
some Golgi markers, but not for all. Considering that cis-,
medial-, and trans-Golgi compartments often exist separately
in Drosophila da neuronal dendrites (Zhou et al., 2014), failure
to detect Golgi compartments in dendrites of other types of
neurons by some other groups may be due to the simplified
structure of dendritic Golgi, which may be missing some
structural proteins that are often used to label Golgi, such as
GM130 (Zhou et al., 2014). Overall, the dendritic secretory
pathway is extremely complicated and there is still much left to
be discovered.

THE LOCAL MOLECULAR MACHINERY
THAT MAY REGULATE DENDRITIC
ENDOCYTIC AND SECRETORY
PATHWAYS FOR PM TURNOVER

Rab GTPases as Potent Local Regulators
of the Endocytic Pathway
Ras-related in brain (Rab) GTPase proteins are among the most
compelling candidate molecular machinery that may play crucial
roles in (dendritic) PM turnover. Rabs, which were first found
in rat brains (Salminen and Novick, 1987), are significantly
conserved among eukaryotes from yeast to human (Rojas et al.,
2012). To date, more than 60 different Rabs have been identified
in humans (Kiral et al., 2018). Rabs are the largest group
of proteins in the Ras superfamily and function as molecular
switches in diverse cellular contexts (Zhen and Stenmark, 2015);
they are master regulators of membrane transport between
organelles, or between an organelle and PM (Wandinger-Ness
and Zerial, 2014). Given these known generalized functions,
Rabs will likely play a major role in neuronal dendritic
PM turnover.

Regulation of Rab Activity by Switching Its Guanine
Nucleotide Status
The activity of Rab is determined by its guanine nucleotide status:
GTP-bound is active and GDP-bound is inactive. Regulatory
proteins, such as Rab guanine nucleotide exchange factors
(Rab GEFs), Rab GTPase-activating proteins (Rab GAPs), and
Rab-GDP dissociation inhibitors (Rab GDIs) control the guanine
nucleotide status of Rab (Welz et al., 2014). Rab GEFs facilitate
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the release of GDP from Rabs, which allows them to bind GTP
(Stenmark, 2009). GTP-bound active Rabs are then targeted to
the particular membrane site where they collect effector proteins,
such as sorting adaptors, tethering factors, kinases, phosphatases,
andmotor proteins, throughwhich vesicle trafficking is mediated
between membranous compartments. On the other hand, Rab
GAPs catalyze the hydrolysis of GTP into GDP. Subsequently,
RabGDI binds to Rab-GDP, extracts it away from themembrane,
and stabilizes this inactive form of Rab in the cytosol by
preventing it from releasing GDP.

Characterized Roles of Rab GTPases in PM Turnover
via the Endocytic Pathway
Endosomal membrane trafficking can be broadly divided into
two different pathways: PM internalization to endosomal
compartments and recycling vesicles from endosomes to PM. In
this review article, we briefly explain the roles of various Rabs
associated with each pathway (summarized in Table 2).

PM to EE
Retrieval of the PM ismediated by the internalization of a portion
of PM, mostly via CME (Bitsikas et al., 2014). The endocytic
vesicles are then targeted to EEs by Rab5. PM proteins, such
as Transferrin Receptor (TfR), epidermal growth factor receptor
(EGFR; Leonard et al., 2008), and β-2-adrenergic receptor (β2AR;
von Zastrow and Williams, 2012), are reported to be transported
to EEs via this endocytic pathway.

How Rab5 regulates this endocytic pathway is relatively
well known. First, Rab5-GDI and adaptor protein 2 (AP2)
complexes initiate vesicle budding from PM at clathrin-coated
pits (McLauchlan et al., 1998). Rab5-vesicles then uncoat
AP2 adaptor complexes and coat proteins, a process required
for vesicle fusion with EEs (Semerdjieva et al., 2008). Lastly,
Rab5 recruits various effectors, such as VPS34, EEA1, and
Rabaptin-5/Rabex-5 complex (Stenmark et al., 1995; Horiuchi
et al., 1997; Rubino et al., 2000), through which the endocytic
vesicles dock and fuse with EE membrane.

