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Tactile Avatar: Tactile Sensing System Mimicking Human
Tactile Cognition
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Cheil Moon, Ji-Woong Choi,* and Jae Eun Jang*

As a surrogate for human tactile cognition, an artificial tactile perception and
cognition system are proposed to produce smooth/soft and rough tactile
sensations by its user’s tactile feeling; and named this system as “tactile
avatar”. A piezoelectric tactile sensor is developed to record dynamically
various physical information such as pressure, temperature, hardness, sliding
velocity, and surface topography. For artificial tactile cognition, the tactile
feeling of humans to various tactile materials ranging from smooth/soft to
rough are assessed and found variation among participants. Because tactile
responses vary among humans, a deep learning structure is designed to allow
personalization through training based on individualized histograms of
human tactile cognition and recording physical tactile information. The
decision error in each avatar system is less than 2% when 42 materials are
used to measure the tactile data with 100 trials for each material under 1.2N
of contact force with 4cm s−1 of sliding velocity. As a tactile avatar, the
machine categorizes newly experienced materials based on the tactile
knowledge obtained from training data. The tactile sensation showed a high
correlation with the specific user’s tendency. This approach can be applied to
electronic devices with tactile emotional exchange capabilities, as well as
advanced digital experiences.
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1. Introduction

Digital experiences based on the five hu-
man senses have improved with advance-
ments in electrical devices and signal
processing.[1] For example, virtual reality
(VR) provides visual and auditory sensa-
tions, and more personalized services can
be supplied by augmented reality (AR),
which delivers 3D spatial images and stereo
sound.[2,3] Digital experiences are used in
many fields, including entertainment and
internet marketing.[4,5] Furthermore, these
technologies are evolved in an attempt to
exchange emotions between humans and
machines. For a more immersive digi-
tal experience, sensing and delivering tac-
tile information is necessary, where touch-
ing an object by hands is distinct from
seeing and hearing. Therefore, consider-
able attention has been paid to technolo-
gies that provide tactile information, and
various tactile sensors and actuators have
been proposed and developed.[6–18] How-
ever, unlike for vision and hearing, an ar-
tificial tactile or haptic system is limited

in its ability to directly transfer physical values to humans or ma-
chines because of difficulties in generating tactile feelings.

Tactile sensation plays important role in our interactions
with the external world, from both physical and emotional
perspectives.[19] On touching or sliding the fingers across an
object, individuals may describe the tactile emotional sensation
as “soft,” “hard,” “smooth,” “rough,” or even “painful”.[20] Tactile
receptors in human skin measure a unique feature of a tactile
object, such as hardness, pressure, temperature, friction, or
vibration.[21,22] Despite much information obtained by various
receptors, the principal components of the tactile sensations
experienced by humans can be described mainly as hardness,
surface topography, and temperature.[23] Therefore, an artificial
sensor system detecting these parameters is required and the
multimodal sensor system must obtain the same amount of
physical information as a human does.[24–27] It is also important
to consider the characteristics of human tactile perception as a
standard for the development of an artificial tactile system.[28,29]

So, several studies have conducted tactile experiments in humans
to reveal human tactile perception.[30–32] The material classifica-
tion by tactile cognition has been studied to resemble the human
brain processing.[33–36] The material classification ability of these
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systems, based on texture detection, has become similar to those
of humans.[37] Recently, deep learning has been employed in
this field, especially to differentiate various types of materials,
and it has improved the accuracy of material classification.[38–40]

Even, it was reported that the high classification performance
of deep learning between two materials could be better than
that of human tactile sensation.[41] For using 117 textures, they
maintained the performance of over 95.4%. In our previous
study, we also conducted the research about the classification
accuracy according to the number of active sensing cells.[42]

These researches related to sensing and classification of surface
materials were useful to develop various haptic applications
delivering the physical information to humans because the sur-
face characteristics should be well recognized in advance.[43–45]

However, these tactile material classifications do not represent
the overall tactile sensation of human. Because the processing
of tactile feeling by the human brain has not yet been revealed
clearly and tactile responses vary among humans, it is chal-
lenging to imitate the tactile sensation by an artificial system.
Furthermore, because there are too many texture materials over
the world, the limit of the previous classification method is
clear. Therefore, like human tactile sensation, it is necessary to
develop the tactile system deciding untrained surface materials
based on trained data and generating a tactile feeling.

