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Abstract: This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based
direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW)
vital radars. In order to reduce redundant complexity, the proposed algorithm employs
characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and
resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast
Fourier transform. On the basis of the coarse DOA estimation, the number of channels as input of the
MUSIC algorithm are selected. If the estimated DOA is smaller than 30◦, it implies that there is an
FOV margin. Therefore, the proposed algorithm employs only half of the channels, that is, it is the
same as doubling the spacing between arrays. By doing so, the proposed algorithm achieves more
than 40% complexity reduction compared to the conventional MUSIC algorithm while achieving
similar performance. By experiments, it is shown that the proposed algorithm despite the low
complexity is enable to distinguish the adjacent DOA in a practical environment.

Keywords: FMCW; array spacing; low complexity; MUSIC

1. Introduction

Recently, several studies on radar sensors have been reported due to their many advantages,
such as being robust against environmental effects, for example, dust and light compared to other
sensors [1–3]. Radar systems are used in a variety of applications such as weather, military,
the automotive industry, vital-sign monitoring, and surveillance [4]. Meanwhile, among various
approaches using radar sensors, vital-sign applications have attracted much attention because of their
non-contact merits [5–7].

In Reference [5], the authors discussed state-of-the-art techniques for vital-sign monitoring using
an impulse radio ultrawide-band transceiver, and presented the contributions of different authors
regarding the vital signs of a stationary human target. In Reference [6], in order to distinguish multiple
targets, the authors employed high-resolution algorithms with low complexity. In Reference [8],
Shekh M. M. Islam et al. have proposed a hybrid method consisting of an signal to noise (SNR)-based
intelligent decision algorithm for phase-comparison monopulse continuous wave (CW) radar in
order to overcome the monitoring limits of multiple targets. Due to the use of monopulse CW radar,
the complexity of this system is very low. In addition, this algorithm has worked well with high
accuracy by employing independent component analysis with the joint approximation diagonalization
of Eigen-matrices algorithm, so called, ICA-JADE algorithm and DOA.

Radar systems are widely used to detect range, Doppler, and angle of targets. In Reference [9],
authors have developed ultra-wide-band coherent random noise radar operating over 1∼2 GHz
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frequency band. This system performed phase coherence by employing heterodyne correlation of
the received signal with time-delayed frequency shifted replica of transmit waveform. They have
ensured that the reflected signal, when mixed with timed-delayed transmit signal, yields the same
intermediate frequency by analysis of theoretical and simulations result. Meanwhile, in Reference [10],
Ruosi Sun et al. have considered frame arrival detection issue in the challenging low SNR environment.
They have proposed a new detection algorithm by employing the matched filtering and delayed
autocorrelation on the filtered signal. In Reference [11], the authors presented that the angle diversity
technique implemented on a real-time location system according to the angle estimation, operating
in 2.4 GHz band. They theoretically analyzed some problems inherent to the interferometers relative
to the noise-level variation and influence of various radio frequency interferences. In Reference [12],
they have designed a new distributed angle estimation algorithm in multi-path environment. They
have proposed angle estimation algorithm based on received signal strength by using two-antenna
anchor. It is shown that the angle is estimated at each sensor in a completely distributed manner.

Among various radar systems, frequency-modulated continuous-wave (FMCW) techniques have
attracted much attention as one of the most promising due to their many advantages [13–19]. In
the case of continuous-wave (CW) radar systems, these systems have the merit of low complexity,
but they cannot detect the range of targets without additional modulations [1]. In the case of pulsed
radar systems, they use very narrow pulse waveforms and, thus, not only are the ranges of targets
estimated by using the delay of pulses, but the velocity of targets is also detected by the Doppler effect.
These systems require a very large bandwidth at the baseband due to the narrow pulse. Therefore,
pulse radar systems require high-cost hardware [2]. Meanwhile, FMCW radar systems overcome
drawbacks of CW and pulse radars. Compared to CW radar systems, FMCW radar systems estimate
the range of a target as well as its velocity because they employ not only the frequency but also the
time domain. Compared to pulse radar systems, an FMCW radar does not require high bandwidth by
employing only beat frequency according to delay.