Endosomes to PM
The PM is recycled mostly through two distinct endosomal
pathways: the rapid recycling (1–5 min) pathway, through
which membrane vesicles are transported directly from EEs
to PM; and the slow recycling (10–20 min) pathway, through
which membrane vesicles are transported to PM via REs
(Jonker et al., 2020).

Rapid Recycling
TfR is among the well-characterized membrane proteins that
go through the rapid recycling pathway. This pathway is known
to be selectively blocked by knockdown or knockout of Rab35
(Kouranti et al., 2006), or by overexpression of its dominant-
negative form (Patino-Lopez et al., 2008). In addition to Rab35,
Rab4 also plays a crucial role in the regulation of TfR recycling
via the rapid recycling pathway. Rab4 is primarily located around
the exit sites of EE (EEES), where membrane fission actively
occurs (Stenmark, 2009). At EEES, Rab4 recruits effectors,
thereby promoting the Class I ARF cascade. It has been shown
that inhibition of Rab4 effectors disrupts the elongated tubular

formation of EE, an important process in the rapid recycling
pathway (D’Souza et al., 2014). Consistently, when Rab4
was inhibited by overexpressing its dominant-negative form
in HEK293 cells, TfR rapid recycling was perturbed
(Yudowski et al., 2009).

Slow Recycling
RE is defined as a membranous compartment positive for
Rab11 (Grant and Donaldson, 2009). Fluorescent live imaging
shows that RE is generated by tubule elongation of EE, from
which Rab5 gradually disappears and is replaced by Rab11
(Sönnichsen et al., 2000). Rab11 works together with numerous
other Rabs and their effectors to engage in the overall process
of slow recycling of various membrane proteins, such as AMPA
receptor, rhodopsin, EGFR, TLR4, β1 integrin, N-cadherin, and
E-cadherin (Kelly et al., 2012). In the following paragraphs, we
will describe the slow recycling pathway, which comprises two
continuous processes: EE-to-RE vesicle trafficking and RE-to-
PM vesicle targeting.

In EE-to-RE trafficking, Rab10, Rab11, Rab22, and Rab25 are
reported to be associated with this process as depletion or
expression of dominant-negative forms of these proteins showed
a decreased number of REs or inhibited RE biogenesis in
diverse cell types (Wang et al., 2000; Weigert et al., 2004; Chen
et al., 2006; Barral et al., 2008). For example, it seems that
Rab11 and its effectors, such as Rab11 family interacting proteins
(Rab11-FIPs) and microtubule motor proteins, are associated
with EE-to-RE trafficking (Welz et al., 2014). Specifically, the
Rab11 family interacting protein3 (Rab11-FIP3) complex was
shown to directly interact with dynein light intermediate chain 1
(DLIC-1) and disruption of FIP3 binding with DLIC-1 inhibited
EE-to-RE trafficking of TfR in epidermal carcinoma human cells
(Horgan et al., 2010).

Vesicle targeting from REs to PM is achieved by the
cooperation of Rab8 and Rab11. According to a previous study in
hippocampal CA1 neurons, Rab11 translocates AMPA receptor-
containing vesicles from the dendritic shaft to the dendritic spine.
Then, Rab8 directly drives the insertion of AMPA receptor-
containing vesicles into the synaptic membrane (Brown et al.,
2007). This process is known to involve the actin cytoskeleton,
which facilitates the movement of these vesicles. Myosin-Vb
(MyoVb), an actin motor protein that can form a complex with
Rab11 and FIP-2, directly mediates RE-to-PM vesicle transport
(Wang et al., 2008). For tethering of vesicles coming from
REs to PM, the interaction between Rab11 and the exocyst
complex is required. One of the Rab11 effectors, Sec15, plays
an important role in this process (Zhang et al., 2004). Once
Sec15 binds to Rab11, they initiate sequential recruitment of
exocyst complex subunits including cytoplasmic Exo84, Sec5,
Sec6, Sec8, and Sec10, and PM-attached Exo70 and Sec3 (Zhang
et al., 2004; Heider and Munson, 2012). They directly link
the vesicle membrane and PM to promote targeted fusion of
Rab11 vesicles with the PM.