Herein, we report an artificial tactile system that can generate
“smooth/soft” and “rough” tactile sensations in accordance with
the user’s tactile feeling, which we call a “tactile avatar”. Our
tactile system has mimicked the psychological tactile feeling of
the human based on a piezoelectric sensor system and deep
learning process. First, we developed multiarray tactile sensors,
with the same tactile resolution as that of the tactile receptors on
human skin, to measure the principal physical components, that
is, hardness, surface topography, and temperature[46] required
for the deep learning process. A piezoelectric sensor was used
because of its advantages of self-power generation, dynamic
sensing, and temperature sensing abilities,[47–49] similar to those
of human skin receptors.[50] Simple and intuitive analysis of the
measured signal was performed before devising a deep learning
network to investigate the surface information. The deep learn-
ing network was designed considering the cognitive processing
of independent tactile features engaged by humans. Specifically,
unlike other researches, we noted individual variation in scores
assigned to materials in a tactile cognition experiment, in which
the network was trained using the tactile histograms of individ-
ual participants. The human-like sensor and processing system
contributed to the artificial tactile cognition system of the tactile
avatar. We analyzed the performance of the tactile avatar in
terms of its tactile decision-making. Additionally, we assessed its
categorization performance for untrained, that is, novel, tactile
materials.

2. Results and Discussion

2.1. Tactile Avatar Designed to Exhibit Human-Like Tactile
Classification Performance

The human tactile system is complex,[23] and the tactile informa-
tion processing engaged in by humans has not yet been clarified
in detail. Although it is not possible to fully model the sensing

mechanism of the human tactile system, or process tactile feel-
ings as accurate as a human using artificial means, fortunately,
some principal physical components (i.e., hardness, surface to-
pography, friction, and temperature) can adequately represent
the fundamental mechanism of the human tactile system, and
deep learning can be used to model the human neural network
processes.[39,40] Some approaches have optimized the discrimina-
tion of tactile materials using artificial sensors; however, this does
not mean that they are optimal for mimicking human cognition,
because it pertains to distinguishing among tactile sensations.
To represent this human tactile cognition, we designed a tac-
tile avatar that includes a multiarray tactile sensor and a human
cognition-based deep learning network (Figure 1). Moreover, for
personalization, the tactile system was trained using individual
tactile decision histograms. Figure 1 illustrates the mimicking by
the avatar, of the tactile decisions made by its human counterpart,
even for novel tactile materials.

To mimic the human tactile system, the cognitive processing
part of the tactile avatar was based on deep learning networks.
The first step in the process was to obtain the baseline signal aris-
ing from the touching and sliding processes in the parallel input
layer in Figure 1. The multiarray sensors were made of piezoelec-
tric materials having a high spatial resolution. The tactile sensor-
generated signals on the hardness, temperature, and surface to-
pography of the tactile materials during sequential touching and
sliding motions, similar to those made by humans on the surface
of a tactile material. Although friction is an important parameter
for tactile sensation because it shows a high correlation with sur-
face topography,[51] we do not consider it as a major parameter in
the deep learning process. The details of the fabrication and mea-
surement process by the tactile sensor were demonstrated in the
Experimental section and Figure S1, Supporting Information.

The slope of the touch signal and oscillation frequency of the
sliding signal contained information regarding the hardness and
surface topography of the materials, respectively. To discriminate
the tactile materials based on the signal arising from the devel-
oped sensors, a decision processing system was built for the tac-
tile avatar using a combination of neural network layers, to em-
phasize certain features and allow for sample classification. The
two different types of input data, that is, touching and sliding
data, were processed separately in the hidden layer. To measure
the slope of the touch signal, a 1D convolutional layer with a ker-
nel size of four was used to capture the signal, which was then
down-sampled by the max pooling layer (because the peak touch
signal in the time domain provided hardness information for the
tactile sample). In parallel, the sliding signal was converted to the
frequency domain by Fourier transform, because the surface to-
pography was represented by frequency components.[41,52,53] Two
fully connected layers after Fourier transform were designed to
allow more classification computations pertaining to the sliding
signal to be added to the network, because the differences of the
sliding signal in tactile samples are based on a complex combi-
nation of frequency components. The two processed tactile sig-
nals were combined and exposed to the two fully connected lay-
ers for complex discrimination in the hyper dimension, before
being terminated with a SoftMax kernel. Note that the samples
in the output layer were sorted from ‘smooth/soft’ to ‘rough’.
Unlike typical supervised learning networks that label candi-
dates from a predefined list, the last layer of our network used a
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Figure 1. Tactile avatar system trained using the tactile decisions made by its human counterpart, capable of making tactile decisions similar to a human.

histogram of tactile decisions made by a human participant. The
last layer of the network used the histogram to assign multiple la-
bels with different weights that reflected human tactile cognition.
This improves the tactile learning capabilities of the machine
because the potential combinations of weighted labels are un-
limited. The personalized tactile avatar was characterized based
on the scores assigned to tactile materials, which were ranked
from the smoothest/softest to the roughest. The tactile avatar was
trained using the tactile decision data of a human participant, so
that it could make tactile decisions similar to those of that partic-
ipant. The avatar could find applications in various fields such as
online shopping, and VR and AR environments, that is, when-
ever tactile sensations may be desirable. Additionally, if trained
using the data of several individuals, an artificial skin system can
resemble the general human tactile feeling.