In FMCW radar systems, estimating the direction of arrival (DOA) is a major challenge
due to limiting the number of arrays [20–23]. For DOA estimation, the fast Fourier transform
(FFT)-based estimation method is most widely used in FMCW radar due to its low complexity.
The FFT-based algorithm has a disadvantage in that it cannot distinguish between adjacent targets
due to its low-resolution characteristics. In order to overcome this drawback of the FFT-based
algorithm for FMCW radar systems, super-resolution algorithms such as the estimation of signal
parameters via rotational invariance technique (ESPRIT) and multiple-signal classifier (MUSIC) were
proposed because they have a significantly higher resolution compared with that of the FFT-based
algorithm [23–32]. In References [23–25], they tried to detect DOA of adjacent multiple targets
by employing MUSIC algorithms. In Reference [26], they attempted to estimate and resolve the
overlapping Doppler spectra due to the relatively closer velocities of multiple targets. However,
the computational complexity of the super-resolution algorithms is significantly higher compared
to FFT-based algorithms and thus super-resolution algorithms are difficult to apply to real-time
embedded systems.

In this paper, we propose a low-complexity MUSIC-based DOA detection algorithm for an FMCW
vital radar. The proposed algorithm is an extension to the tradeoffs of the conventional MUSIC
algorithm. In other words, the proposed algorithm uses the trade-off between the resolution and
field of view (FOV) of distance between arrays. As the distance between arrays increases, resolution
performance is improved, but the FOV decreases. By employing these characteristics, the proposed
algorithm first coarsely estimates the angles of targets by using FFT. Then, the proposed algorithm
determines whether the estimated angle of target θ is within 30◦ or not. In the case of θ ≤ 30◦,
the proposed algorithm employs only half of the total received (RX) signals as input for the MUSIC
algorithms as if the distance between arrays is doubled. In order to increase the signal-to-noise
ratio (SNR), the proposed algorithm combines the odd and even signals in the total RX signals.
Simulation results showed that the proposed algorithm achieved similar performance to that of the
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conventional MUSIC algorithm despite the decrease of complexity. In addition, the improvement of
SNR by combining odd and even signals was shown by simulations. Experiment results showed the
effectiveness of the proposed algorithm in a practical environment.

The remainder of this paper is organized as follows. Section 2 describes the system model
considered in this paper and the trade-off between FOV and resolution. Section 3 explains the FMCW
radar estimators, that is, the FFT-based and MUSIC algorithms. The proposed low-complexity MUSIC
algorithm is introduced in Section 4. In Sections 5 and 6, the performance and complexity of the
proposed algorithm are evaluated through simulations and an experiment. Finally, we present the
conclusion in Section 7.

2. System Models and Trade-Off between FOV and Resolution

This section illustrates the system models of the vital FMCW radar and the trade-off between
FOV and resolution.

2.1. System Model

We considered an FMCW radar that was composed on a 1 TX antenna and K RX antennas as
shown in Figure 1. The FMCW-transmitted (TX) signal sTX(t) is composed of L chirp signals and
expressed as

sTX(t) =
L−1

∑
l=0

s0(t− lT), (1)

where s0(t) is the chirp signal, that is, s0(t) = exp(j(2π f0t + µt2/2)) and f0 is the carrier frequency,
µ is the chirp slope, that is, µ = B/T, where B is the bandwidth and T is the symbol duration of a
chirp signal as shown in Figure 2.
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Figure 1. Transmit and receive antennas with unit linear array.
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Figure 2. Transmit and receive signals of frequency-modulated continuous-wave (FMCW) radar.

The TX signal sTX(t) is transmitted from the TX antenna and reflected from humans. Then, sTX(t)
is received at the k-th received (RX) antenna and the l-th chirp index, and it is denoted by sRX

k,l (t) and
expressed as [6]:
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sRX
k,l (t) =

M

∑
m=1

ãmsTX(t− τm) exp

(
j4πlT

λ

(
x(hr)

m (t) +
H

∑
h=1

x(rr)
m,h (t)