Evidence for the Regulatory Roles of Rabs in
Dendrite Morphogenesis
One of the best examples of experimental evidence for the
involvement of early endosomal Rabs in dendrite morphogenesis
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TABLE 2 | Rab GTPases in endocytic pathways.

Endosomal
pathways

Rab proteins Molecular functions Cellular functions in
dendrites

Main effectors Main cargoes References

Endocytosis Rab5 PM to EE vesicle trafficking,
vesicle budding, vesicle
motility, vesicle uncoating,
and vesicle tethering.

Dendritic branching,
development, thinning,
and pruning

VPS34, EEA1,
Rabaptin-5, Rabex-5

TfR, EGFR, B2AR,
TrkB

Stenmark et al. (1995), Horiuchi et al. (1997),
McLauchlan et al. (1998), Rubino et al. (2000),
Leonard et al. (2008), Satoh et al. (2008),
Semerdjieva et al. (2008), von Zastrow and
Williams (2012), Kanamori et al. (2015), Zhang
et al. (2014), Wang et al. (2017), and Moya-
Alvarado et al. (2018)

Exocytosis
(Rapid recycling)

Rab35 EE to PM vesicle trafficking. Neurite outgrowth EPI64C, ACAP2,
MICAL-L1

TfR, TCR Kouranti et al. (2006), Patino-Lopez et al.
(2008), Kobayashi and Fukuda (2013), and
Kobayashi et al. (2014)

Rab4 EE to PM vesicle trafficking. Dendritic branching
and development;
Spine formation

Arl1, BIG1, BIG2,
GRASP-1, NBEA

TfR, GPCRs, AMPA
receptor, NMDA
receptor

Seachrist et al. (2000), Seachrist and
Ferguson (2003), Odley et al. (2004),
Zheng et al. (2008), Yudowski et al. (2009),
Hoogenraad et al. (2010), Esseltine et al.
(2011), D’Souza et al. (2014), and Gromova
et al. (2018)

Exocytosis
(Slow recycling)

Rab11 Vesicle trafficking and motility
from EE to RE or from RE to
PM; RE biogenesis.

Dendritic branching
and pruning; Spine
growth

Rab11-FIPs, MyoVb,
Dynein, Sec15

AMPA receptor, TfR,
EGFR, TLR4,
β1 integrin,
N-cadherin,
E-cadherin, TrkB

Ullrich et al. (1996), Sönnichsen et al. (2000),
Park et al. (2004), Zhang et al. (2004), Park
et al. (2006), Wang et al. (2008), Horgan et al.
(2010), Kelly et al. (2012), Lazo et al. (2013),
Kramer et al. (2019), and Lin et al. (2020)

Rab22 EE to RE vesicle trafficking;
RE biogenesis.

N/A N/A TfR, CD1a, MHC
class1, TrkA

Weigert et al. (2004), Magadan et al. (2006),
Barral et al. (2008) and Wang et al. (2011)

Rab25 EE to RE vesicle trafficking;
Vesicle sorting between RE
and LE.

N/A N/A IgA, TfR, β1 integrin Casanova et al. (1999), Wang et al. (2000),
Caswell et al. (2007), Dozynkiewicz et al.
(2012), and Jeong et al. (2019)

Rab10 EE to RE vesicle trafficking;
Vesicle motility; RE
biogenesis.

Dendritic development
and branch patterning

Kif13A/B CD147, TfR Chen et al. (2006), Taylor et al. (2015), Zou
et al. (2015), and Etoh and Fukuda (2019)

Rab8 RE to PM vesicle trafficking. Dendritic spine growth N/A AMPA receptor, TfR Hattula et al. (2006) and Brown et al. (2007)
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comes from a study by Satoh et al. (2008), who showed
in Drosophila class IV da (C4 da) neurons that mutation
of a dynein subunit gene, dlic, led to proximally ‘‘bushy’’
dendrites and that dlic and Rab5 double mutation resulted
in greatly simplified dendritic morphology. Interestingly, this
double mutant phenotype was similar to those seen in neurons
with Rab5 mutation only. These data indicate that Rab5, in
a co-operation with dlic, plays a regulatory role in dendrite
morphogenesis. Another study on the genetic interaction
between Protein Kinase A (PKA) and Rab5 in C4 da neurons
showed that PKA could also contribute to the dendritic
arbor development by altering Rab5-endosomal transport in
dendrites (Copf, 2014). More recently, it was reported that
BDNF-induced dendritic branching accompanied increased
number and mobility of TrkB-positive Rab5-endosomes in
cultured rat hippocampal neurons (Moya-Alvarado et al., 2018).
Accordingly, expression of the dominant-negative form of
Rab5 reduced dendritic arborization which was partially rescued
by BDNF treatment.