2.2. Tactile Decision-Making by Humans

In this study, to design a human-like tactile system, 42 materials
were ranked from smoothest/softest to roughest by 10 partici-
pants. The samples were fabrics differing in surface morphology,
thickness, and other characteristics (Figure S1e, Supporting In-
formation). For the diversity of base materials, these were
selected from a large library of general materials used in cloth-

ing, making them difficult to distinguish by humans. Especially,
we considered cloths as tactile materials that represent softness
and roughness the best among categories of LMT Haptic Texture
Database.[54] The participants were free to touch and slide their
fingers (of both hands) over the tactile materials. They ranked
them from 1 to 42, with 1 being the smoothest/softest and 42
being the roughest. The test results of all the participants were
averaged, and the tactile materials were ordered accordingly
(reference order). Figure 2a shows a histogram for each tactile
sample, where the color corresponds to the number of hits on
the score. Figure 2b shows the tactile decision root-mean-square
error (RMSE) between the reference values, which is calculated
based on the mean decision of all participants for each material,
and that of each participant (for more details, see Experimental
Section). The participants ranked the samples differently, reflect-
ing differences in tactile decision-making. Seven participants
made similar tactile decisions, that is, had tactile decision RMSE
values lower than the averaged tactile decision RMSE (horizontal
dashed line in Figure 2b); the remaining three participants had
RMSE values that were higher than the averaged tactile decision
RMSE. This indicates that human judgments are not consistent
for ranking samples according to their tactile qualities. The par-
ticipants in groups S and D made similar and dissimilar tactile
decisions respectively, according to their tactile decision RMSE
values relative to that of the average tactile decision (Figure 2b);
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Figure 2. Human tactile decisions for 42 tactile samples. a) Averaged histogram of the tactile decisions of 10 participants; (a)-1 and (a)-2 are the
graphical representations in 2D and 3D, respectively. b) Tactile decision difference (mean RMSE), that is, difference between the average decisions of
each subject. Dashed horizontal line, which indicates the average of tactile decision RMSE divides the S (lower) and D (upper) groups. c) Tactile decision
standard deviation values for the S (red, n = 7) and D (blue, n = 3) groups. Dots and shadows correspond to the group mean and variance, respectively.
d) Example tactile decisions of the four participants identified in (b).

participants with tactile decision RMSE values lower than the
average tactile decision belonged to group S, whereas those with
tactile decision RMSE values higher than that of the average
tactile decision belonged to group D.

In addition to the tactile decision between humans, tactile con-
fusion, which indicates the sensitivity of a human in sorting ma-
terials from No. 1 to No. 42 samples, is a critical individual feature
of tactile decision. Figure 2c illustrates that the participants ex-
hibited more tactile decision variance in the middle materials (in
terms of rank; i.e., samples 11–30, shaded orange in Figure 2c)
compared with side tactile materials (samples 1–10 and 31–42;
shaded green in Figure 2c). Participants in group S had a smaller
variance in trials, representing less tactile decision standard than
those in group D. This implies that humans have different sensi-
tivities for tactile materials. Because the tactile materials are not

uniformly selected by considering the quantitative difference in
the physical structure between materials, the middle materials
may have a smaller physical difference than the side materials.
This could result in tactile confusion difference with respect to
materials and individuals.

To compare individual differences in tactile decisions in detail,
a colored decision matrix was created, including the participants
with the lowest (participant S1), largest (participant D2), and
intermediate tactile decision RMSE values (participants S2 and
D1) in Figure 2d. The averaged decision matrix (Figure 2a)
was similar to that of participant S1, who had the smallest
variance in tactile decisions (Figure 2d). Overall, the clearest
decisions (smallest variances) were seen for samples with low
scores (soft tactile sensation) or high scores (rough tactile sen-
sation). The middle materials showed a wider distribution in
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Figure 3. Information obtained from rubbing and touching the materials. a,c) Surface images of sample No. 2 and No. 38, respectively. b,d) Measured
piezoelectric voltage by rubbing sample No. 2 and No. 38, respectively. e) Hardness level of 42 samples measured by commercialized durometer. f)
Piezoelectric slope plotted using information obtained by touching hard or soft materials. g) Comparison of the first slope of piezoelectric voltage and
measured hardness by durometer with increasing material hardness.

scores, indicating greater decision confusion. The histograms
of participants S2, D1, and D2 indicated clear decisions for the
low- and high-scoring materials, and decision confusion for
the middle samples. Note that the scoring patterns for S2, D1,
and D2 do not match the reference (averaged decision matrix
in Figure 2a); each participant had their own unique response
pattern. Therefore, to mimic human tactile cognition, a unique
tactile system should be supported individually.