))
︸ ︷︷ ︸

Doppler term

exp
(

j2π

λ
dk sin θm

)
︸ ︷︷ ︸

DOA term

+ w̃(t), (2)

where ãm and τm are the amplitude and delay of the reflected signal by the m-th human, respectively,
and w̃(t) is the complex additive white Gaussian noise (AWGN). In Doppler terms, x(hr)

m (t) denotes the
heart rate of the m-th human, and x(rr)

m,h denotes the h-th harmonic element of the respiratory rate of the
m-th human. In DOA terms, d is the distance between adjacent RX antennas, λ is the wavelength, θm is
the DOA term of the m-th target as shown in Figure 1. In order to detect the range term, by multiplying
the conjugation of sTX(t), the dechirped signal yk,l(t) is obtained as follows:

yk,l(t) = sRX
k,l (t)× s∗TX(t)

=
M

∑
m=1

ȧm exp (jπµτmt)︸ ︷︷ ︸
range term

exp

(
j4πlT

λ

(
x(hr)

m (t) +
H

∑
h=1

x(rr)
m,h (t)

))
︸ ︷︷ ︸

Doppler term

exp
(

j2π

λ
dk sin θm

)
︸ ︷︷ ︸

DOA term

+ w(t) (3)

where ȧm is the coefficient excluding the range term, ȧm = ãm exp(−j(2π fcτm − µτ2
m/2)) [20] and

w(t) is the noise term, that is, w(t) = w̃(t)s∗TX(t). Dechirped signal yk,l(t) is converted from analog
to digital with sampling interval ts for 0 ≤ n ≤ Ns − 1, where Ns is the number of samples, that is,
Ns = T/ts. Then, it is denoted by yk,l [n] and expressed as follows:

yk,l [n] =
M

∑
m=1

ȧm exp (jπµτmnts)︸ ︷︷ ︸
∆
=ηm [n]

exp

(
j4πlT

λ

(
x(hr)

m [n] +
H

∑
h=1

x(rr)
m,h [n]

))
︸ ︷︷ ︸

∆
=vl

m [n]

exp
(

j2π

λ
dk sin θm

)
︸ ︷︷ ︸

∆
=hk

m

+ w[n]. (4)

In this paper, meanwhile, we focus only on DOA estimation; thus, the other parameters, that is,
range term ηm[n] and Doppler term vl

m[n] were omitted. By only considering DOA term hk
m , that is,

am,l [n] = ȧmηm[n]vl
m[n], Equation (4) is newly expressed as follows:

yk,l [n] =
M

∑
m=1

am,l [n]hk
m + wk,l [n]. (5)

Assuming that DOA term hk
m is invariant for sample index n, Equation (5) is simply expressed as:

yk,l =
M

∑
m=1

am,lhk
m + wk. (6)

For effective representations, variables are denoted into vector and matrix forms as follows:

Y = HA + W, (7)

where Y is the K × L matrix for yk,l , W is the K × L AWGN matrix, and H is the K × M
steering matrix, that is, H = [h1, h2, ..., hM]T where hm is steering vector of the mth target, that is,
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hm = [1, hm, h2
m, ..., hK−1

m ]T, A is the M× L amplitude matrix of column vectors al = [a1,l , a2,l , ..., aM,l ]
T

for lth chirp and (·)T is the transpose operator of the matrix. Therefore, H and A are expressed as:

H = [h1, h2, ..., hM]

=


1 1 · · · 1
h1 h2 · · · hM
...

...
. . .

...
hK−1

1 hK−1
2 · · · hK−1

M

 , (8)

A = [a1, a2, ..., aL]

=


a1,1 a1,2 · · · a1,L
a2,1 a2,2 · · · a2,L
...

...
. . .

...
aM,1 aM,2 · · · aM,L

 . (9)

2.2. FOV and Resolution in DOA Estimation

This section illustrates the FOV and resolution in DOA estimation. FOV and resolution are
important factors in DOA estimation. The DOA resolution is denoted by θ∆, and it is calculated
as [20,33]

θ∆ ≈ 0.886
λ

Kd cos θ
, (10)

where θ is the angular position. From Equation (10), it can be observed that angle resolution θ∆
decreased as d increased in denominator. A smaller θ∆ means more improved performance of angle
resolution, because a smaller θ∆ can distinguish the smaller angle difference of adjacent targets.
Meanwhile, the FOV according to d is denoted by θFOV, and it is calculated as follows [TI MIMO]:

θFOV = sin−1
(

λ

2d

)
. (11)