Many studies also described the association between
Rab35 and Rab4 with dendrites. Rab35 was shown to recruit a
series of effectors, such as MICAL-L1, ACAP2, and EHD1, to
inactivate ARF6 (Kobayashi and Fukuda, 2013) and promote
vesicle targeting from REs to neurite tips, thereby inducing
neurite outgrowth in PC12 cells (Kobayashi et al., 2014).
Rab4-positive endosomes have been associated with the
dendritic formation in Drosophila C4 da neurons (Zheng
et al., 2008). They showed that dlic mutants induced proximal
shift in both Rab4-positive endosomes and dendritic branch
distribution. However, dlic mutants also altered localization
of GOPs, suggesting that the proximal shift in the branch
distribution may be, at least in part, due to the mislocalization of
both Rab4-positive endosomes and GOPs. Also, Rab4 is reported
to collect its neuron-specific effector GRASP-1 to co-ordinate RE
maturation, which is necessary for surface expression of AMPA
receptor in dendrites of cultured rat hippocampal neurons
(Hoogenraad et al., 2010). A more recent study showed that
Rab4 forms a complex with GluN2B and VPS35 to regulate the
surface expression and recycling of GluN2B-NMDA receptor in
dendrites of cultured mouse hippocampal neurons (Gromova
et al., 2018). In this process, active Rab4 collects Neurobeachin
(NBEA), a Brain-enriched multi-domain protein, to link the
complex with motor protein KIF21B, which enables vesicle
trafficking. Deficiency of either NBEA or KIF21B results in
decreased actin enrichment in dendritic spines and consequent
reduction of dendritic spine number.

REs have been studied extensively in neuronal dendrites;
Rab11 is the most prominent RE-associated molecule. The role
of Rab11 in dendrites was initially highlighted by a collection
of research from the same group (Park et al., 2004, 2006), who
showed that LTP-inducing stimuli promoted the mobilization
of Rab11-REs towards dendritic spines and vesicle fusion with
PM, which resulted in rapid spine growth in hippocampal
neurons. Moreover, expression of the dominant-negative form of
Rab11 decreased total spine numbers, whereas overexpression of
wild-type Rab11 increased them (Park et al., 2006). More recent
studies have shown the involvement of Rab11-REs in dendritic

pruning in Drosophila C4 da neurons (Kramer et al., 2019; Lin
et al., 2020). These studies suggest that appropriate localization
of Rab11-REs in dendrites is crucial for dendritic PM turnover
and morphogenesis.

The function of Rab10 has also been associated with dendrite
morphogenesis in C. elegans (Taylor et al., 2015; Zou et al.,
2015). Taylor et al. (2015) reported that Rab10 mutants showed
a reduction in posterior dendritic branches, but an increase in
distal anterior branches in PVD neurons, indicating that Rab10 is
a critical regulator of dendrite morphogenesis and patterning in
C. elegans PVD sensory neurons.

Although these studies provide substantial evidence
supporting the involvement of Rabs in dendrite morphogenesis,
the mechanism by and the effectors with which they regulate
dendritic PM turnover remain unclear. Further studies clarifying
the exact regulatory roles of Rabs in dendrite morphogenesis
would enrich our understanding of the physiological roles of the
entire endosomal pathway in neurons.