2.3. Artificial Sensor Systems for the Deep Learning Process

The multiarray tactile sensors to measure the surface informa-
tion were made using piezoelectric materials. The details of the
fabrication process were mentioned in the Experimental Section
and the basic characteristics of our tactile sensor are shown in
Figure S2, Supporting Information. A machine-learning algo-
rithm was applied to produce artificial tactile feeling among 42
test tactile materials. In this study, the touching and sliding sig-
nals were used in the analysis of surface information. The rela-

tionship between the characteristics of the material and the mea-
sured piezoelectric signal during sliding across a tactile material
was investigated. The pattern width was obtained from the slid-
ing signal. Figure 3a,c shows the surface images of two different
fabrics (No. 2 and No. 38). The fabric in (a) has a specific pat-
tern, shown clearly in the inset. The pitch pattern of (a) along
the sliding direction is about 400 µm. When the tactile sensing
system slid across the surface of (a), complex piezoelectric sig-
nals were obtained (Figure 3b). The time interval between the
measured piezoelectric signals was approximately 0.01 s (Fig-
ure 3b—right). The surface pattern pitch can be calculated by
multiplying the velocity by the time interval. Because a slid-
ing velocity of 4 cm s−1 was calculated by signals and the de-
sign factors of the sensor, the pitch of sample No. 2 was about
400 µm (4 cm s−1 × 0.01 s). The surface of sample No. 38 has
a check pattern: the width of 5 pitches was 2 cm and the cal-
culated value (1.92 cm) was almost identical to the actual value.
The surface was easily deformed by shear and normal forces due
to the softness of the fabric which caused the small difference
(0.08 cm).
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Figure 4. Deep learning for tactile decision-making. a) Histogram of human tactile cognition. b) Tactile histogram of the machine trained using labels.
c) Output layer of the proposed histogram-based network for the 42 tactile materials with textures ranging from smooth/soft (bottom) to rough (top).
d) Classification accuracy according to the tolerance bounds.

The hardness of a material, which is one of the major physi-
cal parameters informing the deep learning process in this study,
can be easily measured for the touch data. The hardness of a fab-
ric material was measured using a commercial durometer. The
values for the 42 materials were categorized into five: 1: 20–40, 2:
41–50, 3: 51–60, 4: 61–70, and 5: 71–90 (Figure 3e). The hardness
of fabric was determined based on the piezoelectric signals. The
slope of the generated piezoelectric signal differed with the hard-
ness level; the slope of the signal in the touched state is shown
in Figure 3f. The durometer values of samples No. 2 and No. 38
were 85.1 and 24.9, respectively. Under the same test conditions,
the harder the material, the steeper was the initial slope of the
generated piezoelectric signal. The slope of the measured signal
in Figure 3f shows that the hardness of fabric No. 2 was larger
than that of sample No. 38, consistent with their durometer val-
ues. The measured piezoelectric slopes and durometer hardness
are compared in Figure 3g. The analysis revealed that the initial
slope was proportional to the durometer hardness of the fabric.
Therefore, a relative hardness value can be obtained by the piezo-
electric signals during the touching motion of the tactile sensor.

2.4. Deep Learning-Based Tactile Machine for Tactile
Discrimination

Based on the piezoelectric signals measured by touching and slid-
ing the materials, the tactile decision system was designed by us-

ing a combination of neural network layers as shown in Figure 1.
In this system, each parallel network was designed for extract-
ing specific features and complex classification processing. The
overall network was designed to mimic the cognitive processes
engaged in by humans for tactile classification based on numer-
ous types of tactile receptors.[50] The end layer of the network is
important when a machine is being trained with data, because
it greatly affects the weight adjustment between networks. The
fully connected layers were designed to be shrunk, to abstract the
information and to allow the sample rank order based on human
decisions to be reported.

The typical method for training a neural network involves us-
ing labels that correspond to only one activated node among
many nodes representing the trained tactile samples in the out-
put layer. This approach has been widely adopted by artificial sen-
sors to classify tactile materials. During the training process, our
network was optimized to pick the correct tactile sample from
among all the trained samples. To test the supervised learning
based on labels, we trained the machine using the averaged tac-
tile decisions as labels. The classification results are shown in
the histogram in Figure 4b by colored spots, which fall mostly
along the diagonal. This indicates that the machine was trained
successfully; it tended to pick the correct samples, that is, those
along the diagonal. The machine did not exhibit decision confu-
sion, which was observed in the human participants. Whereas
the machine trained by labels made focused decisions on trained
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labels, the human participants did not make absolute (i.e., con-
sistent) tactile decisions over multiple trials (Figure 4b), showing
tactile confusion over a wide area. The decision pattern difference
between humans and the machine is that the machine trained
by labels makes incorrect judgments having scattered decisions
far from the trained label, whereas humans make incorrect judg-
ments on nearby materials.

2.5. Probabilistic Tactile Decisions Made by the Machine Trained
Using the Human Tactile Decision Histogram

In this study, we propose a new approach to train a machine to
make tactile decisions, based on a human tactile decision his-
togram. The nodes in the output layer represent the rank or-
der of the tactile samples. To train the machine, we mapped the
human tactile decision histogram to the output nodes. The his-
togram contains information regarding the averaged tactile deci-
sions of the humans and the decision confusion, that is, variance
in tactile decisions. Because the output nodes were sorted from
smooth/soft to rough and were mapped using a histogram that
had non-zero values for multiple nodes, training on the relation-
ships among tactile materials was possible.