Figure 3 shows θ∆ (dashed line) and θFOV (solid line) according to d with K = 8 using
Equations (10) and (11), respectively. It can be seen that θ∆ decreased as array spacing d increased,
as mentioned before. Meanwhile, θFOV decreased as d increased.
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Figure 3. Field of view (FOV) and resolution according to array spacing d with K = 8.
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Figure 4 shows the normalized power spectral density (PSD) according to angle-bin index in
order to illustrate the performance of angle resolution according to d. Figure 4a shows the result with
the number of arrays K = 4 and two DOA, that is, [θ1, θ2] = [−10◦, 10◦]. In the case of d = λ/2 and
θ = 10◦, θ∆ is approximated into 25.77◦ by Equation (10) and θ∆ is larger than |θ2 − θ1| = 20. Hence,
it was detected as if there was only one target DOA, as shown in the case of d = λ/2 in Figure 4a.
On the other hand, in the case of d = λ, θ∆ was approximated into 12.89; thus, two angles were
detected as shown in the case of d = λ in Figure 4a. In the same manner, Figure 4b shows the result
with number of arrays K = 8 and two DOA, that is, [θ1, θ2] = [−4◦, 4◦]. As illustrated in Figure 4a,
the estimation of two angles that was not possible with d = λ/2 was possible with d = λ.
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Figure 4. Normalized power spectral density (PSD) according to angle-bin index.

Figure 5 illustrates the schematic of the relation between array spacing and FOV. For easy denoting,
θFOV is expressed as θFOV,0.5, θFOV,1, and θFOV,2 for d = λ/2, d = λ, and d = 2λ, respectively, that is,
θFOV ∈ {θFOV,0.5, θFOV,1, θFOV,2}. In the case of d = λ/2, θFOV is equal to ± 90◦, that is, θFOV,0.5 = ± 90◦.
Meanwhile, in the cases of d = λ and d = 2λ, θFOV decreases to ± 30◦ and ± 14.48◦, respectively,
that is, θFOV,1 = ± 30◦ and θFOV,2 = ± 14.48◦. The FOV decrease means that the angle of the detectable
area in the radar system is significantly reduced. From these results, it can be concluded that there is a
trade-off between resolution performance and FOV depending on array spacing d.
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Figure 5. Schematic of relation between array spacing and FOV.

3. Frequency-Estimation Algorithms

3.1. FFT-Based Algorithm for DOA Detection

FFT-based spectral-estimation algorithms are the most widely used algorithm for various
detections because of their many advantages, such as low complexity and ease of implementation.
N-point FFT algorithms efficiently estimate the frequency components of input signals by calculating
correlations with sinusoid signals of N frequencies. We recall Equation (6) in order to perform FFT for
DOA detection. The uth FFT output for 0 ≤ u ≤ N − 1 is denoted by Yu,l , and it is expressed as

Yu,l =
N−1

∑
k=0

yk,l Dku
N , (12)

where DN is the N-point DFT operator (So far, we mentioned FFT, but denote DFT instead of the FFT
for mathematical expression), that is, DN = exp (−j2π/N). For effective representations, Equation (12)
is denoted into vector and matrix forms as follows:

YDFT = DY, (13)

where D is the N × K matrix for a DFT operation that consisted of K column vectors,
that is, D = [D0, D1, ..., DK − 1] where Du is the uth column vector of D, that is,
Du = [1, exp (−j2πu/N) , exp (−j4π2u/N) , ..., exp (−j2π(N − 1)u/N)]T for 0 ≤ u ≤ K − 1.
Despite the merits of the low complexity of FFT, as shown in Figure 4, FFT may not estimate two angles
in the case of θ∆ > |θ2− θ1|. In order to estimate two angles despite θ∆ > |θ2− θ1|, the super-resolution
algorithms need to be mentioned in the next section.

3.2. MUSIC Algorithm

This section illustrates the MUSIC algorithm, which is a representative subspace-based
spectral-estimation algorithm with super resolution [27–29]. The MUSIC algorithm employs the
orthogonality between subspaces of signal and noise. In order to run the MUSIC algorithm,
the correlation matrix of yk is employed, which is denoted by R and expressed as [27]:
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R = YYH

=


y0,0 y0,1 · · · y0,L−1

y1,0 y1,1 · · · y1,L−1
...

...
. . .

...
yK−1,0 yK−1,1 · · · yK−1,L−1




y0,0 y0,1 · · · y0,L−1

y1,0 y1,1 · · · y1,L−1
...