Evidence for the Involvement of Local Rab-Mediated
Endocytic Pathway in Dendritic Pathology in NDs
Several previous studies provide experimental evidence to
support a link between endosomal defects and neuronal
pathology inNDs, which has beenwell-reviewed in recent articles
(Kiral et al., 2018; Guadagno and Progida, 2019). For example, in
postmortem brains of AD patients, enlargement of Rab5-positive
EEs and upregulation of Rab4 were observed in pyramidal
neurons of the prefrontal cortex at the early-stages (Cataldo et al.,
2000), and upregulation of Rab4, Rab5, Rab7, and Rab27 was
observed in the cholinergic basal forebrain neurons (Ginsberg
et al., 2011). In line with this, in animal models of HD, impaired
conversion from Rab11-GDP to Rab11-GTP, and delayed TfR
recycling back to PM were observed in primary cortical
neurons (Li et al., 2009). Besides these general links between
Rab-mediated endocytic pathway and dendritic pathology in
NDs, more direct evidential links have been reported in studies
using animal models of NDs. Umeda et al. (2015) reported that
intracellular Aβ oligomers impaired endocytic vesicle trafficking
of TfR in dendrites, which resulted in dendritic spine alteration
in mouse primary neurons. Richards et al. (2011) showed that
cultured hippocampal neurons expressing mutant huntingtin
(htt) displayed a loss of dendritic spines when they were in
proximity to htt aggregates and that this loss was due to
functional defects in Rab11-mediated local endosomal recycling
caused by the aggregates. Also, a previous study showed
that the loss-of-function of TDP-43 in primary hippocampal
neurons reduced the number and motility of Rab11-positive
REs regulating NRG1-ErbB4-mediated trophic signaling in
dendrites, thereby inducing dendritic defects (Schwenk et al.,
2016). Another study showed that overexpression of mutant
CHMP2B, which is associated with Frontotemporal dementia
(FTD), in primary cortical neurons increased dendritic branches
and decreased endolysosomal trafficking in dendrites (Clayton
et al., 2018). Although the link between endosomal defects and
dendritic pathology in a subset of NDs has been characterized
as shown above, further studies on the details of underlying
pathogenic mechanisms warrant further scrutiny.
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COPI and COPII as Potential Local
Regulators of the Secretory Pathway
No matter which dendritic secretory pathway is being
considered, the early secretory pathway (from ER-to-Golgi
or ER-to-ERGIC) seems to be involved. In this section, we
will briefly outline the generalized characteristics of the early
secretory pathway by describing some of its key regulators and
make extensions to the dendritic secretory pathway and NDs
where appropriate.

Regulation of COPII Vesicle Budding and Fusion in
the Early Secretory Pathway
The secretory pathway comprises the transport of secretory
and membranous materials from ER to Golgi and ultimately
to PM. ER-to-ERGIC and ERGIC-to-Golgi in mammals and
ER-to-Golgi transport in other less-developed species such as
Drosophila and yeast are mediated by coat protein complex
II (COPII) vesicles (Brandizzi and Barlowe, 2013). The COPII
pathway is initiated from the ER exit site (ERES), a site on
the ER that lacks ribosomes, which is defined by the presence
of Sec16 (Hughes et al., 2009) anchored there by leucine-rich
repeat kinase 2 (LRRK2; Cho et al., 2014). Sec16 recruits Sec12
(Montegna et al., 2012), a GEF for Sar1 (Barlowe and Schekman,
1993). Sar1, in turn, recruits the inner COPII components
(Sec23–Sec24 complex; Matsuoka et al., 1998). Next, the outer
COPII components (Sec13–31 complex) are recruited to and
bind at the interface of the Sar1-Sec23 complex (Bi et al., 2007;
Fromme et al., 2007). These inner and outer COPII components
ultimately induce GTP hydrolysis of Sar1, which leads to the
scission of COPII vesicles from the ER (Bielli et al., 2005; Fromme
et al., 2007). Immediately after scission, the vesicles uncoat prior
to fusion with the ERGIC or cis-Golgi (Suda et al., 2017). This
fusion process is mediated by Rab1 GTPase on COPII vesicles
and GM130 on the membranes of ERGIC or cis-Golgi (Sztul and
Lupashin, 2009).