We observed that the pattern of activation in the output nodes
(Figure 4c) corresponded to the human tactile histogram (Fig-
ure 4a). The activation of the output nodes represents the tactile
decisions (Figure 4b). Note that the output nodes were sorted in
order from smooth/soft to rough, so that the activation pattern
of the nodes represents the probability distribution of the tactile
decisions. These probabilistic tactile decisions can be considered
as trained tactile judgments made by the machine, because it was
trained using the human tactile cognition histogram.

However, training the machine using only the histogram did
not allow it to make definitive tactile decisions, because the out-
put layer representing the tactile decisions included only the
probability data for the 42 nodes. To enable a tactile decision to be
made, an additional decision-making ability was required prior to
the output layer (Figure 1), based on Equation (1):

Expected decision = Round (tactile score × node activation level)

(1)

Additionally, to calculate the classification performance with
consideration of decision confusion, the classification bound was
adjusted by the tolerance level. Based on the mean score for each
tactile sample according to the human histograms, the tolerance
level was set as small or large. For example, a tolerance level of
2 allowed a distance of less than or equal to two ranks between
the expected decision and the mean of human tactile decision,
otherwise known as the classification error (Figure 1).

High classification accuracy is important for a machine to
closely mimic human tactile cognition. Using supervised learn-
ing and training the machine with the human tactile histograms,
it was possible to achieve human-like tactile decisions. Based on
the classification performance according to the tolerance level
(Figure 4d), the machine trained on the human tactile histograms
behaved similarly to humans. For the conventional classification
which have a softmax with categorically labeled output makes the
decision based on maximum likelihood; it takes the node having

the highest value (maximum likelihood) in the output nodes as
the decision.[55] It is specialized for a classification to select one
among the multiple candidates. However, since the target value
(human decision histogram) in this study is not a unique value
but a random variable which can be explained by probability dis-
tribution following Gaussian shape (see Figure 2a) and the output
of the network is treated as the probability distribution, expected
decision (Equation (1)) was applied to have one unique decision
in both human decision and the proposed avatar system for the
classification performance evaluation, especially for the accuracy.

Deep learning is used for various classification problems,
including tactile classification.[38–40] Various neural network
structures have been proposed based on supervised learning
with labels. The objective of those studies was to achieve higher
classification accuracy. In this study, we did not focus on higher
classification accuracy on a specific label, but on mimicking
human tactile decision-making. The tactile cognition test results
of the individual participants (Figure 2d) showed that, distinct
from tactile decision-making per se, the tactile decisions of a
given individual were reflected in both the overall tactile sample
rankings and the degree of decision confusion (average tactile
decision and variance of tactile decision, respectively).

2.6. Ability of the Machine to Mimic the Tactile Decisions of a
Human Participant

We assessed whether the machine trained using human tactile
histograms could represent the overall variance of tactile decision
components for a given individual to make his/her tactile avatar.
We trained the machine using a tactile histogram for 10 partici-
pants. The machine was trained according to the tactile decisions
of each human participant (Figure 5a and Figure S4a, Supporting
Information), such that the decisions of the tactile avatar resem-
bled those of the corresponding participant. The decision prob-
ability density for participants S1 to D2 was represented in the
output layer of the neural network. Note that the individual his-
tograms for participants S1 to D2 were preserved in the output
layers (Figure 5b and Figure S4b, Supporting Information). The
tactile decision-making exclusive to individual participants was
preserved well (Figure 5c) and the machine could mimic decision
confusion, as reflected by the similar kurtosis values (Figure 5d).
Although the decision probability density of the tactile avatar (i.e.,
machine) indicated less clarity in decision-making (represented
by blurred areas in the figure) compared with the corresponding
human participant, it nevertheless resembled the human tactile
histogram. This indicates that the machine was able to learn the
tactile decisions of human participants. The results suggest that
the tactile avatars behaved similarly to the corresponding human
participants. Thus, the network was successful in mimicking hu-
man tactile sensing and processing, as reflected by the tactile his-
togram in the output layer.

2.7. Recognition of Untrained Tactile Materials by the Tactile
Avatar

All materials have tactile properties, and new tactile materials
continue to emerge; humans categorize new tactile materials
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Figure 5. Fully trained network developed to mimic the tactile decisions made by humans. a) human and b) artificial tactile decisions for the four
participants represented in Figure 4a. Analysis of the tactile decision similarity between the machine and human participants, based on c) mean and d)
kurtosis values. Data for trained are presented as the mean ± Standard deviation.

based on prior experience. Using the typical supervised learning
approach with labels, new tactile samples first need to be trained
before they can be classified. However, it is inefficient and incon-
venient to train every new tactile sample. The tactile avatar in this
study was trained using human tactile decision histograms, con-
sidering both sensing and processing. In this manner, the avatar
was able to make tactile decisions regarding untrained tactile
samples. The tactile prediction performance for untrained tactile
materials is illustrated in Figure S5b, Supporting Information,
and discussed below.