...
. . .

...
yK−1,0 yK−1,1 · · · yK−1,L−1


H

=


R0,0 R0,1 · · · R0,L−1

R1,0 R1,1 · · · R1,L−1
...

...
. . .

...
RK−1,0 RK−1,1 · · · RK−1,L−1

 .

(14)

In order to perform the decomposition of the subspaces between signal and noise, singular
decomposition (SVD) is employed as follows [29]:

R = UΣUH, (15)

where Σ is a diagonal matrix based on K eigenvalues, that is, Σ = diag(λ1, λ2, ..., λK) where λk is the
kth eigenvalue of R. K eigenvalues are given as

λi =

{
ρi + σ2

n for i = 1, ..., M
σ2

n for i = M + 1, ..., K,
(16)

where ρi is the ith eigenvalue of the signal term, and σ2
n is the noise power. By separating the signal

and noise terms, Equation (15) is expressed as follows:

R = UΣUH = UMΣMUH
M︸ ︷︷ ︸

signal term

+ σ2
nU−M︸ ︷︷ ︸

noise term

, (17)

where UM corresponds to the signal term, that is, UM = [u1, u2, ..., uM] and U−M corresponds
to the noise term, that is, U−M = [uM+1, uM+2, ..., uK]. Then, the range of angle is uniformly
partitioned within [−π/2, π/2] to a sample of Nθ . By employing the orthogonality between signal
and noise subspace matrices for Nθ candidates of the angle, the pseudospectrum denoted by PMUSIC is
calculated as

PMUSIC =
1

hH(θ)U−MUH
−Mh(θ)

. (18)

Figure 6 shows the power spectral density (PSD) of the FFT and MUSIC algorithm with
SNR = 10 dB and [θ1, θ2] = [−5◦, 5◦] in order to confirm the performance due to the distance between
array d and number of arrays K. In Figure 6a, K was set to 12 and d = λ/2. In this case, both FFT
and the MUSIC algorithm detected two angles because K was large enough to distinguish two angles.
Meanwhile, in Figure 6b, K was reduced by half compared to the previous case, that is, K = 6 and
d = λ/2. As a result, the FFT was not able to distinguish the two angles. This implies that the FFT
detected as if there was only one target when the number of arrays was insufficient despite there
being two targets. On the other hand, the MUSIC algorithm distinguished the two angles due to
characteristics of its super resolution. In Figure 6c, distance between adjacent arrays d was set to be
twice that in Figure 6b, that is, K = 6 and d = λ. As a result, in the case of FFT, the two angles were
distinguished although the error of the angle-detection result slightly increased. In the case of the
MUSIC algorithm, the estimation result became sharper compared to that in Figure 6b. Due to FOV
reduction, there was ambiguity of the detection results at −70◦ and 70◦.
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Figure 6. Power spectral density of multiple-single classifier (MUSIC) and fast Fourier transform (FFT)
with d = λ/2 and d = λ.

4. Proposed Low-Complexity MUSIC Algorithm

This section describes the proposed low-complexity MUSIC algorithm based on coarse angle
estimation by FFT. Figure 7 illustrates the structure of the proposed algorithm. As shown in
Figure 7, the proposed algorithm performs the FFT on y in order to coarsely estimate the target angle.
The estimated angle is denoted by θ̂FFT, and θ̂FFT was compared to the threshold angle. The threshold
angle is denoted by θthreshold, and it was calculated as follows:

θthreshold = θFOV,1 − θ∆

= 30◦ − θ∆. (19)

In the case of θ̂FFT < θthreshold, since the target existed within 30◦, the proposed algorithm achieved
similar performance, even when employing d = λ instead of d = λ/2. This implies that the MUSIC
algorithm was run on only half the RX signal instead of the entire RX signal. The MUSIC input matrix
is denoted by Ỹ and it was calculated as follows:

Ỹ = Yodd + Yeven, (20)

where Yodd and Yeven are odd and even K/2 RX signals, respectively, that is, Yodd is the composed
of the 2k − 1th row of Y for k = 1, 2, ..., K/2 and Yeven is the composed of the 2kth row of Y for
k = 1, 2, ..., K/2. Then, in order to increase the signal-to-noise ratio (SNR), Yodd and Yeven were
summed. On the other hand, in the case of θ̂FFT ≥ θthreshold, the conventional MUSIC algorithm
was run, that is, Ỹ was set to Y because K RX signals were employed as in the conventional MUSIC
algorithm. Figure 8 shows a snapshot of the PSD of the MUSIC algorithm according to kinds of input in
order to observe the SNR improvement of the proposed algorithm compared to odd and even signals.
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In Figure 8, the distance between minimal and maximal values means the SNR. The minimal
value of each PSD means noise power because the maximal value of each PSD was normalized to 1.
From these results, it could be expected that the proposed algorithm achieved SNR improvement
compared to odd and even signals.
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Figure 7. Structure of proposed algorithm.
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Figure 8. Snapshot of PSD of MUSIC algorithm according to input.

Figure 9 shows the average of the distance between the minimal and maximal values according to
the SNR with K = 6 in order to observe the SNR improvement of the proposed algorithm compared to
the cases of Yodd and Yeven. In Figure 9, this implies that the SNR increased as the distance between
minimal and maximal values was large. By normalizing the PSD with the maximal value, the peak
value became 1, and the minimal value became the noise power. From these results, it can be observed
that the proposed algorithm achieved a 3 dB SNR gain by simply merging the odd and even signals.
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Figure 9. Distance between minimal and maximal values according to signal-to-noise ratio (SNR) with
K = 6.

In conclusion, the difference between the proposed and the conventional MUSIC algorithms is
as follows—first, in the proposed algorithm, it determines whether targets exist or not within the
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considered FOV range and reduces the number of inputs of the MUSIC algorithm. By doing so,
the proposed algorithm reduces the overall complexity by eliminating unnecessary complexity while
achieving performance similar to the conventional MUSIC algorithm. In the case when targets do not
exist within the considered FOV, the proposed and the conventional MUSIC algorithms are the same.
However, the complexity reduction effect by the proposed algorithm is drastic since the FOV is set
narrow in the vital radar applications and it will be shown by simulations in the Section 5.

5. Simulation Results

This section introduces the simulation results in order to confirm the performance improvement
of the proposed algorithm. First, we illustrate the performance evaluation. Then, we compare the
computational complexity between the conventional and the proposed MUSIC algorithms.

5.1. Performance Evaluation

In order to compare the performance evaluation of each algorithm, the root-mean-square error
(RMSE) of DOA estimation was employed. Simulations were performed for a total 105 times. For all
simulations, the center frequency was set to 24 GHz, and the complex amplitude was independently
and randomly generated from uniform distribution. The RMSE was calculated as follows [20]:

RMSE =

√√√√ 1
M× 105

105

∑
i=1

M

∑
m=1

(θm − θ̂m)2. (21)

Figure 10 shows the RMSE according to the SNR with K = 12 and 6 and [θ1, θ2 = −9◦, 10◦]. From
Figure 10, it can be seen that the proposed algorithm achieved almost the same performance as that
of the conventional MUSIC algorithm, even though only half of the input was used compared to the
conventional algorithm. Meanwhile, it was confirmed that proposed algorithm achieved 3 dB SNR
improvement compared to cases using the same number of inputs, that is, Yodd and Yeven.
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Figure 10. Root-mean-square error (RMSE) according to SNR with K = 12 and 6.

5.2. Complexity Comparison

This section evaluates the computational complexity of the conventional and the proposed MUSIC
algorithms. In order to measure complexity, the required number of multiplications for the main
operations for MUSIC algorithm were employed. Table 1 shows the required number of multiplication
for the main operations for MUSIC algorithm, such as EVD and the generation of noise subspace.
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Table 1. Required number of multiplications of main operations for MUSIC algorithm [34].

Operation Equation Required Number of Multiplications

Generation of covariance matrix R YYH LK(K+1)
2

SVD calculation UΣUH 16
5 K3

Noise-subspace generation U−MUH
−M

K(K+1)(K−M)
2

Pseudospectrum calculation PMUSIC
1

hH(θ)U−MUH
−Mh(θ) NθK(K + 1)

In the case of the conventional MUSIC algorithm, angle detections are performed regardless
of target FOV. Hence, the required number of multiplications of conventional MUSIC algorithm
Cconventional is as follows:

Cconventional =
LK(K + 1)

2
+

16
5

K3 +
K(K−M)(K + 1)