Regulation of COPI Vesicle Budding and Fusion in
the Early Secretory Pathway
The transport process between the ER and Golgi is not
unidirectional. The best characterized retrograde transport
process from Golgi to ER is the COPI pathway (Spang, 2013;
Arakel and Schwappach, 2018). COPI comprises γ-COP–δ-
COP–ζ-COP–β-COP tetrameric complex and α-COP–β′-
COP–ε-COP trimeric complex that forms inner and outer layers
of the COPI coat, respectively (Eugster et al., 2000). These
complexes are recruited to the Golgi membrane upon activation
of the ADP-ribosylation factor (ARF). Once recruited to the
Golgi membrane, the subunits α-COP, β′-COP, γ-COP, and
δ-COP recognize specific motifs on cargoes and promote their
incorporation into COPI vesicles (Cosson and Letourneur, 1994;
Brandizzi and Barlowe, 2013). The scission of COPI vesicles is
mediated by dimerization of ARF1 (Beck et al., 2008, 2011), and
its GTP hydrolysis promotes the uncoating of COPI vesicles
(Tanigawa et al., 1993) before fusing with the ER membrane via
Dsl1 tethering complex in yeast (Andag and Schmitt, 2003; Ren
et al., 2009) and likely the NAG-RINT1-ZW10 (NRZ) complex
in mammals (Hirose et al., 2004; Civril et al., 2010). However,

whether these processes are conserved in the dendritic secretory
systems in neurons remains unclear.

Evidence for the Involvement of Dendritic Secretory
Pathway in Dendritic Pathology
Although the origins of dendritic secretory units are mostly
unknown, we suspect that they are not entirely discrete from
the canonical secretory units in the soma. Indeed, a study
reported that GOPs may originate from somatic Golgi in rat
hippocampal neurons (Quassollo et al., 2015). Interestingly,
functional and structural alterations of somatic Golgi, termed
Golgi pathology (Gosavi et al., 2002; Liazoghli et al., 2005; van
Dis et al., 2014), as well as impaired exocytosis mediated by the
secretory pathway (Larsen et al., 2006; Spencer et al., 2016), has
been frequently observed in neurons of animal models for NDs.
Provided that the dendritic secretory system has some reliance
on the canonical secretory system, these evidences suggest a
possibility of widespread involvement of the dendritic secretory
pathway in dendritic pathology.

A recent study on polyQ toxicity in Drosophila has also
provided a link between the dendritic secretory pathway and
dendritic pathology. Chung et al. (2017) showed that nucleus-
accumulated polyQ proteins led to the reduction of the CrebA
mRNA level. Because CrebA is the master regulator of the
secretory pathway (Abrams and Andrew, 2005; Fox et al., 2010),
polyQ toxicity led to the perturbation of the COPII pathway,
thereby decreasing GOP formation, and ultimately resulting
in reduced dendritic branches (Chung et al., 2017). Indeed,
knockdown of Sec31 (Chung et al., 2017) or homozygotic
mutation in Sar1 in Drosophila da neurons (Ye et al., 2007)
reduced the number or integrity of GOPs, respectively. The
disruption also led to a significantly decreased dendritic PM
supply, although to what extent GOPs, rather than somatic
Golgi, contribute to such decrease is difficult to tell. Interestingly,
when GOPs were selectively ablated by laser, dendritic branch
dynamics were reduced (Ye et al., 2007). However, the extent
to which the laser-ablated GOPs were not measured nor did
the authors examine other potential damage that may have been
induced by the laser.

Glutamatergic excitotoxicity involving the NMDA receptor
is often observed in animal models of NDs (Lewerenz and
Maher, 2015). Interestingly, NMDA receptor trafficking in
dendrites is mediated by dendritic ERES and GOPs (Aridor
et al., 2004; Jeyifous et al., 2009). This evidences suggest that
excitotoxicity involving NMDA receptors may be dependent
on the dendritic secretory pathway. Upon knock-out of Lrrk2,
Sec16A detached from the dendritic ERES, which led to the
impairment of ER-to-Golgi transport and NMDA receptor
trafficking in mouse primary hippocampal neurons (Cho et al.,
2014). Also, overexpression of PD-linked LRRK2 mutants has
been shown to induce NMDA receptor-mediated excitotoxicity,
leading to dendritic degeneration in rat cortical neurons
(Plowey et al., 2014). These evidences support a model that
suggests that the dendritic secretory pathway is regulated by
LRRK2 whose dysfunction in PD is associated with NMDA
receptor-mediated excitotoxicity and dendritic degeneration.
Interestingly, Lin et al. (2015) found that Lrrk, a Drosophila
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ortholog of LRRK2, co-localized with somatic Golgi and
GOPs in Drosophila da neurons, and that overexpression
of a PD-linked mutant form of LRRK2, LRRK2 G2019S,
suppressed anterograde movements of GOPs marked by
ManII-eGFP. This GOP transport defect may underlie the
dendrite degeneration observed in LRRK2 G2019S-expressing
Drosophila da neurons (Lin et al., 2010). Whether or not
other dendritic secretory units are also linked to NDs awaits
further investigation.