We first measured the decision probability density of un-
trained tactile samples based on the level of activation of the out-
put nodes. The decision error was given by the mean tactile deci-

sion difference (mean RMSE) for the trained and untrained (pre-
dicted) cases. Furthermore, kurtosis was calculated as a proxy for
decision confusion. The tactile decisions of the machine were
less similar to those of the humans in the untrained versus
trained case, shown by the larger mean RMSE values for the hu-
man participants (Figure 6a). Interestingly, the mean RMSEs of
the middle samples had smaller errors than those of the mate-
rials with low or high ranks. Kurtosis was relatively low as well,
for the middle materials (Figure 6b). This implies that the pre-
diction of middle materials was more dependent on the trained
tactile data. The avatar could make tactile decisions based on
the signals arising from touching and sliding motions, and com-
pare the signals to those of the trained tactile materials. Middle
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Figure 6. Untrained predictions designed to mimic human tactile decisions. a) Tactile decision difference between human and his/her paired avatar
(H-A tactile decision RMSE) for side and middle materials. b) Evaluation of decision confusion for trained (blue) and untrained (predicted) (red) cases,
for side materials (materials 1–10 and 31–40) and middle materials (11–30). Data are presented as the mean ± SEM (side material; n = 22, mid. material;
n = 20). T-test were performed, and statistical significances are shown with an asterisk (*p < 0.05, **p < 0.005, ***p < 0.0001). c) Fitting error of the
human tactile cognition data with the machine predictions for the middle materials. Dots and shadows correspond to the group mean and variance (n
= 10), respectively. d) Classification accuracy by tolerance level.

samples were more similar than low- and high-scoring samples
(evidenced by overlapping histograms). Thus, a newly experi-
enced material could be compared to multiple trained materials.

A new tactile material can be classified based on the knowl-
edge gained from previously trained materials. Considering in-
dividual tactile histograms to represent tactile knowledge, lin-
early combined histograms of previously trained tactile samples
could provide a basis for processing new tactile experiences. Us-
ing this approach, we determined the degree of independence of
each tactile material. The linear combination of pretrained tac-
tile histograms that best fit the untrained tactile histogram was
determined, and the corresponding RMSE was calculated. The
difference in fit for both the low- and high-scoring samples ex-
ceeded that of the middle samples (Figure 6c). This is because
the middle samples were all relatively similar, whereas the high-
and low-scoring samples were more difficult for the machine to
understand because of their relative uniqueness. This indicates
that the tactile samples for which a clear ranking decision was
reached by a human participant were more difficult to predict. In
the experiment, it was impossible to include all the tactile mate-
rials experienced by humans in the real world. The limited tactile
experience gained by the avatar, especially for the low- and high-
ranked materials, could be enhanced by training it using more
materials, as per the actual experience of humans.

It is better to analyze the classification performance of the ma-
chine based on the middle materials because the ranks of these

materials were predicted according to the tactile knowledge of
trained data with relatively higher number of tactile materials
sharing the same rank score. We compared the prediction perfor-
mances of the machine and the humans. For the human predic-
tion test, the participants were asked to predict the material’s rank
score having 3 anchor materials (#1, #21, and #42) (for more de-
tails, see Experimental Section). Because the participants already
experienced the tactile materials, 1 year forgetting period was ap-
plied after the material rank-scoring test. Figure 6d plots the pre-
diction performance of the humans and the machine, which rises
and then saturates. Overall, the performance of the human ex-
ceeded that of the machine. The tolerance difference to achieve
the same accuracy was less than 4 tolerance level error, which
is 9.5% considering 42 materials. Finally, as shown in Figure
S6 and Movie S1, Supporting Information, based on the above-
mentioned signal processing and analysis, a tactile avatar system
mimicking the tactile sensation of a specific user was developed.
In a real-time purpose, since the feedforwarding in the system
for a real-time use takes 0.9 ms in a GPU (NVIDIA Geforce GTX
1070 with Intel i7-6700K) and 1.1 ms in a CPU (Intel i7-6700K)
processor respectively after taking sensing signal, it is feasible
that it can be performed as a real-time system, having millisec-
ond delay. Since neuromorphic system mimics neural network
in a chip,[56,57] this tactile avatar system on a neuromorphic sys-
tem can reduce the time delay of the computation and minimize
the size of the machine to perform in the realization.
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3. Conclusion

The importance of digital applications will continue to increase,
and tactile systems representing the interaction of hands with
objects will become important. In this study, we developed a tac-
tile avatar system, including a multiarray tactile sensor fabricated
from piezoelectric materials, and a deep learning process based
on human tactile cognition. The multiarray sensor had the same
resolution as the tactile receptors on human skin. Prior to a com-
plex signal processing process, parameters by sliding the mate-
rials and the material hardness were obtained directly from the
measured electrical signal. However, it is challenging to obtain all
surface information via a simple analysis. Therefore, we adopted
a systematic approach to mimic human tactile cognition and thus
enabled the tactile avatar to behave similarly to a human. In our
system, the principal tactile components experienced by humans,
that is, hardness and roughness, were processed by separable net-
work layers that were designed for different functions; the net-
work was trained using human tactile decision histograms. Even
in the difficult case of predicting the rank of a previously unex-
perienced tactile sample, the developed tactile avatar system per-
formed similarly to a human with the knowledge gained from
previous experience. Future research should improve the ability
of the tactile avatar to process tactile information, which will in
turn allow machines to replace humans in virtual (i.e., VR and
AR) spaces, such as online shopping malls.