2
. (22)

On the other hand, the proposed algorithm performed FFT in order to determine whether the
angle of target is smaller than θthreshold. Then, in the case of θ̂FFT ≥ θthreshold, K is reduced to K/2.
Otherwise, the complexity of the proposed algorithm is the same as that of the conventional MUSIC
algorithm. Hence, the required number of multiplications of proposed algorithm Cproposed is as follows:

Cproposed =
NA
2

log2 NA + (1− pr)Cconventional + pr

(
LK(K + 2)

8
+

2
5

K3 +
K(K + 2)(K− 2M)

8

)
=

NA
2

log2 NA + Cconventional −
pr

40
K(10K + 10L + 127K2 + 15KL− 10KM), (23)

where pr is the probability that a target exists within θthreshold, and NA is the FFT size for angle detection.
Figure 11 shows the required number of multiplications for several conditions. Various parameters

were set to check the effect of each parameter on the complexity. Figure 11a shows the required number
of multiplications according to pr. As shown in Figure 11a, the number of arrays K is considered to
4 and 8. The total number of chirp symbols L, the number of targets M, and the size of the FFT for
angle estimation NA were set to 32, 2, and 64, respectively. In the case of pr = 0, the complexity of the
conventional and proposed algorithms was almost the same. On the other hand, the computational
complexity of the proposed algorithm drastically decreased as pr increased to 1. Especially in the
case of pr = 0.5, it can be seen that complexity was reduced by almost half compared to that of the
conventional MUSIC algorithm. In the case of pr = 1, the proposed algorithm achieved six times lower
complexity than that of the conventional MUSIC algorithms. Figure 11b shows the required number of
multiplications according to number of arrays K. The parameters for simulations, L is set to 32 and 128
and M, pr, and NA were set to 2, 0.5, and 64, respectively. From Figure 11b, it can be observed that the
proposed algorithm achieved 42.4% complexity reduction on average compared to the conventional
MUSIC algorithm. Similarly, Figure 11c shows the required number of multiplications according to
number of chirps L. The parameters for simulations, K, M, pr, and NA were set to 12, 2, 0.5, and 64,
respectively. In this case, the proposed algorithm achieved 41.0% complexity reduction on average
compared to that of the conventional MUSIC algorithm. In conclusion, from these results, it can be
observed that as L and K increase, the complexity also increases but L and K do not affect the tendency
of increase of complexity. On the other hand, the pr is the dominant parameter in terms of increase of
the complexity. Meanwhile, the vital monitoring is performed near the radar, and the pr is almost 1
because the beam width of the considered radar system is 26 degrees [20,35]. Therefore, it is expected
that the complexity reduction effect by the proposed algorithm is significant.
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Figure 11. Comparison of complexity between conventional and proposed MUSIC algorithms for
several parameters.

6. Experiments

In order to confirm the effectiveness of the proposed algorithm in a practical environment,
we performed experiments inside an anechoic chamber, located at DGIST in Korea. This section
consists of two subsections. First, we introduce the experiment equipment and then illustrate the
experiment results.

6.1. Experiment Setup

For the experiment, we employed an FMCW radar system with fc = 24 GHz that had two TX
antennas and eight RX antennas, as shown in Reference [20]. Figure 12 shows a block diagram of
24 GHz FMCW radar employed in experiment. The front-end module (FEM) was composed of TX
and RX parts, as shown in Figure 12a,b. A microcontroller unit (MCU), frequency synthesizer with a
phase-locked loop (PLL), and a voltage-controlled oscillator (VCO) were included on the TX side, with
a maximal bandwidth of 2 GHz. The MCU chip controlled the frequency synthesizer with the PLL.
Lastly, the output of the VCO was connected to the two TX antennas through a power amplifier (PA).
RX signals through the eight antennas were improved and mixed by a low-noise-amplifier (LNA)
mixer. Then, the beat signals were obtained through a high-pass filter, amplifier (AMP), variable gain
amplifier (VGA), and low-pass filter.
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Figure 12. Block diagram of front-end module (FEM) and its real photograph.

Figure 13 shows the back-end-module (BEM) system used in the experiment [20]. As shown in
Figure 13, the BEM included a field programmable gate array (FPGA) and digital-signal processing
(DSP). The two 2 GB DDR2 SDRAMs were external memories of the DSP, providing a total of
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512 Mbytes of data-storage space. The analog signal was converted to digital data with 20 MHz
sampling rate through the ADC. The external memory was filled; then, data were transferred to the
computer through the local-area-network (LAN) port.