CONCLUSIONS AND PERSPECTIVES

Neuronal dendrites seem to be highly vulnerable to neurotoxic
insults, including those that arise in NDs (Luebke et al., 2010;
Kulkarni and Firestein, 2012; Hasel et al., 2015; Kweon et al.,
2017). This vulnerability may be partly due to differences
between dendrites and soma in their response to stress, such as
exposure to ROS or NMDA (Hasel et al., 2015). Here, we propose
that dendritic endocytic and secretory pathways may be more
susceptible than the canonical pathways to neurotoxicity, which
could contribute to the vulnerability of dendrites in NDs.

Although the dendritic and the canonical pathways occur in
distinct areas of the neuron, they share many of the regulatory
molecules. Also, pieces of evidence show that at least parts of
the dendritic secretory system, such as GOPs, may be derived
from the canonical somatic secretory system (Quassollo et al.,
2015), suggesting that the dendritic secretory system is under
the purview of the canonical system in the soma. Thus, it is
possible that when endocytic and secretory functions are under
assault in neurons, the canonical system may need to limit its
purview in dendrites to support its somatic functions. We posit
several reasons in support of this possibility: (1) knockdown of
Sec31 and nuclear polyQ expression lead to the loss of GOPs,
but not somatic Golgi (Chung et al., 2017); (2) loss-of-function
mutations of genes related to ER-to-Golgi trafficking, such as
Sec31, Rab1, and Sar1, all lead to impaired arborization of
dendrites, but normal morphology of axons in Drosophila da
neurons (Ye et al., 2007); (3) a partial loss-of-function in Golgi
SNARE protein Membrin causes neuron-specific dysfunctions
and significantly impairs dendritic growth in a Drosophilamodel
for progressive myoclonus epilepsy (Praschberger et al., 2017);
(4) neurons often undergo dendritic degeneration before cell
death in NDs (Klapstein et al., 2001; Jaworski et al., 2011; Fogarty
et al., 2016); (5) shrinking dendritic area has been identified
as an adaptive response to SCA1 toxicity (Dell’Orco et al.,

2015); (6) dendrites inDrosophilamotoneurons (Ryglewski et al.,
2014) and da neurons (Shorey et al., 2020) have been shown
to be dispensable for neuronal survival; and (7) endocytic and
secretory dysfunctions are often observed in a number of NDs
(Wang et al., 2020). These results may partly explain the fact
that neuronal dendrites are more vulnerable to neurotoxicity
than other neuronal domains (Luebke et al., 2010; Hasel et al.,
2015; Kweon et al., 2017). Further investigations in the dendritic
endocytic and secretory pathways will be needed to test the
validity of our hypothesis in addressing the issue of dendritic
vulnerability in NDs.

In this review article, we presented our perspective view that
impaired PM turnover involving dysregulation of the dendritic
endocytic and secretory pathways may contribute to dendritic
pathology in NDs. Although there is a growing body of evidence
for the potential link between impaired PM turnover and
dendritic pathology in NDs, our understanding of the exact
pathogenic mechanisms remains largely elusive.We propose that
dendritic pathology in NDs may involve dysregulation of the
regulatory machinery, such as Rab GTPases and COPI/COPII,
for the dendritic endocytic and secretory pathways described
above. Dysregulation of the dendritic pathways appears to
complement cytoskeleton impairment as underlying pathogenic
mechanisms for dendritic pathology. Because dendritic defects
are often early features of ND, future studies to elucidate
the pathogenic mechanisms by which impaired PM turnover
contributes to dendritic pathology in NDs will deepen our
understanding of the early pathogenesis of NDs.
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