4. Experimental Section
Fabrication of Tactile Sensor Based on P(VDF-TrFE): The fabrication pro-

cess of the P(VDF-TrFE)-based tactile sensor was as follows. Polyimide film
was used as the substrate of the sensor. A 5 × 6 array was patterned on a
substrate by photolithography; the cell size was 1 × 1 mm2. The data from
30 sensing cells was enough for superior deep learning results. A 100-nm-
thick Au layer and a 10-nm-thick Cr layer were deposited using a radio fre-
quency magnetron sputtering system. Next, a 5 × 6 bottom electrode array
of Au was obtained through a lift-off process. The P(VDF-TrFE) film was
synthesized by a simple fabrication process as follows. Powdered P(VDF-
TrFE) (75/25) was dissolved in 2-butanone to yield a 15 wt% P(VDF-TrFE)
solution. The mixture was stirred at 600 rpm without heating for 1 h to
dissolve the P(VDF-TrFE) powder. Once the mixture was dissolved com-
pletely, it was spin-coated on the fabricated sensor array to function as
the bottom electrode. Thermal annealing of P(VDF-TrFE) at 130 °C for 2 h
enabled beta-phase crystallization, thereby inducing piezoelectricity. The
annealed P(VDF-TrFE) was finally cooled to room temperature outside the
oven. The basic performance of the fabricated sensor is demonstrated in
Figure S2, Supporting Information.

The interference of triboelectric effect in the fabrication tactile sensor
was also considered. Generally, the triboelectric nanogenerator (TENG)
device using the normal force exploited the structure maintaining the nar-
row gap of the tactile sensor like the spacer, arc-shaped, or spring-assisted
separation structure.[58–60] If there were no gap, a very poor electrical out-
put performance was seen in TENG.[61] Therefore, in the tactile sensor,
there was no special structure making the gap for triboelectric effect and
tried to minimize the gap by sticking the top electrode on a bottom sub-
strate with UV glue.

Fabrication of the Dome Structure: Previously, special structures have
been applied to the sensor for transferring the shear force to the normal
force.[62–65] In this study, because the flat sensor could not interact with
the surface structure, a special dome cover was also used to detect the
surface information obtained by the shear force measurement. To fabri-
cate this structure, a mold was 3D-printed (ProJet 3500; 3D Systems, Rock
Hill, SC, USA) for the dome, with the radius and height of 1 and 0.5 mm,
respectively. The PDMS solution was produced by shaking the base oil

and hardener (10:1). Air bubbles produced by shaking were removed over
30 min in a vacuum desiccator. The solution was poured into the 3D mold
and left to harden for 12 h at 60 °C. The result of enhanced shear force
sensitivity was demonstrated in Figure S3, Supporting Information.

Measurement Setup for Base Piezoelectric Signal: The basic sensing per-
formance of the artificial tactile sensor was assessed using a digital oscil-
loscope and a low-noise current preamplifier (Model SR570; Stanford Re-
search Systems, Sunnyvale, CA, USA). The artificial tactile system measur-
ing the piezoelectric signal during rubbing consisted of a multi-source data
acquisition system (PXIe-5105; National Instruments, Austin, TX, USA)
because multi-channel sensing was required by the algorithm. The sam-
pling rate during the measurements was 1000 s−1. The calibration was
done to check some parameters such as deviation among cells or sensors
before getting experimental data for the learning process.

Setup for Signal Processing and Tactile Sensing: The artificial sensing
finger with touch and slide sensors was designed to resemble human tac-
tile sensing. The tactile sensing system consisted of a tactile sensor and a
3D-printed artificial finger with movement capabilities. The tactile sensor,
made from piezoelectric material, was combined with the artificial finger
(Figure S1d, Supporting Information) and equipment to enable movement
(Figure S1a,b, Supporting Information). The sensing process comprised
the touching, sliding, and release stages. Forty-two fabric samples were
used in this study (Figure S1e, Supporting Information), and the order
of presentation thereof depended on the degree of feeling (smooth/soft
to rough) reported by each participant. To collect surface information for
the fabric samples, the system touched and slid the sample materials. Af-
ter measuring the signal arising from the sensing system, the data were
transferred to the signal processing system. At this stage, the tactile feel-
ing level was determined, that is, smoother or less smooth relative to the
judgment of the human participant.