Figure 13. Back-end module (BEM).

Figure 14 shows the experiment environment. As shown in Figure 14, two persons were positioned
and stopped at the same and different distances from the radar. The reason for considering the stop
targets is that the Doppler due to movement of target is dominant than the Doppler caused by the
respiration signal. In order to reduce negative effects due to undesired reflected signals, an anechoic
absorber was installed behind the targets. The duration of the chirp (ramp) T was set to 400 µs,
bandwidth B was set to 1 GHz, and sampling frequency fs is set to 5 MHz. The number of chirps
per one frame L was set to 256, the number of targets M was set to 2, the number of arrays K was set
to 8, and the number of total frames was set to 64. For DOA estimation, NA is set to 64. Therefore,
the range resolution is determined to 0.15 m, that is, range resolution is calculated as 4R = c/2B
where c is the velocity of radiation. For the range estimation, the size of FFT is denoted by NR and it is
set to 2048 and thus the size of one range bin is calculated as 0.1465 m, that is,4Rb = cT fs/2BNR =
0.1465. The Doppler resolution4D is calculated as 3.6 b/m, that is,4D = 60c/2LT fc. The range and
Doppler resolutions affect the error margin of the result of parameter estimation.Through FEM, the RF
signal was transmitted and received. Through the BEM, the ADC signal was obtained and restored.
On a personal computer (PC), the conventional and proposed algorithms employed the restored signal
from the BEM.

Figure 14. Experiment environment.

6.2. Experiment Results

This section addresses the experiment results to confirm the improvement by the proposed
algorithm. Figure 15 shows the experiment results of range detection from multiple channels.
Figure 15a–c shows the PSD according to the range-bin index before clutter suppression. On the
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other hand, Figure 15d–f shows the PSD according to the range-bin index after clutter suppression.
From these figures, it can be observed that the severe clutter terms were removed. Figure 15d–f shows
that the PSD peak was detected at the 20th range-bin index. On the basis of this index, the range
was estimated.
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Figure 15. Experiment results of range detection from multiple channels. (a) Before clutter suppression
with Ch. 1; (b) after clutter suppression (Ch. 1); (c) before clutter suppression (Ch. 2); (d) after clutter
suppression (Ch. 2); (e) before clutter suppression (Ch. 5); (f) after clutter suppression (Ch. 5).

Figure 16 shows the experiment results of respiration rate and range detection for two persons.
The focus of this paper is the estimation of DOA of targets but these results are shown as an intermediate
process for DOA estimation. As shown in Figure 14, two persons are considered and they were set
to be located at the same range. Figure 16a shows two persons at a distance of 2.5 m from radar and
Figure 16b shows a case at 3 m. In Figure 16a, it can be observed that two targets corresponding to
60 and 110 b/m of respiration were detected at the 2.5 m region. In the same manner, in Figure 16b,
it can be seen that two targets corresponding to 60 and 100 b/m of respiration were detected at the
3 m region.
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Figure 16. Experiment results of respiration rate and range detection.

Figure 17 shows the experiment results of FFT, and the conventional and the proposed MUSIC
algorithms. From the FFT result, it can be seen that FFT was not able to estimate two targets due to its
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lack of resolution. On the other hand, the conventional and the proposed MUSIC algorithms could
distinguish two adjacent targets. It can especially be observed that the proposed algorithm achieved
the estimation of two adjacent targets as in the conventional algorithm, although the complexity of the
proposed algorithm was significantly reduced.
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Figure 17. Experimental results of FFT, conventional, and proposed MUSIC algorithms.

7. Conclusions

We proposed a low-complexity MUSIC-based DOA detection algorithm for an FMCW vital radar.
The proposed algorithm employed the characteristics that the distance between adjacent arrays has
trade-offs between FOV and resolution performance. The proposed algorithm reduced computational
complexity by decreasing the number of inputs of the MUSIC algorithm when the estimated DOA was
within 30◦. As the simulation and experiment results showed, the proposed algorithm achieved similar
performance to that of the conventional MUSIC algorithm while reducing computational complexity.
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