Human Tactile Cognition Test: Ten participants (three females and
seven males) of age 22–33 years participated in the experiments. The par-
ticipants were asked to rank 42 tactile samples (Figure S1e, Supporting
Information) from smooth/soft to rough; no time limit was imposed. The
participants used both hands (all fingers) during the task; they were al-
lowed to rub and touch the tactile materials with their fingertips, but not
scratch them with their nails. Each participant completed 20 trials. The
sample materials were randomly distributed at the beginning of each trial
to prevent memorization. There was an interval of at least 4 h between
repeated trials.

After more than 1 year, a tactile cognition test was performed with a lim-
ited number of samples. Three materials were presented as anchor mate-
rials with rank scores (#1, #21, and #42) for the participants. Based on the
known scores of the anchors, the participants then performed the scoring
of the eight given test materials. The anchor materials and the eight given
test materials were chosen differently from the previous tactile cognition
test.

Deep Learning Process: The tactile decision-making process engaged
in by the machine began with capturing tactile signals in two ways, that is,
touching and sliding; these signals were initially processed through differ-
ent neural network layers. A 1D convolution layer was used to extract the
features of the touching data. A pooling layer down-sampled and flattened
the data for processing in conjunction with the sliding data. The sliding
data were first transformed into the frequency domain, and then processed
via a fully connected layer to achieve a complex, high-dimensional classi-
fication (where the frequency features of tactile samples were distributed
in the frequency domain). After processing the touching and sliding data
in the neural network separately, they were combined to yield the overall
tactile decision. In order to train human tactile decision in the probability
distribution form (e.g., [0, 0.3, 0.4, 0.3, 0]), the output layer of the network
following softmax activation was designed, which can express the output
of the layer in form of a probability distribution; the summation of the total
output is equal to 1 and each value in the node represents the likelihood. In
addition, the mean-square error loss function was utilized to fit the output
of the network to the probability distribution of the human tactile decision.

For the performance comparison with the network trained by categor-
ical labels, the categorically trained network was designed with the same
network to the proposed network except for the loss function which is
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Table 1. Hyperparameters of the artificial neural network.

Hyperparameter Type Value Type Value

Input layer Touch signal
(time [ms])

400 Sliding signal
(1–500 Hz)

500

Parallel hidden
layer

1D convolution Layers: 3,
kernels: 4
ReLU

Fully connected 400,
ReLU

Max pooling 4 Fully connected 300,
ReLU

Combined
hidden layer

Fully connected 400, ReLU

Fully connected 200, ReLU

Output layer Fully connected 42, Softmax

Optimizer Stochastic gradient descent Decay: 10−6

Momentum: 0.9

Loss function Mean-square error for proposed Avatar system
Cross-entropy for categorically labeled system

cross-entropy loss function. The hyperparameters of the artificial network
are described in Table 1. Four TITAN Xp graphic cards (NVIDIA, Santa
Clara, CA, USA) were employed using Compute Unified Device Architec-
ture (CUDA) and the Python (version 3.7; https://www.python.org) pack-
age TensorFlow (Google Brain, Mountain View, CA, USA).

Tactile Decision Difference and Tactile Confusion Calculation: The differ-
ence of a representative tactile decision was calculated by averaging deci-
sion between all participants and individual participants as follows:

Tactile Decision RMSE (k)

=

√√√√√ 1
K

K∑
k

(
1
S

1
I

S∑
s

I∑
i

Taci (s, m) − 1
I

I∑
i

Taci (s, m)

)2

(2)

where Taci(s,m) is the tactile decision in ith trial (i = [1,2, …, I]) for par-
ticipants s (s = [1,2, …, S]) and material m (m = [1,2, …, M]), and k is
the variable index for analysis with respect to participants and material for
analysis (i.e., k=m and k= s, respectively). To compare the tactile decision
difference between a human and his/her paired avatar, the tactile decision
was calculated as

H − A Tactile Decision RMSE (m)

=

√√√√√ 1
S

S∑
s

(
1
I

I∑
i

Taci (s, m) − 1
I

I∑
i

Tac
i
(s, m)

)2

(3)

where Tac
i
(s, m) is tactile decision of an avatar. The tactile confusion for

human participants was calculated as

Tactile decision std. (s, m) =

√√√√√1
I

I∑
i

(
Taci (s, m) − 1

I

I∑
i

Taci (s, m)

)2

(4)

Statistical Analysis: Tactile decision standard deviation values for the S
(red, n= 7) and D (blue, n= 3) groups were presented as the mean (±) and
variance. Graphical presentation of the data was performed by OriginPro
software (OriginLab Corporation, Northampton, USA). The data for the
comparison between predicted and trained were presented as the mean
(±) standard error of the mean (SEM) with the samples (side material;
n = 22, middle material; n = 20). Two-tailed t-test was performed, and the
criterion for statistical significance was set at * for p < 0.05, ** for p <

0.005, and *** for p < 0.0001. The analysis was conducted using Prism
software (GraphPad Software, Inc., La Jolla, USA).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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